
Relationship Profiling over Social Networks: Reverse Smoothness from

Similarity to Closeness

Carl Yang Kevin Chang

University of Illinois, Urbana Champaign
201 N Goodwin Ave, Urbana, Illinois 61801, USA

{jiyang3, kcchang}@illinois.edu

Abstract

On social networks, while nodes bear rich attributes, we
often lack the ‘semantics’ of why each link is formed–
and thus we are missing the ‘road signs’ to navigate and
organize the complex social universe. How to identify
relationship semantics without labeled links? Founded
on the prevalent homophily principle, we propose the
novel problem of Attribute-based Relationship Profiling
(ARP), to profile the closeness w.r.t. the underlying re-
lationships (e.g., schoolmate) between users based on
their similarity in the corresponding attributes (e.g.,
schools) and, as output, learn a set of social affinity
graphs, where each link is weighted by its probabil-
ities of carrying the relationships. As requirements,
ARP should be systematic and complete to profile ev-
ery link for every relationship– our challenges lie in
effectively modeling homophily. We propose a novel
reverse smoothness principle by observing that the
similarity-closeness duality of homophily is consistent
with the well-known smoothness assumption in graph-
based semi-supervised learning– only the direction of in-
ference is reversed. To realize smoothness over noisy so-
cial graphs, we further propose a novel holistic closeness
modeling approach to capture ‘high-order’ smoothness
by extending closeness from edges to paths. Extensive
experiments on three real-world datasets demonstrate
the efficacy of our proposed algorithm for ARP.

1 Introduction

While our social universe– like our social lives– is com-
plex, they are critically missing ‘road signs’ to navigate.
On general networks like Twitter and DBLP, the edges
(i.e. links, connections) between nodes (i.e. users) are
often unlabeled– without ‘meanings’. Even on more per-
sonal networks like Facebook and LinkedIn– where we
spend much time every day interacting with friends in
our ego networks– our connections with and between
friends are lacking the ‘semantics’, in terms of the un-

derlying relationships, e.g., schoolmate or colleague, re-
sulting in cluttered social spaces and unorganized inter-
actions. Such relationship semantics is crucial as ‘road
signs’ to organize friends [7, 18, 5] and route informa-
tion [2, 15, 27] in our social universe. Without labeled
connections, can we automatically identify the underly-
ing relationships? This paper aims at such relationship
profiling, in an unsupervised manner, which is important
for modeling social networks.

Without pre-defined relationships, what ‘reasons’
do we give as the semantics for each link? With the
well-known phenomenon of homophily [12]– i.e., the
tendency of individuals to stay close with similar others,
it is often the case that a connection between users
is a result of such tendency, i.e., it is formed due
to their similarity in certain dimensions. Moreover,
unlike existing works that consider homophily in a single
dimension [13, 19, 25, 23], we stress that homophily is
naturally discriminative in that different relationships
correspond to different dimensions of similarity, i.e.,
different attributes A lead to different relationships R.

While no social network can capture all possible
attributes and relationships, we observe that it is usu-
ally trivial to relate the most important relationships in
a network to the particular attributes captured there.
E.g., in a professional network like LinkedIn, the most
important relationships are schoolmate and colleague,
which are the result of similar education and employer
attributes; on a personal network like Facebook, friends
are formed through relationships such as townsmen and
hobby peers resulted from their similarity in hometown
and hobby. Table 1 gives more intuitive examples of
important relationships R and relating attributes A on
different networks.

We thus propose the problem of Attribute-based
Relationship Profiling (ARP), founded on the principle
of homophily– to profile the underlying relationships
R of each connection by their associated attributes
A. While the problem is important, as social networks
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Network Important relationships and relating attributes

LinkedIn
R schoolmate colleague professional peer
A education background working experience skill

Facebook
R townsman hobby peer acquaintance
A hometown sports, music, groups, etc. check-ins, events, etc.

DBLP
R research group members in-field collaborators cross-field collaborators
A publication paper within the same fields publication within different fields

Table 1: Some intuitive examples of relationships R and attributes A on different social networks.

Figure 1: A toy example of a simple social network.

strives to help users organize their social universe and
route information, it is also novel, and we are the first
to identify it formally, to the best of our knowledge.

To illustrate, Figure 1(a) shows a network G =
(V, E ,A), where V is the set of nodes vi and E that
of connections eij . G has a set of M important
attributes A = {Am}Mm=1 (e.g., A1 = education, A2 =
employer) with the value functions, e.g., A1(v8) =
uiuc, A2(v8) = amazon. Given G as input, ARP
aims to profile E w.r.t. A’s corresponding relationships
R = {Rm}Mm=1, by inferring its relationship probabilities
{rmij = p(eij |Rm,Am)}Mm=1, i.e., how each link eij
carries R. As output, ARP constructs a set of social
affinity graphs S = {V, E ,R} = {Sm}Mm=1, i.e., graphs
sharing the same structure of G, where each link eij
in Sm is now weighted by rmij ∈ R

m indicating how

it carries Rm. E.g., as Figure 1(b) shows, for A1 =
education, ARP outputs the affinity graph S1 for R1 =
schoolmate, and similarly, for A2 = employer, it outputs
S2 for R2 = colleague. To visualize, we plot the
thickness of a link to indicate its weight in R.

We stress that, as the homophily principle implies,
ARP should be ‘systematic’ and ‘complete’. On the one
hand, individuals stay close because they are similar,
and every link should have a probability to carry certain
relationships. To this end, our profiling should be
systematic to cover every link. E.g., two links (e15
and e19) may not carry a certain relationship (e.g.,
schoolmate, because it is weak or weaker than other
relationships), but we may still want to compare them
in that dimension. On the other hand, as similar
individuals may stay close, more ‘similarity’ leads to

more ‘closeness’, and any relationships can co-occur in
a link. To this end, our profiling should be complete to
cover every relationship on a link. E.g., two users (v2
and v3) may be both schoolmates and colleagues.

While natural, these dual requirements of ho-
mophily (and thus relationship semantics) have not
been met by most existing works. Although the prob-
lem of ARP is novel, by similarly leveraging the ho-
mophily insight, several social mining methods have ex-
ploited relationship semantics as their intermediate re-
sults, but in a rather limited form– due to the failure
to model homophily appropriately: First, in attribute
profiling works [2, 7, 21, 23], the homophily modeling is
not complete, by restricting to one relationship per link.
Second, in community detection works [11, 16, 24, 26],
it is not systematic, by targeting at each community in-
stead of links, which forces links in the same community
to carry the same relationship, and leaves out those out-
side or between communities. As Sec. 4 will show, such
improper models fall short for relationship profiling.

Thus, to address ARP, our key challenges center
around effectively modeling homophily:

Challenge 1: Systematic and Complete Ho-
mophily. As ARP requires, and as the nature of ho-
mophily implies, we should realize homophily over every
link (systematicness) and for every relationship (com-
pleteness), which most existing work failed to satisfy.
What is a principled mechanism for implementing ho-
mophily, so that every link can be properly understood
through multiple relationships?

Insight: Reverse Smoothness Principle. Over a graph,
homophily bridges two kinds of ‘proximities’ between
users, i.e., similarity, measuring how similar two users
share for attributes A, and closeness, measuring how
close two users link through a relationship R. Interest-
ingly, we observe that, as this similarity-closeness dual-
ity is natural, it has been explored in graph-based semi-
supervised learning (GSSL) [28, 30, 31]. GSSL models
the smoothness assumption, i.e., points close to each
other are likely to share labels, which helps to infer from
closeness (of links) to similarity (of labels) over a given,
as input, data affinity graph, in a systematic (over every
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link) and complete (for every label) manner.
Surprisingly, while the smoothness assumption is re-

markably consistent with homophily, their connection
has only been exploited in a non-discriminative way
that considers a unique relationship and mixes up all
attributes [23]. As our key insight is to leverage the
modeling of smoothness to realize systematic and com-
plete homophily, we note that our direction of inference
for ARP is focused on the opposite to GSSL: from at-
tributes to relationships. Therefore, we propose the re-
verse smoothness principle (details are in Appendix A)
and a probabilistic model in Sec. 2, to infer from given
similarity (of attributes A) to latent closeness (of rela-
tionship R) and construct, as output, a social affinity
graph. We stress that, from similarity to closeness, the
focus of ARP is exactly the opposite to that of GSSL–
and this reverse smoothness has not been explored to
date.

Challenge 2: Robust Homophily. While the reverse
smoothness principle allows us to relate attributes and
relationships by implementing homophily, due to the
incompleteness and ambiguity of attributes and links
in real-world networks, similarity can not be computed
and closeness can not be enforced directly between every
pair of nodes. How to realize homophily robustly over
such noisy social networks?

Insight: Holistic Closeness Modeling. Traditional
smoothness is only considered on direct edges between
pairs of nodes by GSSL on the data affinity graph. It
works because every edge exists and every pair-wise
closeness is enumerated. In real-world networks where
attributes are incomplete and ambiguous, and nodes
with similar attributes do not always share an edge,
such a scheme is useless.

To deal with real-world networks, we propose a
holistic closeness modeling approach (details and imple-
mentations are in Sec. 2, Appendix A and B), to lever-
age similarity between every pair of nodes– even though
they may not have a direct link– by capturing the close-
ness between nodes based on paths, instead of edges. In
other words, from edges to paths, we extend the tra-
ditional smoothness modeling to higher-order smooth-
ness, so as to fully exploit the available attribute and
link information on an incomplete ambiguous graph.

We intuitively explain the idea of this approach
by continuing on the running example in Figure 1.
It is intuitive to say that e68 is very likely to carry
relationship schoolmate, because v6 and v8 have the
same education attribute. However, tricky questions
arise due to the incomplete and ambiguous attributes.
E.g., consider e19, where neither of v1 or v9 has available
education attribute, and e23, where both v2 and v3 have

multiple attributes. The holistic closeness modeling
approach leverages paths that connect attributed nodes
to profile edges they bypass. E.g., paths v8−v9−v1−v7
and v5−v2−v3−v4 bypass e19 and e23, respectively, so
they add belief on e19 to carry relationship schoolmate
and e23 to carry relationship colleague. In a nutshell, the
approach exploits data redundancy in the neighborhood
to complete and disambiguate relationships.

Summary. In this paper, based on our novel re-
verse smoothness principle and holistic closeness mod-
eling approach, we develop a probability framework of
Attribute-based Relationship Profiling (ARP), which
leverages user attributes and link structures to reliably
estimate the proper relationship semantics in social net-
works. Specifically, we preserve reverse smoothness on
the graph based on an interpretable probability exper-
iment, and we achieve holistic modeling by measuring
closeness through standard random walks. An efficient
path finding algorithm is designed to solve our justifi-
able MLE objective. Finally, experiments on three real-
world datasets comprehensively demonstrate the effec-
tiveness and efficiency of our ARP framework.

2 Model

Maximizing the production of a similarity term and a
closeness term is a standard way of preserving smooth-
ness on the graph [28, 31]. However, the objective
function is rather heuristically designed for optimiza-
tion purposes and the scales of learned quantities are
arbitrary.

The objective of ARP is to estimate a complete set
of relationship probabilities systematically on each link.
Moreover, this has to be done based on incomplete and
ambiguous user attributes and link structures. We de-
velop a unified probabilistic framework to derive the
objective function of reverse smoothness and precisely
learn the proper relationship probabilities through holis-
tic closeness modeling.

We note that existing probabilistic models in graph-
based settings only consider the inference from closeness
to similarity on the comprehensive data affinity graphs,
instead of the inference in the opposite direction on the
incomplete and ambiguous social graphs as we consider
[4, 6, 20].

2.1 Probabilistic Reverse Smoothness To learn
the systematic and complete relationship probabilities
based on user attributes, we apply our novel reverse
smoothness principle (Principle 2 in Appendix A) by
designing a set of simulated probability experiments.

We start from the description of the probability
space. To model closeness between users vi and vj , we
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define a user closeness event that vi and vj are close
on the graph and use a random variable p(vi ∼ vj)
to denote the probability of this event. Therefore,
we have the sample space Ω = V2. We assume that
(vi ∼ vj) follows the multinomial distribution on Ω and

have
∑N

i=1

∑N
j=1 p(vi ∼ vj) = 1. We aim to estimate

p(vi ∼ vj) based on observed attribute similarity.
Since we only observe attributes A directly from

the network rather than the similarity f(ai, aj), we
firstly use intuitive examples to explain how to compute
f(ai, aj).

Consider R = schoolmate and A = university. For a
single categorical attribute with multiple distinct values
like this, a simple way to compute f(ai, aj) is to assign
1 to it if ai and aj include at least one same value and
0 otherwise. This is basically doing the OR operations
among the AND results between users on each distinct
value of the specific attribute.

We may also include numerical attributes like age,
which may help produce better attribute similarities
among schoolmates. We can normalize the difference
between the values of ai and aj into [0, 1] by dividing
the largest difference among all pairs, and similarity
equals one minus the normalized difference. Then we
combine similarities on multiple attributes by simply
doing a generalized AND operation.

With a score f(ai, aj) computed for each pair of
users vi and vj describing their similarity on A, we
estimate their closeness in R in the following simulated
probability experiments. Each time, we pick up a pair
of users vi and vj from Ω according to f(ai, aj) and
observe that they are close on the graph. We require
that the probability of randomly picking up (vi ∼ vj) is
proportional to f(ai, aj). Therefore, after a sufficiently
large number of experiments, the likelihood of observing
the user closeness events boils down to

L =

N∏
i=1

N∏
j=1

p(vi ∼ vj)f(ai,aj).(2.1)

By maximizing L, we ensure that each pair of
users are necessarily close on the social affinity graph
S according to their attribute similarity in A, while
not too close under the constraints of multinomial
distribution. Thus the objective of preserving reverse
smoothness over the graph is fulfilled.

2.2 Holistic Closeness Modeling To precisely es-
timate relationship probabilities, we develop a holistic
model of user closeness based on random walks on S
(more details and motivating examples are in Appendix
A). While closeness can be asymmetric, we consider it in
a symmetric way under the setting of undirected graphs.
The framework generalizes trivially to directed graphs.

In standard random walks, edge weights R deter-
mine the one-step transition probabilities of the ran-
dom walker on the graph, i.e., p(vj |vi) =

rij
di

, where
di =

∑
j∈N (vi)

rij and N (v) is the set of nodes that

share an edge with v [4, 14]. p(vj |vi) measures the edge-
wise closeness on S.

We propose to further measure path-wise (holistic)
closeness. Consider a random walk on S. Starting
from a specific node vi, besides jumping directly to
vj , the random walker can pass through several nodes
between vi and vj with the corresponding transition
probabilities before finally reaching vj . The probability
of the random walker to reach vj from vi through all
possible paths accurately measures the holistic closeness
between vi and vj on S.

In order to capture and formalize holistic closeness,
we bring out the notion of reachability in random walk
[9, 29]:

R(vi ∼ vj) =
∑

l∈l(vi∼vj)

r(l),(2.2)

where l(vi ∼ vj) is the set of all paths connecting vi
and vj , and r(l) is the reachability through the specific
path l in a random walk. Although we focus on the
reachability in only one direction, closeness is modeled
symmetrically because we consider similarities in both
directions equally.

Suppose all possible paths connecting vi and vj
are known. We systematically enumerate reachability
w.r.t. paths of different lengths and then add them
up into a uniform representation. Specifically, we use
lkh(vi ∼ vj) to denote the hth path of length k between
vi and vj . Suppose lkh(vi ∼ vj) = vh1−vh2−. . .−vhk+1

.
At each step from vhi to vhi+1 , the transition probability

is
rhihi+1

dhi
. We also consider the decay factor α to denote

the impact of longer walks. Therefore, the reachability
under the measure of lkh(vi ∼ vj) is

pkh(vi ∼ vj) = αk
k∏

s=1

rhshs+1

dhs

.(2.3)

In this form of multiplication, since the weight of the
whole path is proportional to the weight of each edge
and sub-path along that path, the closeness among
nodes is naturally coupled and transmitted along the
path.

Suppose there are totally H paths of length k
connecting vi and vj , then we have

pk(vi ∼ vj) =

H∑
h=1

pkh,(2.4)

Considering all paths of different lengths connecting
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vi and vj , we have

p(vi ∼ vj) =

K∑
k=1

pk,(2.5)

where K is the maximum length of paths we consider.
To fully implement reachability as in Eq.2.2, K should
be set to +∞. However, it is usually sufficient to set
K to small numbers like 3 or 4, due to the small world
phenomenon, which makes longer paths less important
[22]. According to [29], the ignored reachability on
paths longer than K is bounded by αK+1, and in
practice, we can dynamically increase K to compute
incremental reachability. In Sec. 4, we show the impact
of different α and K.

Combing Eq.2.3, Eq.2.4 and Eq.2.5, we get the
reachability between vi and vj measured by the whole
graph as

p(vi ∼ vj) =

K∑
k=1

H∑
h=1

αk
k∏

s=1

rhshs+1

dhs

.(2.6)

However, finding all possible paths connecting vi
and vj is non-trivial. Therefore, an efficient path
enumerating algorithm is devised especially for our
scenario in Appendix B.

2.3 Interpretation We give an interpretation of
how our probabilistic framework works in a random-
walk perspective.

Combining Eq.2.1 and Eq.2.6, we get the likelihood
function connecting path-wise user closeness with at-
tribute similarity,

L =
∏
i,j

(

K∑
k=1

H∑
h=1

αk
k∏

s=1

rhshs+1

dhs

)f(ai,aj).(2.7)

Consider a random walk on the graph. By con-
straining edge weights through path-wise closeness mea-
sured by reachability on the graph, we are actually re-
quiring the random walker to ‘prefer’ paths connecting
nodes with similar attributes, instead of always choos-
ing an edge to go with uniform probabilities. This idea
is similar to the supervised random walk in [1]. But
instead of generating ad hoc features for edges, we di-
rectly manipulate edge weights through paths, and thus
the actual correspondence between edges and paths is
preserved. As a result, for each edge or sub-path, the
more paths connecting nodes with similar attributes
pass through it, the more probable it will be visited
by the random walker in the stationary distribution,
and thus is more probable to be formed due to the at-
tribute similarity under consideration. Since there are
many paths connecting each pair of attributed nodes
and each path consists of multiple edges and sub-paths,
many relationships among un-attributed nodes can be

effectively profiled given only a few pairs of attributed
nodes. Thus the problems of missing and overlapping
attributes are both well addressed.

To show that our model essentially preserves reverse
smoothness, we extract the generalized objective func-
tion of SSL as

JSSL =
∑
i,j

CijSij ,(2.8)

where closeness (C) and similarity (S) are implemented
in various ways due to different intuitions and measure-
ments [30, 28, 8]. Maximizing Eq.2.8 with proper regu-
larization essentially preserves smoothness by reducing
the difference between C and S. To contrast, we write
the log-likelihood of ARP from Eq.2.7 as

JARP =
∑
i,j

f(ai, aj) log(

K∑
k=1

H∑
h=1

αk
k∏

s=1

rhshs+1

dhs

).(2.9)

In this equation, f(ai, aj) implements S while log(p(vi ∼
vj)) implements C. The correspondence between Eq. 2.8
and 2.9 indicates the effectiveness of ARP in preserving
the reverse smoothness on the social affinity graph.

Note that, unlike Eq. 2.8 that is designed purely
based on intuitions and optimization purposes, our
Eq. 2.9 is derived from a principled probabilistic frame-
work, where probability interpretation of relationship
semantics is naturally preserved, and the coupling of
closeness and similarity is decided by the well defined
simulated probability experiments.

3 Algorithm

Realizing our holistic smoothness model is to compute
a parameter configuration R, so that the likelihood
of observing the user closeness event is maximized
according to attribute similarity. For this purpose,
we need to firstly find relevant paths that can be
constructed by existing edges on the graph, and then
optimize weights R on them.

3.1 Finding Paths on Graph According to Eq. 2.7,
we need to find paths l(vi ∼ vj) for the pairs of nodes
vi and vj with f(ai, aj) > 0. Unlike traditional path
enumeration on graphs, our problem is quite unique,
where we only care about short paths between a small
portion of nodes.

Since shorter paths contribute more in our model,
we devise an efficient path finding algorithm based on
breadth-first search (BFS), so that we can tune path
length K to avoid considering longer paths. In practice,
f(ai, aj) is usually very sparse, since there are numerous
distinct values on A and many users do not have any
meaningful value. Therefore, we only need to start from
a very small number of nodes compared to |V|. Finally,
since we need to record the exact paths and avoid
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repeated iterations when considering the same nodes in
different levels of search, we borrow the efficient path
descriptor d(·) from [17] to encode, record and retrieve
paths between nodes with time complexity O(1). It is
also efficient to check if a certain node or edge is on
a path and if two paths are the same by simply doing
binary AND and XOR based on d, respectively.

Since path indexing and legitimacy checking are
efficiently O(1) with the path descriptor lists, the overall
computational complexity of finding paths is O(K|V|2).
However, the actual computational time is much shorter
than K|V|2. In each step of BFS, the numbers of
considered nodes and neighbors are much less than |V|.
The efficiency of finding paths can be further improved
by path caching and reusing, to fully utilize the path
indexes. Specifically, we try to cache as many legitimate
paths as possible after they are indexed. Therefore,
the paths of length K can be directly reused when
considering paths longer than K. As the number of
paths goes exponentially with the length of the paths,
it is usually impossible to keep all path indexes in cache
and even memory. Motivated by the scale-free property
of social networks [3], which leads to the frequent
reuse of paths between a small number of high-degree
hub nodes, we adopt the Least Recently Used (LRU)
algorithm for path caching.

3.2 Optimizing Weights on Paths Now that the
paths connecting each pair of nodes with similar at-
tributes are found, we continue to optimize the log-
likelihood function in Eq.2.9 and generate the relation-
ship probabilities R. We derive the gradient for ruv as

∂J

∂ruv
=

∑
i,j

f(ai, aj)
Nuv(vi ∼ vj)
p(vi ∼ vj)

.(3.10)

In the equation,

Nuv(vi ∼ vj) =

K∑
k=1

H∑
h=1

I{lkh, euv}
pkh(vi ∼ vj)

ruv
,

(3.11)

where I{lkh, euv} is an indicator function computed
from path lkh. Specifically, I{lkh, euv} equals 1 if lkh
contains edge euv, and 0 otherwise. Therefore, Nuv(vi ∼
vj) is the sum of the products of all normalized edge
weights except for ruv along all paths that connect nodes
vi and vj and also contain edge euv.

With Eq.3.10, we apply standard gradient ascent to
solve forR. As can be seen in Eq.3.11, for a specific edge
euv, the more paths lkh’s pass through it (I{lkh, euv}
equals 1), the larger the derivative of the corresponding
weight ruv is, which substantiates our intuition of
using paths connecting similarly attributed nodes to
profile individual edges. In Eq.2.3, the denominator dhs

exposes an l-1 norm on all weights in R, encouraging

sparse solutions. The penalty arises naturally within the
probabilistic model and therefore no heuristic penalty
terms to encourage sparsity is necessary.

Consider a specific pair of nodes vi and vj . Given
Eq.2.3, pkh(vi ∼ vj) is concave in R. Moreover, since
different paths connecting vi and vj found by SPPI
never share the same edge, pk(vi ∼ vj) and p(vi ∼ vj)
in Eq.2.4 and Eq.2.5 are both concave in R. Since
log concave is still concave, the log-likelihood function
in Eq.2.6 is a weighted sum of concave functions,
which is not globally concave but has an upper bound.
However, since f(ai, aj)’s are usually very sparse in
social networks, we find the solution of our algorithm
stable and almost always the global optimal in the
experiments.

The runtime of ARP is dominated by finding paths.
The runtime of optimization with gradient ascent is lin-
ear in |V|. As we study in our experiments, convergence
is reached usually within 20 iterations with step size
empirically set to 0.05. As discussed before, the time
of finding paths is much less than K|V|2, so the overall
computation complexity of ARP is O(K|V|2), compa-
rable to many advanced attribute profiling and commu-
nity detection algorithms [2, 7, 11].

For more details and analyses of the algorithm,
please refer to Appendix B.

4 Experiments

In this section, we evaluate ARP with quantitive exper-
iments and case studies on three real-world datasets.

4.1 Experimental Settings

Datasets. The first is the LinkedIn Ego Networks
dataset (LEN) from [7]. It includes 268 ego networks,
which contain about 19K users and 110K connections.
Among them, about 30% users have attributes of 193
different universities and 375 different employers, which
we use to generate training data. 8K connections are
labeled by the ego users as carrying the relationships
of schoolmates, colleagues or both, based on which we
directly perform quantitive performance evaluations.

The second is the Facebook Ego Networks dataset
(FEN) from [11]. It contains 10 ego networks of
about 4K users and 88K connections. We choose all
hometown, school and employer attributes out from the
total 634 attributes, because they well indicate the
relationships of townsman, schoolmate and colleague.
Since there are no labeled relationships, we randomly
split the users into training and testing sets. We input
all users with their connections and attributes in the
training set to all compared algorithms, and evaluate
the learned relationships on connections between users
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in the training set and users in the testing set. For
quantitive evaluations, we label the relationship of
townsman (schoolmate, colleague) on the connections
between friends sharing the same attribute value of
hometown (school, employer). Thus, there might be
multiple relationships on the same connection.

The DBLP data we use were extracted on Jan
1st, 2017, which includes 3.7M publications from 1.8M
authors. We generate nodes as authors and use three
publication venues, KDD, VLDB and ICML, as node
attributes. A uniform connection is generated between
authors who have co-authored at least once in any of the
considered venues. Since the authors and attributes are
not anonymous, we present insightful case study results
on some novel applications to show the effectiveness of
our framework.

The attributes captured in both LEN and FEN
are incomplete and noisy. In such scenarios, we show
that profiling the systematic and complete relationship
semantics is generally useful in improving the perfor-
mance of relationship prediction. Although both LEN
and FEN are ego-networks, our framework is general to
work on any non-ego-networks like DBLP. Moreover, on
DBLP where the attributes are complete and precise, we
show that our framework is still advantageous because
it provides more insightful results.

Compared algorithms. The problem of ARP is novel,
which is hardly addressed by previous literature. To
comprehensively evaluate ARP, we adapt state-of-the-
art algorithms from two groups.

Adapting attribute profiling algorithms. These algo-
rithms aim at inferring user attributes based on both
known attributes and network structure. Since the re-
lationships they learn are implicit, we need to predict
them based on the inferred attributes on the connected
users. E.g., we predict a relationship as schoolmate if
the two connected users are inferred with the same uni-
versity attributes.

• Relation neighbor classifier (RNC) [10]: it profiles
user attributes w.r.t. labeled neighbors without
learning.

• Discriminative relational classifier (DRC) [21]: it
constructs a modularity-based feature as latent
social dimensions to help learn user attributes.

• EdgeExplain [2]: it improves on traditional label
propagation [30, 31] by leveraging a softmax func-
tion to solve for a global optimal assignment of both
user attributes and relationships.

• BLA [23]: it jointly infers link and attribute prob-
abilities by addressing smoothness from two direc-
tions on social graphs.

Adapting community detection algorithms. We adapt
community detection algorithms that use node at-
tributes to characterize communities, which have a side
effect of profiling links at a coarse granularity. We re-
fer to the attribute assignment of each community and
predict all relationships based on the most prominent
attribute. E.g., we predict all relationships in a commu-
nity as schoolmate if a university attribute is the most
prominent there.

• PCL-DC [26]: it unifies a conditional model for link
and a discriminative model for content analysis.

• Circles [11]: it designs a generative model of edges
w.r.t. profile similarity to detect overlapping com-
munities.

• CESNA [24]: it designs a generative model of edges
and attributes to detect overlapping communities.

• CoProfiling [7]: it profiles attributes and commu-
nity memberships through iterative coordinate de-
scent.

Instead of producing a set of relationship probabili-
ties for each link like ARP, all baselines can only produce
categorical labels.

Metrics. For performance evaluations, we compute
precision, recall and F1 score over all predictions of
each relationship as commonly done in related works [7].
The presented results are the averages over 10 times of
the same procedures. We also conduct significance tests
with p-value 0.01.

To further understand the results, we evaluate the
relationships profiled by different algorithms w.r.t. the
systematicness and completeness criteria as we dis-
cussed in Sec. 1. We compute the number of all links
in the network (E), the number of profiled links (P )
and the number of links profiled with multiple relation-
ships (M). To measure the systematicness, we compute
S = P/E, and to measure completeness, we compute
C = M/P .

We also measure the actual runtimes of different
algorithms on a typical PC with dual 2.3 GHz Intel i7
processors and 8GB memory.

4.2 Performance Comparison on LEN On the
LEN dataset, ARP is quantitively evaluated against all
baselines. Given a uniform social network, the task is to
identify relationships that are discriminatively related
to user attributes. Here we aim to identify schoolmates,
who are likely to share the same university attributes,
and colleagues, who are likely to share the same employer
attributes. Evaluation is done on the user labeled
relationships.
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We run ARP on the university and employer at-
tributes and predict the probabilities of schoolmate and
colleague relationships on each link. To perform quan-
titive evaluations, we convert the probabilities into bi-
nary predictions for each relationship by thresholding at
value θm. For attribute learning algorithms, we predict
schoolmates if the two connected users are inferred with
the same university attribute; for community detection
algorithms, we predict schoolmates if a certain university
is the most prominent attribute for the detected com-
munity that contains both connected users.

We select the best parameters for all algorithms via
standard 5-fold cross validation. The parameters we set
for ARP are K = 3, α = 0.8, θ1 = 0.4 and θ2 = 0.7.

Algorithm
Schoolmates Colleagues

P R F1 P R F1

RNC 0.613 0.548 0.579 0.358 0.467 0.405

DRC 0.885 0.472 0.616 0.603 0.442 0.510

EdgeExplain 0.782 0.618 0.690 0.530 0.642 0.581

BLA 0.648 0.683 0.665 0.416 0.697 0.521

PCL-DC 0.932 0.498 0.649 0.654 0.516 0.577

Circles 0.937 0.431 0.590 0.512 0.428 0.466

CESNA 0.813 0.492 0.613 0.502 0.538 0.519

CoProfiling 0.969 0.487 0.648 0.691 0.453 0.547

ARP 0.941 0.793 0.861 0.705 0.782 0.742

Table 2: Performance comparison on LEN.

Table 2 shows performance comparison on LEN.
The scores all passed the significance tests with p-value
0.01. ARP constantly ranks first among the 8 algo-
rithms on F1 score, while other methods have varying
performance, which indicates the robustness and uni-
versal advantages of our approach on precisely profil-
ing individual links. By looking into the scores, we find
that ARP can effectively improve recall, while maintain-
ing comparable precision to the baselines. It shows the
effectiveness of our model to systematically and com-
pletely profile relationships along paths connecting users
with similar attributes.

We present systematicness and completeness evalu-
ations in Table 3, where the ratios are averaged through
10 random training-testing splits. As clearly shown, the
attribute profiling algorithms usually profile only one
relationship for every connection, while the community
detection algorithms predict no relationship at all on
some connections. ARP is the only one that implements
systematic and complete homophily by profiling every
connection w.r.t. every relationship.

Algorithm RNC/DRC EdgeExplain BLA PCL-DL

Systematicness 100% 100% 100% 88.7%

Completeness 0% 15.7% 78.2% 64.0%

Algorithm Circles CESNA CoProfiling ARP

Systematicness 83.6% 86.2% 91.4% 100%

Completeness 81.2% 72.9% 0% 100%

Table 3: Systematicness and completeness of
profiled relationships on LEN.

We present the average runtime of different algo-
rithms on LEN in Figure 2. For ARP, we compare the
runtime with and without path caching and reusing, as
discussed in Appendix B (the additional runtime with-

Figure 2: Runtime comparison on LEN.

out path caching is marked as yellow). The runtime of
ARP is comparable to the baselines.

4.3 Performance and Parameter Study on FEN
We run experiments on FEN with varying portions of
training and testing sets to comprehensively evaluate
the performance of ARP. We also closely study the
impact of the two intrinsic parameters of ARP, i.e., α,
the decay factor, and K, the maximum length of paths.

To compute the F1 scores, the similar process for
LEN has been done to all compared algorithms to yield
a binary prediction for each of the townsman, schoolmate
and colleague relationships on each connection.

(a) Varying α while K = 3 (b) Varying K while α = 0.8

Figure 3: Performance study on FEN.

Figure 3 shows results on FEN for townsman with
θ1 = 0.2. The results for schoolmates and colleagues
are similar. In Figure 3(a), the decay factor α does
not significantly influence the performances. This is
probably because we only consider short paths. In
Figure 3(b), when K is set to 2, only two-step paths
are considered, which leads to poor results. When
K is set to larger values like 3, the holistic modeling
approach becomes effective and the results are much
better. Note that K = 3 and K = 4 always yield similar
results, which indicates that the importance of paths is
dominated by short ones. By setting K to values like 3,
we can run ARP efficiently by avoiding irrelevant edges.

Due to space limit, more experiments and case
study results are placed in Appendix C. Readers are also
welcome to explore our Github project1 for more inter-
esting novel applications and visualizations enabled by
ARP. All codes are available under the same directory.

1https://github.com/yangji9181/ARP2017
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5 Conclusion

While ARP is a novel problem that can be viewed as an
essential part of problems such as attribute learning and
community detection, we emphasize that this problem
itself is important, complex and of great research value.
As a unique solution, we propose to learn relationship
semantics in a principled probabilistic way, which char-
acterizes the formation of each user relationship in social
networks based on user attributes. Since ARP enables
automatic labeling of relationships in an unsupervised
way, the roles that different relationships play in various
networks can be rigorously studied, such as promoting
certain messages and shaping specific groups.
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Appendix A: Detailed Motivations and Concepts

In real-world networks, while links should bear different
relationships, they are not explicitly labeled. We argue
that being connected in a network does not mean
being equally close in reality, and being close does not
mean being equally close in every perspective. Since
important relationships in social networks are usually
discriminatively related with some particular attributes
captured by the networks, we propose to leverage user
attributes to decipher the hidden relationship semantics
of uniform links.

Challenges. The challenges of ARP lie in the effective
modeling of homophily– to be systematic and complete
as well as robust.. The former is difficult due to the
lack of a principled way to infer relationships from
attributes, and the later is hard because of incomplete
and ambiguous information in real social networks.

Principle: Reverse Smoothness. We notice that
there is a systematic connection between attributes
and relationships as we desire, which has been ex-
plored by the principled framework of graph-based semi-
supervised learning (GSSL) [11, 12]. Specifically, GSSL
models two proximities on the graph: closeness and
similarity. Consider GSSL in the social network set-
ting. For each user attribute A, an affinity graph R
is used to encode user closeness in terms of the corre-
sponding relationship. Then the value of every user on
A can be learned based on R.

As an example, consider v1, v5 and v6 in Figure 1(a)
of the main paper. GSSL assumes that closeness in R is
already given. Therefore, if w16 is larger than w15, the
unknown education attribute of v1 will be more likely
to be predicted as a6 (UIUC) than a5 (Stanford), due to
the following principle of GSSL.

Principle 1. (Smoothness Principle) If two nodes vi
and vj are close on the affinity graph R, their attributes
ai and aj should be similar [11, 12].

The focus of GSSL is thus on attribute inference, which
goes from closeness to similarity on the graph.

Interestingly, the focus of ARP is the opposite of
GSSL, i.e., from similarity to closeness. In ARP, e.g.,
we only know there is an edge e13 between v1 and v3.
We are interested in the closeness on e13 in terms of
schoolmate and colleague.

Inspired by GSSL, we intuitively reverse the
smoothness principle into the following, which allows us
to learn R by systematically enforcing closeness based
on similarity, leading to a novel and unique solution to
the ARP problem.

Principle 2. (Reverse Smoothness Principle) If two
users vi and vj share similar attributes on A, they
should be close on the social affinity graph in terms of
R.

Based on this principle, it is intuitive to implement
homophily by probabilistically estimating the closeness
on every link in terms of each relationship R based on
the similarity of its related attributes A. The resulting
social affinity graphs naturally encode the systematic
and complete relationship semantics in the network.

Approach: Holistic Closeness Modeling. Our
situation in the real-world graph setting is more complex
than that of GSSL. While GSSL can enumerate all
pair-wise closeness on each edge and enforce similarity
accordingly, the opposite is hard to do in social networks
with missing and ambiguous information.

Firstly, attributes are incomplete. Consider v1 and
v9 in Figure 1 of the main paper. Since the education
attribute a1 and a9 are missing, we have no idea how
similar they are, and thus how close e19 should imply
in terms of schoolmate. Moreover, even if attributes
are complete, closeness cannot be simply enforced on
every edge, because similarity can be ambiguous. This
is due to the direction of inference, i.e., friends of
relationship R must share the same related attribute A,
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while similar in A does not necessarily mean close in R.
E.g., consider v2 and v3 in Figure 1 of the main paper.
If v2 and v3 are schoolmates, they must share the same
education attribute such as UIUC. However, sharing the
same education attribute does not necessarily imply
the relationship of schoolmates. In fact, they may be
colleagues, because they also share the same employer
attribute of Google, or both. If we simply enforce
closeness on e23, the results will be ambiguous.

To further leverage our reverse smoothness principle
and robustly learn the social affinity graph S, we
propose to put smoothness constraints and closeness
measures onto the whole graph, rather than limiting
them to direct edges. Specifically, we define a path to
be a sequence of non-repeating edges connecting two
nodes and use reachability to measure closeness as a
sum of all weighted paths between two nodes. Then we
constrain closeness measured by reachability according
to attribute similarity. The intuition is that, the more
similar attributes vi and vj share, the closer they should
be on the graph, and therefore the more paths of shorter
lengths and larger weights should connect them.

Continue our example in Figure 1 of the main paper.
Inferring r19 in terms of schoolmate is challenging due
to missing education attributes of v1 and v9. However,
similarity between v7 and v8 can be used to estimate
the closeness on path v7− v1− v9− v8, which indirectly
estimates the closeness on e19. As a result, e19 is likely
to carry relationship schoolmate, basically because v1
and v9 share many friends from UIUC such as v7 and v8.

Moreover, continue the discussion from Figure 1 of
the main paper about v2 and v3, where e23 is ambiguous.
If we combine closeness measured by multiple paths
containing e23, we will end up with a higher probability
of e23 to be formed due to Google rather than UIUC,
mainly because of the short path v4 − v3 − v2 − v5
containing e23 between v4 and v5 with Google.

By constraining closeness measured with reachabil-
ity on paths, we effectively utilize the constraints be-
tween each pair of nodes vi and vj with meaningful at-
tributes onto all edges along the paths connecting vi and
vj , much beyond their direct edges, if any. Among those
edges, many are likely to connect nodes without mean-
ingful values of particular attributes, but in this way,
they can still get properly constrained and thus well
estimated. Moreover, since each edge can be a com-
ponent of multiple constrained paths, multiple signals
from nearby nodes are combined to disambiguate the
semantics of that single edge, yielding much more ro-
bust results.

Appendix B: Details of our Algorithms

Efficiency. In practice, A is usually very sparse, be-

cause for every specific attribute, there are numerous
distinct values and many users do not have any mean-
ingful values. Therefore, most f(ai, aj) computed on A
will be 0 or very small as can be ignored, which means
we only need to consider a very small number of pairs
of nodes compared to |V|2.

We develop the Sensor Propagating with Path In-
dexing (SPPI) algorithm for optimizing our model.
SPPI is based on the idea of label propagation on graphs
[5]. But instead of labels, we generate a sensor at a start-
ing node s and propagate it to every possible direction
at each step, and index the edges it goes through. We
call it a sensor because each time it touches a new node
t, it detects whether a legal path from s to t has been
detected. If yes, we can retrieve the exact edges on that
path by looking up the indexes. Another important task
of the sensor is to act as a marker, so at each step of
propagation, we only consider a small subset of V with
the sensors on.

We formally present the procedures of SPPI in
Algorithm 1. To implement our path indexer D, we
borrow the idea of path descriptor from [7]. A path
descriptor d(·) is a pair of bit vectors for each path l
as d(l) = {V,E}. V is a bit vector of |V| items with
Vi = 1 if node vi ∈ l and Vi = 0 otherwise. E is a bit
vector of |E| items with Ei = 1 if edge ei ∈ l and Ei = 0
otherwise. For vi and vj , we use D(i, j) as a list of path
descriptors to index all paths connecting them. With
the path descriptor d and index matrix D, it is easy to
encode, record and retrieve multiple paths connecting
any two nodes with time complexity O(|E|). It is also
efficient to check if a certain node or edge is on a path
and if two paths are the same by simply doing binary
AND and XOR on d.

SPPI is different to exhaustive search in several
ways. Firstly, it is based on breath-first search (BFS),
so that as shorter paths contribute more in our model,
we can tune K to avoid the consideration of longer
paths and save computation time. Secondly, it is
more efficient than brute force BFS by utilizing the
sensor vector and path descriptor lists and checking
the legitimacy of propagation directions at each step,
avoiding repeated iterations when considering the same
nodes in different levels of search. Thirdly, it is specially
suited to the optimization of our model, because after
each execution, it finds paths from a starting node to
all nodes with similar attributes on the graph, while
avoiding enumerating paths connecting other nodes.

Correctness. We evaluate the correctness of SPPI by
checking the completeness and non-repetitiveness of the
algorithm. In Step 8, by requiring vj /∈ l, we require
that the next node to be propagated to is not already
in the path being considered, so no loopy paths can be
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generated; by requiring l + eij /∈ D(I, j), we guarantee
that each path is generated only once. Moreover, in
Step 10 and Step 14, we ensure that all and only nodes
with the newly propagated sensors on are considered at
each step, so the same nodes are not considered multiple
times in different search levels. Finally, in Step 6, since
we always try to propagate the sensors through every
possible edge, we make sure that every simple path is
considered.

Since path indexing and legitimacy checking are
efficiently O(1) with the path descriptor lists, the overall
computational complexity of finding paths is O(K|V|2).
However, the actual computational time is much shorter
than K|V|2. In each step of BFS, the numbers of
considered nodes and neighbors are much less than |V|.
The efficiency of finding paths can be further improved
by path caching and reusing, to fully utilize the path
indexes. Specifically, we try to cache as many legitimate
paths as possible after they are indexed. Therefore,
the paths of length K can be directly reused when
considering paths longer than K. As the number of
paths goes exponentially with the length of the paths,
it is usually impossible to keep all path indexes in cache
and even memory. Motivated by the scale-free property
of social networks [2], which leads to the frequent
reuse of paths between a small number of high-degree
hub nodes, we adopt the Least Recently Used (LRU)
algorithm for path caching.

Appendix C: More Related Works

Although we are the first to formally define the prob-
lem of ARP, since relationship semantics is critical for
various tasks on social networks, algorithms in recent
literature have already been intensively solving the re-
lated problems to ours. However, while they commonly
believe in homophily and connect attributes and rela-
tionships with it, they do not correctly interpret the
nature of homophily as complete and systematic. Ac-
cording to their main objectives, they can be categorized
into two groups. The first group applies homophily to
learn attributes through relationships, assuming that re-
lationships on each link are mutually exclusive [1, 3, 8].
While they implicitly learn relationships, they do not
compute the complete semantics on each link. The sec-
ond group utilizes homophily to detect communities, as-
suming that each community of nodes are connected
through the same relationships [4, 6, 9, 10]. They com-
pute the semantics of communities, rather than the sys-
tematic semantics on links.

The first group of algorithms can produce system-
atic but not complete relationship semantics. Since at-
tribute learning aims to infer the missing attributes of
every node, systematic relationship semantics can usu-

Algorithm 1 SPPI algorithm

1: procedure SPPI . Input
G(V, E): the graph.
K: the maximum length of paths we consider.
I: the source node from which we want to find

all paths to other nodes in the graph.
. Output

D(I, j), j = 1 . . . |V|: each D(I, j) is a list of
path descriptors describing paths between vI and
vj .

. Variables we use
Φ: a bit vector of length |V|, where Φ(i) marks

if there is a sensor on node vi.
. Initialize

2: Φ(I)← 1, ∀j 6= I,Φ(j)← 0
3: ∀j,D(I, j)← null

. Iteration
4: for k = 1 : K do
5: for all i in 1 : |V| with Φ(i) == 1 do
6: for all j in 1 : |V| with eij == 1 do
7: for each path l in D(I, i) do
8: if vj /∈ l && l+eij /∈ D(I, j) then
9: D(I, j) = D(I, j) + (l + eij)

10: Φ(j)← 1
11: end if
12: end for
13: end for
14: Φ(i)← 0
15: end for
16: end for
17: return D(I, j), j = 1 . . . |V|
18: end procedure

ally be retrieved afterwards by looking at the inferred
attributes of nodes on each side of a link. The recent
work EdgeExplain [1] is the closest to ours, which opti-
mizes relationships jointly with attributes. However, it
assumes that each link should only carry one relation-
ship. The discriminative relational learning [8] exploits
community features as latent social dimensions to aid
attribute classification. Therefore, each link is only un-
derstood through one attribute chosen by the classifi-
cation method applied on the two linked nodes. The
Co-Profiling [3] algorithm attempts to learn both user
attributes and circles via searching for the reasons of
link formation. Each clink is then understood through
one reason within one of the non-overlapping circles it
detects. Considering two users that are both colleagues
and schoolmates, those algorithms force the result to be
either of them, which is partial and does not always re-
flect the truth. In contrast, ARP will yield two close
probabilities w.r.t. the two relationships.
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The second group of algorithms can produce com-
plete but not systematic relationship semantics. As
they evolve, many community detection algorithms
nowadays attempt to characterize communities through
attributes. Examples include generative models like
CESNA [9] and Circles [4] and other frameworks like
PCL-DC [10] and CODICIL [6]. They all explicitly
model the node attributes that cause communities to
form and compute a weight matrix characterizing com-
munities w.r.t. attributes. Relationship semantics can
then be generated by assuming that links within the
same communities carry the same relationships. There-
fore, multiple relationships can be associated on each
link, if the two linked nodes belong to multiple over-
lapping communities. However, since they only com-
pute the community semantics, the relationship seman-
tics computed from their results are coarse. To be more
specific, there is no way to understand every link, such
as those between different communities and outside of
any communities. Moreover, they fail to distinguish in-
dividual links within the same community. Unlike them,
ARP aims to profile relationships in a finer granularity.
Rather than relying on the detection of communities,
it utilizes the local paths to precisely understand every
link as long as a path goes through it.

Appendix D: Case Studies on DBLP

One advantage of ARP over the compared algorithms is
that it can estimate the probability of each connection
to carry each relationship. On LEN and FEN, we
convert the probabilities into binary outputs in order
to present quantitive comparisons with the baselines.
However, the application of ARP is much broader
than binary predictions. We use DBLP to present
some insightful results derived from the relationship
probabilities, which only ARP can generate.

Consider some interesting novel applications on
DBLP. One of them is to find out people’s closest
co-authors within different research fields. E.g., two
authors might study similar problems in data mining,
but very different problems in database. Thus, how can
we identify people’s closest co-authors given a specific
field? Another interesting application is to identify the
closest pairs of authors within each field of study, i.e.,
who study the closest problems and collaborate most in
a specific field? Considering specific relationships, such
problems are novel and naturally different from general
graph ranking.

We show that problems like these are direct ap-
plications of ARP. By modeling publication venues as
user attributes and co-authorship as user connections,
ARP accurately computes the closeness among authors
w.r.t. different fields.

Consider three representative venues that corre-
spond to three different but related fields. Table 1
shows the relationship specific closeness learned by ARP
and normalized into multinomial distributions over each
pair of authors. While relationships can be multiple
and vary across connections, ARP completely retrieves
them in all aspects. As we identify the authors, we ob-
serve that the relationships between some specific pairs
of authors are quite interesting, e.g., Jiawei Han and
Xiaolei Li. We see that they are very close in VLDB,
a bit close in KDD, but far away in ICML. To inter-
pret the results, we look into the data and find that
among the three conferences considered, the two au-
thors have direct collaborations only in VLDB, which
explains for the corresponding strong closeness. Never-
theless, they both directly work with authors like Dong
Xin and Hong Cheng, who have collaborations in KDD.
While the truth is that some of the papers that Jiawei
Han and Xiaolei Li co-authored in VLDB are quite re-
lated to data mining (KDD), such semantics is hidden
but effectively retrieved through paths connecting Dong
Xin and Hong Cheng and then annotated to the rela-
tionship between Jiawei Han and Xiaolei Li by ARP.

Authors KDD VLDB ICML

Jiawei Han, Philip S. Yu 0.65 0.35 0
Jiawei Han, Xiaolei Li 0.04 0.96 0

Jiawei Han, Tianbao Yang 0.17 0 0.83
Christos Faloutsos, Hanghang Tong 0.86 0.13 0.01
Divesh Srivastava, H. V. Jagadish 0.03 0.97 0
Corinna Cortes, Mehryar Mohri 0.14 0 0.86

Table 1: Multi-aspect author relationships.

Authors (A) Holistic (B) Single

Jiawei Han, Chi Wang 1.00/1st 1.00/1st
Christos Faloutsos, Hanghang Tong 0.95/2nd 1.00/1st

Hynne Hsu, Mong-Li Lee 0.93/3rd 0.72/10th
Jiawei Han, Philip S. Yu 0.90/4th 0.63/18th
Christos Faloutsos, Lei Li 0.85/5th 0.72/10th

Table 2: Rank list of closest authors on KDD.

(a) By holistic path model (b) By single edge model

Figure 1: Collaborations in KDD are highlighted.

In Table 2, pairs of authors are ranked with their
relative closeness in the research field of data mining
w.r.t. the KDD conference. Column (A) shows the
results of holistic modeling, where we set K = 3 and
α = 0.8 to consider indirect collaborations. The results
are intuitive because the top ranked pairs of authors
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(a) By holistic path model (b) By single edge model

Figure 2: Collaborations in ICML are highlighted.

(a) By holistic path model (b) By single edge model

Figure 3: Collaborations in VLDB are highlighted.

are indeed those who collaborate most in the field. To
show that the results in Column (A) are non-trivial as
cannot be simply computed by counting the number
of collaborated papers, we also provide in Column (B)
the results without holistic modeling, which are less
intuitive. E.g., although Han and Yu work quite closely
on data mining, the closeness between them decreases
from 0.90 to 0.63 and their rank drops from 4th to 18th,
merely because their many indirect collaborations are
ignored. The situations are similar for many other pairs
such as Faloutsos and Li.

Next, we demonstrate the power of our holistic
closeness model by visualizing the computed collabo-
ration matrices in different fields in comparison with
those computed by the single edge model. In Figure
1-3, the x and y axis are the same set of researchers.
As we can see, the collaboration matrices are naturally
sparse. While the three relationships cluster on dif-
ferent locations (thus among different set of authors),
some collaborations indeed bare multiple relationships
(the same red dots appear in multiple figures). Also, it
is interesting to see that in the KDD plot, the red dots
scatter quite strictly in the top-left corner, which means
that only data mining people collaborate in data mining
a lot. However, in both the ICML plot and the VLDB
plot, while most red dots scatter in the corresponding lo-
cations (the center-center and bottom-right), some obvi-
ously appear in the ICML-KDD and VLDB-KDD loca-
tions. It clearly indicates that many data mining people
also collaborate in machine learning and database. It is
true because data mining people need to know both ma-
chine learning and database, but not vise versa. More-

over, in both Figure 2 and 3, there is almost no red dot
in the VLDB-ICML squares, which means database peo-
ple seldom collaborate in machine learning conferences
and vise versa.

In the collaboration matrices computed by single
edge models, the same insightful observations are much
harder to make. The red dots are much sparser,
especially in the cross-field locations. E.g., in the
Figure 2(b), we can hardly observe the collaborations in
machine learning between data mining researchers and
machine learning researchers, as we can observe clearly
in the Figure 2(a).

Due to space limit, for clearer views of the plots
and more interesting results, please visit our Github
project1.
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