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Appendix A: Detailed Motivations and Concepts

In real-world networks, while links should bear different
relationships, they are not explicitly labeled. We argue
that being connected in a network does not mean
being equally close in reality, and being close does not
mean being equally close in every perspective. Since
important relationships in social networks are usually
discriminatively related with some particular attributes
captured by the networks, we propose to leverage user
attributes to decipher the hidden relationship semantics
of uniform links.

Challenges. The challenges of ARP lie in the effective
modeling of homophily– to be systematic and complete
as well as robust.. The former is difficult due to the
lack of a principled way to infer relationships from
attributes, and the later is hard because of incomplete
and ambiguous information in real social networks.

Principle: Reverse Smoothness. We notice that
there is a systematic connection between attributes
and relationships as we desire, which has been ex-
plored by the principled framework of graph-based semi-
supervised learning (GSSL) [11, 12]. Specifically, GSSL
models two proximities on the graph: closeness and
similarity. Consider GSSL in the social network set-
ting. For each user attribute A, an affinity graph R
is used to encode user closeness in terms of the corre-
sponding relationship. Then the value of every user on
A can be learned based on R.

As an example, consider v1, v5 and v6 in Figure 1(a)
of the main paper. GSSL assumes that closeness in R is
already given. Therefore, if w16 is larger than w15, the
unknown education attribute of v1 will be more likely
to be predicted as a6 (UIUC) than a5 (Stanford), due to
the following principle of GSSL.

Principle 1. (Smoothness Principle) If two nodes vi
and vj are close on the affinity graph R, their attributes
ai and aj should be similar [11, 12].

The focus of GSSL is thus on attribute inference, which
goes from closeness to similarity on the graph.

Interestingly, the focus of ARP is the opposite of
GSSL, i.e., from similarity to closeness. In ARP, e.g.,
we only know there is an edge e13 between v1 and v3.
We are interested in the closeness on e13 in terms of
schoolmate and colleague.

Inspired by GSSL, we intuitively reverse the
smoothness principle into the following, which allows us
to learn R by systematically enforcing closeness based
on similarity, leading to a novel and unique solution to
the ARP problem.

Principle 2. (Reverse Smoothness Principle) If two
users vi and vj share similar attributes on A, they
should be close on the social affinity graph in terms of
R.

Based on this principle, it is intuitive to implement
homophily by probabilistically estimating the closeness
on every link in terms of each relationship R based on
the similarity of its related attributes A. The resulting
social affinity graphs naturally encode the systematic
and complete relationship semantics in the network.

Approach: Holistic Closeness Modeling. Our
situation in the real-world graph setting is more complex
than that of GSSL. While GSSL can enumerate all
pair-wise closeness on each edge and enforce similarity
accordingly, the opposite is hard to do in social networks
with missing and ambiguous information.

Firstly, attributes are incomplete. Consider v1 and
v9 in Figure 1 of the main paper. Since the education
attribute a1 and a9 are missing, we have no idea how
similar they are, and thus how close e19 should imply
in terms of schoolmate. Moreover, even if attributes
are complete, closeness cannot be simply enforced on
every edge, because similarity can be ambiguous. This
is due to the direction of inference, i.e., friends of
relationship R must share the same related attribute A,
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while similar in A does not necessarily mean close in R.
E.g., consider v2 and v3 in Figure 1 of the main paper.
If v2 and v3 are schoolmates, they must share the same
education attribute such as UIUC. However, sharing the
same education attribute does not necessarily imply
the relationship of schoolmates. In fact, they may be
colleagues, because they also share the same employer
attribute of Google, or both. If we simply enforce
closeness on e23, the results will be ambiguous.

To further leverage our reverse smoothness principle
and robustly learn the social affinity graph S, we
propose to put smoothness constraints and closeness
measures onto the whole graph, rather than limiting
them to direct edges. Specifically, we define a path to
be a sequence of non-repeating edges connecting two
nodes and use reachability to measure closeness as a
sum of all weighted paths between two nodes. Then we
constrain closeness measured by reachability according
to attribute similarity. The intuition is that, the more
similar attributes vi and vj share, the closer they should
be on the graph, and therefore the more paths of shorter
lengths and larger weights should connect them.

Continue our example in Figure 1 of the main paper.
Inferring r19 in terms of schoolmate is challenging due
to missing education attributes of v1 and v9. However,
similarity between v7 and v8 can be used to estimate
the closeness on path v7− v1− v9− v8, which indirectly
estimates the closeness on e19. As a result, e19 is likely
to carry relationship schoolmate, basically because v1
and v9 share many friends from UIUC such as v7 and v8.

Moreover, continue the discussion from Figure 1 of
the main paper about v2 and v3, where e23 is ambiguous.
If we combine closeness measured by multiple paths
containing e23, we will end up with a higher probability
of e23 to be formed due to Google rather than UIUC,
mainly because of the short path v4 − v3 − v2 − v5
containing e23 between v4 and v5 with Google.

By constraining closeness measured with reachabil-
ity on paths, we effectively utilize the constraints be-
tween each pair of nodes vi and vj with meaningful at-
tributes onto all edges along the paths connecting vi and
vj , much beyond their direct edges, if any. Among those
edges, many are likely to connect nodes without mean-
ingful values of particular attributes, but in this way,
they can still get properly constrained and thus well
estimated. Moreover, since each edge can be a com-
ponent of multiple constrained paths, multiple signals
from nearby nodes are combined to disambiguate the
semantics of that single edge, yielding much more ro-
bust results.

Appendix B: Details of our Algorithms

Efficiency. In practice, A is usually very sparse, be-

cause for every specific attribute, there are numerous
distinct values and many users do not have any mean-
ingful values. Therefore, most f(ai, aj) computed on A
will be 0 or very small as can be ignored, which means
we only need to consider a very small number of pairs
of nodes compared to |V|2.

We develop the Sensor Propagating with Path In-
dexing (SPPI) algorithm for optimizing our model.
SPPI is based on the idea of label propagation on graphs
[5]. But instead of labels, we generate a sensor at a start-
ing node s and propagate it to every possible direction
at each step, and index the edges it goes through. We
call it a sensor because each time it touches a new node
t, it detects whether a legal path from s to t has been
detected. If yes, we can retrieve the exact edges on that
path by looking up the indexes. Another important task
of the sensor is to act as a marker, so at each step of
propagation, we only consider a small subset of V with
the sensors on.

We formally present the procedures of SPPI in
Algorithm 1. To implement our path indexer D, we
borrow the idea of path descriptor from [7]. A path
descriptor d(·) is a pair of bit vectors for each path l
as d(l) = {V,E}. V is a bit vector of |V| items with
Vi = 1 if node vi ∈ l and Vi = 0 otherwise. E is a bit
vector of |E| items with Ei = 1 if edge ei ∈ l and Ei = 0
otherwise. For vi and vj , we use D(i, j) as a list of path
descriptors to index all paths connecting them. With
the path descriptor d and index matrix D, it is easy to
encode, record and retrieve multiple paths connecting
any two nodes with time complexity O(|E|). It is also
efficient to check if a certain node or edge is on a path
and if two paths are the same by simply doing binary
AND and XOR on d.

SPPI is different to exhaustive search in several
ways. Firstly, it is based on breath-first search (BFS),
so that as shorter paths contribute more in our model,
we can tune K to avoid the consideration of longer
paths and save computation time. Secondly, it is
more efficient than brute force BFS by utilizing the
sensor vector and path descriptor lists and checking
the legitimacy of propagation directions at each step,
avoiding repeated iterations when considering the same
nodes in different levels of search. Thirdly, it is specially
suited to the optimization of our model, because after
each execution, it finds paths from a starting node to
all nodes with similar attributes on the graph, while
avoiding enumerating paths connecting other nodes.

Correctness. We evaluate the correctness of SPPI by
checking the completeness and non-repetitiveness of the
algorithm. In Step 8, by requiring vj /∈ l, we require
that the next node to be propagated to is not already
in the path being considered, so no loopy paths can be
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generated; by requiring l + eij /∈ D(I, j), we guarantee
that each path is generated only once. Moreover, in
Step 10 and Step 14, we ensure that all and only nodes
with the newly propagated sensors on are considered at
each step, so the same nodes are not considered multiple
times in different search levels. Finally, in Step 6, since
we always try to propagate the sensors through every
possible edge, we make sure that every simple path is
considered.

Since path indexing and legitimacy checking are
efficiently O(1) with the path descriptor lists, the overall
computational complexity of finding paths is O(K|V|2).
However, the actual computational time is much shorter
than K|V|2. In each step of BFS, the numbers of
considered nodes and neighbors are much less than |V|.
The efficiency of finding paths can be further improved
by path caching and reusing, to fully utilize the path
indexes. Specifically, we try to cache as many legitimate
paths as possible after they are indexed. Therefore,
the paths of length K can be directly reused when
considering paths longer than K. As the number of
paths goes exponentially with the length of the paths,
it is usually impossible to keep all path indexes in cache
and even memory. Motivated by the scale-free property
of social networks [2], which leads to the frequent
reuse of paths between a small number of high-degree
hub nodes, we adopt the Least Recently Used (LRU)
algorithm for path caching.

Appendix C: More Related Works

Although we are the first to formally define the prob-
lem of ARP, since relationship semantics is critical for
various tasks on social networks, algorithms in recent
literature have already been intensively solving the re-
lated problems to ours. However, while they commonly
believe in homophily and connect attributes and rela-
tionships with it, they do not correctly interpret the
nature of homophily as complete and systematic. Ac-
cording to their main objectives, they can be categorized
into two groups. The first group applies homophily to
learn attributes through relationships, assuming that re-
lationships on each link are mutually exclusive [1, 3, 8].
While they implicitly learn relationships, they do not
compute the complete semantics on each link. The sec-
ond group utilizes homophily to detect communities, as-
suming that each community of nodes are connected
through the same relationships [4, 6, 9, 10]. They com-
pute the semantics of communities, rather than the sys-
tematic semantics on links.

The first group of algorithms can produce system-
atic but not complete relationship semantics. Since at-
tribute learning aims to infer the missing attributes of
every node, systematic relationship semantics can usu-

Algorithm 1 SPPI algorithm

1: procedure SPPI . Input
G(V, E): the graph.
K: the maximum length of paths we consider.
I: the source node from which we want to find

all paths to other nodes in the graph.
. Output

D(I, j), j = 1 . . . |V|: each D(I, j) is a list of
path descriptors describing paths between vI and
vj .

. Variables we use
Φ: a bit vector of length |V|, where Φ(i) marks

if there is a sensor on node vi.
. Initialize

2: Φ(I)← 1, ∀j 6= I,Φ(j)← 0
3: ∀j,D(I, j)← null

. Iteration
4: for k = 1 : K do
5: for all i in 1 : |V| with Φ(i) == 1 do
6: for all j in 1 : |V| with eij == 1 do
7: for each path l in D(I, i) do
8: if vj /∈ l && l+eij /∈ D(I, j) then
9: D(I, j) = D(I, j) + (l + eij)

10: Φ(j)← 1
11: end if
12: end for
13: end for
14: Φ(i)← 0
15: end for
16: end for
17: return D(I, j), j = 1 . . . |V|
18: end procedure

ally be retrieved afterwards by looking at the inferred
attributes of nodes on each side of a link. The recent
work EdgeExplain [1] is the closest to ours, which opti-
mizes relationships jointly with attributes. However, it
assumes that each link should only carry one relation-
ship. The discriminative relational learning [8] exploits
community features as latent social dimensions to aid
attribute classification. Therefore, each link is only un-
derstood through one attribute chosen by the classifi-
cation method applied on the two linked nodes. The
Co-Profiling [3] algorithm attempts to learn both user
attributes and circles via searching for the reasons of
link formation. Each clink is then understood through
one reason within one of the non-overlapping circles it
detects. Considering two users that are both colleagues
and schoolmates, those algorithms force the result to be
either of them, which is partial and does not always re-
flect the truth. In contrast, ARP will yield two close
probabilities w.r.t. the two relationships.
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The second group of algorithms can produce com-
plete but not systematic relationship semantics. As
they evolve, many community detection algorithms
nowadays attempt to characterize communities through
attributes. Examples include generative models like
CESNA [9] and Circles [4] and other frameworks like
PCL-DC [10] and CODICIL [6]. They all explicitly
model the node attributes that cause communities to
form and compute a weight matrix characterizing com-
munities w.r.t. attributes. Relationship semantics can
then be generated by assuming that links within the
same communities carry the same relationships. There-
fore, multiple relationships can be associated on each
link, if the two linked nodes belong to multiple over-
lapping communities. However, since they only com-
pute the community semantics, the relationship seman-
tics computed from their results are coarse. To be more
specific, there is no way to understand every link, such
as those between different communities and outside of
any communities. Moreover, they fail to distinguish in-
dividual links within the same community. Unlike them,
ARP aims to profile relationships in a finer granularity.
Rather than relying on the detection of communities,
it utilizes the local paths to precisely understand every
link as long as a path goes through it.

Appendix D: Case Studies on DBLP

One advantage of ARP over the compared algorithms is
that it can estimate the probability of each connection
to carry each relationship. On LEN and FEN, we
convert the probabilities into binary outputs in order
to present quantitive comparisons with the baselines.
However, the application of ARP is much broader
than binary predictions. We use DBLP to present
some insightful results derived from the relationship
probabilities, which only ARP can generate.

Consider some interesting novel applications on
DBLP. One of them is to find out people’s closest
co-authors within different research fields. E.g., two
authors might study similar problems in data mining,
but very different problems in database. Thus, how can
we identify people’s closest co-authors given a specific
field? Another interesting application is to identify the
closest pairs of authors within each field of study, i.e.,
who study the closest problems and collaborate most in
a specific field? Considering specific relationships, such
problems are novel and naturally different from general
graph ranking.

We show that problems like these are direct ap-
plications of ARP. By modeling publication venues as
user attributes and co-authorship as user connections,
ARP accurately computes the closeness among authors
w.r.t. different fields.

Consider three representative venues that corre-
spond to three different but related fields. Table 1
shows the relationship specific closeness learned by ARP
and normalized into multinomial distributions over each
pair of authors. While relationships can be multiple
and vary across connections, ARP completely retrieves
them in all aspects. As we identify the authors, we ob-
serve that the relationships between some specific pairs
of authors are quite interesting, e.g., Jiawei Han and
Xiaolei Li. We see that they are very close in VLDB,
a bit close in KDD, but far away in ICML. To inter-
pret the results, we look into the data and find that
among the three conferences considered, the two au-
thors have direct collaborations only in VLDB, which
explains for the corresponding strong closeness. Never-
theless, they both directly work with authors like Dong
Xin and Hong Cheng, who have collaborations in KDD.
While the truth is that some of the papers that Jiawei
Han and Xiaolei Li co-authored in VLDB are quite re-
lated to data mining (KDD), such semantics is hidden
but effectively retrieved through paths connecting Dong
Xin and Hong Cheng and then annotated to the rela-
tionship between Jiawei Han and Xiaolei Li by ARP.

Authors KDD VLDB ICML

Jiawei Han, Philip S. Yu 0.65 0.35 0
Jiawei Han, Xiaolei Li 0.04 0.96 0

Jiawei Han, Tianbao Yang 0.17 0 0.83
Christos Faloutsos, Hanghang Tong 0.86 0.13 0.01
Divesh Srivastava, H. V. Jagadish 0.03 0.97 0
Corinna Cortes, Mehryar Mohri 0.14 0 0.86

Table 1: Multi-aspect author relationships.

Authors (A) Holistic (B) Single

Jiawei Han, Chi Wang 1.00/1st 1.00/1st
Christos Faloutsos, Hanghang Tong 0.95/2nd 1.00/1st

Hynne Hsu, Mong-Li Lee 0.93/3rd 0.72/10th
Jiawei Han, Philip S. Yu 0.90/4th 0.63/18th
Christos Faloutsos, Lei Li 0.85/5th 0.72/10th

Table 2: Rank list of closest authors on KDD.

(a) By holistic path model (b) By single edge model

Figure 1: Collaborations in KDD are highlighted.

In Table 2, pairs of authors are ranked with their
relative closeness in the research field of data mining
w.r.t. the KDD conference. Column (A) shows the
results of holistic modeling, where we set K = 3 and
α = 0.8 to consider indirect collaborations. The results
are intuitive because the top ranked pairs of authors
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(a) By holistic path model (b) By single edge model

Figure 2: Collaborations in ICML are highlighted.

(a) By holistic path model (b) By single edge model

Figure 3: Collaborations in VLDB are highlighted.

are indeed those who collaborate most in the field. To
show that the results in Column (A) are non-trivial as
cannot be simply computed by counting the number
of collaborated papers, we also provide in Column (B)
the results without holistic modeling, which are less
intuitive. E.g., although Han and Yu work quite closely
on data mining, the closeness between them decreases
from 0.90 to 0.63 and their rank drops from 4th to 18th,
merely because their many indirect collaborations are
ignored. The situations are similar for many other pairs
such as Faloutsos and Li.

Next, we demonstrate the power of our holistic
closeness model by visualizing the computed collabo-
ration matrices in different fields in comparison with
those computed by the single edge model. In Figure
1-3, the x and y axis are the same set of researchers.
As we can see, the collaboration matrices are naturally
sparse. While the three relationships cluster on dif-
ferent locations (thus among different set of authors),
some collaborations indeed bare multiple relationships
(the same red dots appear in multiple figures). Also, it
is interesting to see that in the KDD plot, the red dots
scatter quite strictly in the top-left corner, which means
that only data mining people collaborate in data mining
a lot. However, in both the ICML plot and the VLDB
plot, while most red dots scatter in the corresponding lo-
cations (the center-center and bottom-right), some obvi-
ously appear in the ICML-KDD and VLDB-KDD loca-
tions. It clearly indicates that many data mining people
also collaborate in machine learning and database. It is
true because data mining people need to know both ma-
chine learning and database, but not vise versa. More-

over, in both Figure 2 and 3, there is almost no red dot
in the VLDB-ICML squares, which means database peo-
ple seldom collaborate in machine learning conferences
and vise versa.

In the collaboration matrices computed by single
edge models, the same insightful observations are much
harder to make. The red dots are much sparser,
especially in the cross-field locations. E.g., in the
Figure 2(b), we can hardly observe the collaborations in
machine learning between data mining researchers and
machine learning researchers, as we can observe clearly
in the Figure 2(a).

Due to space limit, for clearer views of the plots
and more interesting results, please visit our Github
project1.
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