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ABSTRACT
Network embedding is an in�uential graph mining technique for
representing nodes in a graph as distributed vectors. However, the
majority of network embedding methods focus on learning a sin-
gle vector representation for each node, which has been recently
criticized for not being capable of modeling multiple aspects of a
node. To capture the multiple aspects of each node, existing stud-
ies mainly rely on o�ine graph clustering performed prior to the
actual embedding, which results in the cluster membership of each
node (i.e., node aspect distribution) �xed throughout training of the
embedding model. We argue that this not only makes each node
always have the same aspect distribution regardless of its dynamic
context, but also hinders the end-to-end training of the model that
eventually leads to the �nal embedding quality largely dependent
on the clustering. In this paper, we propose a novel end-to-end
framework for multi-aspect network embedding, called asp2vec,
in which the aspects of each node are dynamically assigned based
on its local context. More precisely, among multiple aspects, we
dynamically assign a single aspect to each node based on its current
context, and our aspect selection module is end-to-end di�eren-
tiable via the Gumbel-Softmax trick. We also introduce the aspect
regularization framework to capture the interactions among the
multiple aspects in terms of relatedness and diversity. We further
demonstrate that our proposed framework can be readily extended
to heterogeneous networks. Extensive experiments towards various
downstream tasks on various types of homogeneous networks and
a heterogeneous network demonstrate the superiority of asp2vec.
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Figure 1: a) Clustering–based aspect assignment that �xes
the aspect distribution during the embedding learning.
b) asp2vec dynamically selects a single aspect based on the
local context nodes.

1 INTRODUCTION
Networks constitute a natural paradigm to represent real-world
relational data that contain various relationships between entities
ranging from online social network of users, and academic pub-
lication network of authors, to protein-protein interaction (PPI)
network in the physical world. Due to the pervasive nature of net-
works, analyzing and mining useful knowledge from networks has
been an actively researched topic for the past decades. Among vari-
ous tools for network analysis, network embedding, which learns
continuous vector representations for nodes in a network, has re-
cently garnered attention, and has been e�ectively and e�ciently
applied to various downstream network-based applications, such
as node classi�cation [5, 15, 18], and link prediction [1, 6].

A common underlying idea of network embedding methods is
that a node embedding vector should be able to preserve the neigh-
borhood structure of the node, i.e., local structural characteristics.
Deepwalk [20] is a pioneering method that leverages the node co-
occurrence information to learn the representations of nodes in a
network such that nodes that frequently co-occur together have
similar vector representations [8]. Speci�cally, the co-occurrence
based methods usually perform random walks on a network to ob-
tain node sequences on which the skip-gram [17] model is applied.
However, past research on network embedding mostly assumes the
existence of a single vector representation for each node, whereas
in reality a node usually has multiple aspects. For example, nodes
(e.g., authors) in an academic publication network often belong to
multiple research communities, and thus modeling each node with
a single vector entails information loss.

In this regard, several attempts have been recently made tomodel
the multiple aspects of a node by learning multiple vector represen-
tations for each node [6, 15, 28]. However, there still remain several
limitations. First, the aspects of the nodes are determined based on
an o�ine clustering algorithm performed in advance (Figure 1a). In
particular, to determine the node aspects, PolyDW [15] performs
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clustering based on matrix factorization (MF) on the adjacency ma-
trix, and similarly, Splitter [6] performs a local clustering algorithm
based on ego-network analysis that encodes the role of a node in
di�erent local communities. However, as the clustering is done
prior to the actual embedding learning, the cluster membership
distribution (i.e., aspect distribution) for each node is �xed, which
leads to each node always having the same aspect distribution re-
gardless of its current context. This is especially problematic for
the co-occurrence based network embedding methods, because the
context of a node changes dynamically over multiple random walks.
Moreover, owing to the o�ine clustering, the embedding methods
cannot be trained in an end-to-end manner, which eventually leads
to the �nal embedding quality largely dependent on the clustering.

Another limitation is that the interactions among the aspects are
not explicitly captured. Although the interactions among aspects
are implicitly revealed by the cluster membership of each node, it is
only used for sampling the node aspects [6], and not directly incor-
porated for training the aspect embedding vectors. Going back to
our example of academic publication network, authors can belong
to multiple research communities, and these communities interact
with each other. For example, data mining (DM) and database (DB)
communities are more related to each other than data mining and
computer architecture (CA) communities, and thus such interac-
tions (i.e., relatedness: DM↔ DB, and diversity: DM↔ CA) should
be captured. Furthermore, viewing the aspects in a broader perspec-
tive, we argue that the interactions among aspects di�er according
to the inherent characteristics of the networks. For example, nodes
in an academic publication network tend to belong to fewer num-
ber of communities (i.e., aspects are inherently less diverse) than
nodes in a PPI network. This is because an ordinary author in an
academic publication network usually works on a limited number
of research topics, whereas each protein in a PPI network is associ-
ated with various functions and involved in various interactions.
As such, modeling the interactions among aspects is challenging,
and thus should be done in a systematic way rather than implicitly
by clustering.

In the light of these issues, we propose asp2vec, a novel end-to-
end framework for multi-aspect network embedding. The core idea
is to dynamically assign aspects to each node according to its local
context as illustrated in Figure 1b (Sec. 4.1). More precisely, we se-
lectively assign (sample) a single aspect for each node based on our
assumption that each node should belong to a single aspect under
a certain local context. For example, even an author with diverse
research areas, who belongs to multiple research communities (i.e.,
multiple aspects), focuses on a single research topic when collabo-
rating with a particular group of people (i.e., a single aspect within
a local context). We materialize this idea by devising the aspect
selection module based on the Gumbel-Softmax trick [12], which ap-
proximates the sampling from a categorical distribution in a di�er-
entiable fashion, thereby enabling an end-to-end training procedure
(Sec. 4.2). Moreover, we introduce the aspect regularization frame-
work to simultaneously capture the interactions and relationships
among aspects in terms of both relatedness and diversity (Sec. 4.3).
Finally, we demonstrate that our proposed framework can be read-
ily extended to heterogeneous networks whose nodes and edges
are multiple-typed (Sec. 4.5). Through our extensive experiments
on 13 real-world datasets, including various types of homogeneous

networks and a heterogeneous network, we demonstrate the e�ec-
tiveness of asp2vec in multiple downstream tasks including link
prediction and author identi�cation, in comparison with state-of-
the-art multi-aspect network embedding methods. The source code
of asp2vec can be found in https://github.com/pcy1302/asp2vec/.

2 RELATEDWORK
Network embedding. Network embedding methods aim at learn-
ing low-dimensional vector representations for nodes in a graph
while preserving the network structure [8, 20], and various other
properties such as node attributes [18], and structural role [22].
More precisely, inspired by word2vec [17], DeepWalk [20] and
node2vec [8] perform truncated random walks on graphs to obtain
multiple node sequences, and then perform skip-gram to learn node
embeddings bymaking an analogy between randomwalk sequences
on a network and sentences in natural language. In another line of
research, graph neural networks (GNNs) [30] recently have drawn
intensive attention. Their main idea is to represent a node by aggre-
gating information from its neighborhood [13, 26]. However, their
performance largely depends on the available node labels [9, 13, 16],
whereas our proposed framework is fully unsupervised. Recently,
Velivckovic et al [27] proposed a GNN–based unsupervised net-
work embedding method, called DGI, which maximizes the mutual
information between the global representation of a graph and its
local patches, i.e., node embeddings. However, while random walks
naturally capture higher-order structural information and allow for
the characterizing of di�erent node contexts in networks, the per-
formance of GNNs degenerates with larger number of convolution
layers [14]. Moreover, unlike random walk–based algorithms [5],
GNNs cannot be easily applied to heterogeneous networks without
complicated design [18, 23].

Multi-aspect network embedding. While most network em-
bedding methods focus on learning a single embedding vector for
each node, several recent methods [6, 15, 16, 25, 28, 31] have been
proposed to learn multiple embedding vectors for each node in a
graph. More precisely, PolyDW [15] performs MF–based clustering
to determine the aspect distribution for each node. Then, given
random walk sequences on a graph, the aspect of the target and the
context nodes are sampled independently according to the aspect
distribution, and thus the target and the context nodes may have
di�erent aspects. Moreover, although capturing the local neigh-
borhood structure [31] is more important for the co-occurrence
based network embedding methods, PolyDW exploits clustering
that focuses on capturing the global structure. Splitter [6] performs
local clustering to split each node into multi-aspect representations,
however, it blindly trains all the aspect embedding vectors to be
close to the original node embedding vector rather than considering
the aspect of the target node. MCNE [28] introduces a binary mask
layer to split a single vector into multiple conditional embeddings,
however, the number of aspects should be de�ned in the datasets
(e.g., number of di�erent types of user behaviors). Moreover, it
formalizes the task of item recommendation as a supervised task,
and combines network embedding methods with BPR [21], whereas
our proposed framework is trained in a fully unsupervised manner
with an arbitrary number of aspects. MNE [31] trains multi-aspect
node embeddings based on MF, while considering the diversity of



the aspect embeddings. However, the aspect selection process is
ignored, and the aspect embeddings are simply trained to be as dis-
similar as possible to each other without preserving any relatedness
among them.
Heterogeneousnetwork embedding. Aheterogeneous network
(HetNet) contains multi-typed nodes and multi-typed edges, which
should be modeled di�erently from the homogeneous counterpart,
and there has been a line of research on heterogeneous network
embedding [5, 7, 11]. Speci�cally, metapath2vec [5] extends Deep-
walk by introducing a random walk scheme that is conditioned on
meta-paths, where the node embeddings are learned by heteroge-
neous skip-gram. While various single aspect embedding methods
have been proposed, multi-aspect network embedding is still in its
infancy. More precisely, a line of work [3, 24] commonly projects
nodes into multiple embedding spaces de�ned by multiple aspects,
and the node embeddings are trained on each space. However, these
methods de�ne the aspects based on the edges whose ground-truth
labels should be prede�ned (e.g., the edge between “Obama” and
“Honolulu” is labeled as “was_born_in”), which is not always the
case in reality. Finally, TaPEm [19] introduces the pair embedding
framework that directly models the relationship between two nodes
of di�erent types, but still each node has a single embedding vector.
Furthermore, although GNNs have also been recently applied to
HetNets, they are either semi-supervised methods [29], or cannot
be applied to a genuine HetNet whose both nodes and edges are
multiple typed [18].

3 PRELIMINARY
RandomWalk–basedUnsupervisedNetworkEmbedding. In-
spired by the recent advancement of deep learning methods, espe-
cially, skip-gram based word2vec [17], previous network represen-
tation learning methods [8, 20] started viewing nodes in a graph
as words in a document. More precisely, these methods commonly
perform a set of truncated random walksW on a graph, which
are analogous to sequences of words, i.e., sentences. Then, the rep-
resentation for each node is learned by optimizing the skip-gram
objective, which is to maximize the likelihood of the context given
the target node:

max
∑
w∈W

∑
vi ∈w

∑
vj ∈N(vi )

log
exp(〈Pi , Qj 〉)∑

vj ′∈V exp(〈Pi , Qj′ 〉)
(1)

where Pi ∈ Rd is the target embedding vector for nodevi ,Qj ∈ R
d

is the context embedding vector for node vj , d is the number of
embedding dimensions, 〈a,b〉 denotes a dot product between a and
b, w is a node sequence, and N(vi ) denotes the nodes within the
context window of nodevi . The �nal embedding vector for nodevi
is generally obtained by averaging its target and context embedding
vector. i.e., (Pi +Qi )/2. By maximizing the above Eqn. 1, nodes that
frequently appear together within a context window will be trained
to have similar embeddings. Despite its e�ectiveness in learning
node representations, it inherently su�ers from a limitation that
each node is represented by a single embedding vector.

3.1 Problem Statement
De�nition 3.1. (Multi-aspectNodeRepresentationLearning)

Given a graph G = (V, E), whereV = {v1,v2, ...,vn } represents

the set of nodes, and E = {ei, j }ni, j represents the set of edges, where
ei, j connects vi and vj , we aim to derive a multi-aspect embedding
matrix Qi ∈ R

K×d for each node vi , where K is an arbitrary prede-
�ned number of aspects. More precisely, each aspect embedding
vector {Q(s)i ∈ R

d }Ks=1 should 1) preserve the network structure
information, 2) capture node vi ’s di�erent aspects, and 3) model
the interactions among the aspects (i.e., relatedness and diversity).

4 PROPOSED FRAMEWORK: ASP2VEC
We present our proposed framework for context–based multi–
aspect network embedding (Sec. 4.1) that includes the aspect se-
lection module (Sec. 4.2) and the aspect regularization framework
(Sec. 4.3). Then, we demonstrate how asp2vec can be further ex-
tended to a heterogeneous network (Sec 4.5). Figure 2 summarizes
the overall architecture of our proposed framework, called asp2vec.

4.1 Context–based Multi–aspect Network
Embedding

Given a target node and its local context, the core idea is to �rst
determine the current aspect of the target node based on its local
context, and then predict the context node with respect to the
selected aspect of the target node. More precisely, given a target
node embedding vector Pi ∈ Rd , and its currently selected aspect
δ (vi ) ∈ {1, 2, ...,K}, our goal is to predict its context embedding
vectors with respect to the selected aspect δ (vi ). i.e., {Q(δ (vi ))j |vj ∈

N(vi )}. Formally, for each random walk sequence w ∈ W, we aim
to maximize the following objective:

J
(w)
asp2vec =

∑
vi ∈w

∑
vj ∈N(vi )

K∑
s=1

p(δ (vi ) = s) logp(vj |vi , p(δ (vi ) = s))

=
∑
vi ∈w

∑
vj ∈N(vi )

K∑
s=1

p(δ (vi ) = s) log
exp(〈Pi , Q(s )j 〉)∑

vj′∈V exp(〈Pi , Q(s )j′ 〉)

(2)

where Q(s)j ∈ Rd is the embedding vector of node vj in terms
of aspect s , p(δ (vi ) = s) denotes the probability of vi being se-
lected to belong to the aspect s , where

∑K
s=1 p(δ (vi ) = s) = 1, and

p(vj |vi ,p(δ (vi ) = s)) denotes the probability of a context node vj
given a target nodevi whose aspect is s . Note that this is in contrast
to directly maximizing the probability of its context node regardless
of the aspect of the target node as in Eqn. 1.

4.2 Determining the Aspect of the Center Node
Next, we introduce the aspect selection module that computes the as-
pect selection probability p(δ (vi )). Here, we assume that the aspect
of each target node vi can be readily determined by examining its
local context N(vi ). i.e., p(δ (vi )) ≡ p(δ (vi )|N(vi )). More precisely,
we apply softmax to model the probability of vi ’s aspect:
p(δ (vi ) = s) ≡ p(δ (vi ) = s |N(vi )) = so�max(〈Pi , Readout(s )(N(vi ))〉)

=
exp(〈Pi , Readout(s )(N(vi ))〉)∑K

s′=1 exp(〈Pi , Readout
(s′)(N(vi ))〉)

(3)

where we leverage a readout function Readout(s) : R |N(vi ) |×d→Rd
to summarize the information encoded in the local context of node
vi , i.e., N(vi ), with respect to aspect s .
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Figure 2: The overall architecture of asp2vec. Given a sequence of nodeswithin a contextwindow, a single aspect is dynamically
selected according to the aspect of the context nodes. Then, the skip-gram is performed based on the selected aspect. The aspect
regularization framework encourages the diversity and preserves the relatedness among the aspect embedding vectors.

4.2.1 Gumbel-So�maxbasedAspect Selection . Note thatmod-
eling the aspect selection probability p(δ (vi )) based on softmax
(Eqn. 3) assigns a probability distribution over the number of as-
pects K , which is continuous. However, we argue that although a
node may simultaneously belong to multiple aspects in a global
perspective, it should be assigned to a single aspect within a local
context. For example, even an author with diverse research areas,
who belongs to multiple research communities, focuses on a single
research topic when collaborating with a particular group of people.
In other words, the aspect selection should be done in a discrete
manner based on a categorical distribution over K aspects. i.e., hard
selection. However, since the hard selection is a non-di�erentiable
operation, it blocks the �ow of the gradients down to the embedding
vectors, and prevents the end-to-end back-propagation optimiza-
tion. As a workaround, we adopt the Gumbel-Softmax trick [12],
which approximates the sampling from a categorical distribution
by reparameterizing the gradients with respect to the parame-
ters of the distribution. More precisely, given a K-dimensional
categorical distribution with class probability π1,π2, ..,πK , the
gumbel-max trick provides a simple way to draw a one-hot sample
z = (z1, · · · zK ) ∈ RK from the categorical distribution as follows:

z = one-hot
(
argmaxi [logπi + дi ]

)
(4)

where дi is the gumbel noise drawn from Gumbel(0,1) distribution,
which can be obtained as follows:

дi = − log(− log(ui )) ui ∼ Uni f orm(0, 1) (5)

Due to the non-di�erentiable nature of the argmax(·) operation in
Eqn. 4, we further approximate it by using softmax to ensure the
di�erentiability as follows, which is known as the Gumbel-Softmax
trick [12]:

zi = so�max [log πi + дi ]

=
exp ((log πi + дi ) /τ )∑K

j=1 exp
( (
log πj + дj

)
/τ

) for k = 1, . . . , K (6)

where τ is the temperature parameter to control the extent to which
the output approximates the argmax(·) operation: As τ → 0, sam-
ples from the Gumbel-Softmax distribution become one-hot. Finally,
replacing the softmax in Eqn. 3 with the Gumbel-Softmax in Eqn. 6,

we obtain the following aspect selection probability:

p(δ (vi ) = s |N(vi )) =
exp[(log 〈Pi , Readout(s )(N(vi ))〉 + дs )/τ ]∑K

s′=1 exp[(log 〈Pi , Readout
(s′)(N(vi ))〉 + дs′ )/τ ]

(7)
Combining the loss for all walks w ∈ W described in Eqn. 2, the
minimization objective for learning the context-based multi-aspect
node representation is given by:

Lasp2vec = −
∑
w∈W

J
(w)
asp2vec (8)

4.2.2 Readout Function. Recall that we expect the output of
Readout(s)(N(vi )) to capture the current aspect s of the target node
vi by leveraging its local context informationN(vi ). Among various
choices for Readout(·), we choose the average pooling operation:

Readout(s )(N(vi )) =
1

|N(vi ) |

∑
vj ∈N(vi )

Q(s )j = Q̄(s )
N(vi )

(9)

It is worth noting that thanks to its simplicity and e�ciency, we
choose the average pooling over the more advanced techniques that
assign di�erent weights to each context node, such as recurrent
neural network–based or attention–based pooling [33].
Discussion. If each node is associated with some attribute informa-
tion, determining the aspect of each node can be more intuitive than
solely relying on the context node embeddings originally learned to
preserve the graph structure. In this regard, we study in Sec. 4.5.2
how to model the aspect when node attributes are given.

4.3 Modeling Relationship Among Aspects
As di�erent aspect embeddings are intended to capture di�erent
semantics of each node, they should primarily be su�ciently di-
verse among themselves. However, at the same time, these aspects
are inherently related to each other to some extent. For example,
in an academic publication network, each node (i.e., author) may
belong to various research communities (i.e.aspects), such as DM,
CA, and DB community. In this example scenario, we can easily
tell that DM and DB communities are more related than DM and
CA communities, which shows the importance of modeling the
interaction among aspects. In short, aspect embeddings should not
only be 1) diverse (e.g., DM↔CA) so as to independently capture



the inherent properties of individual aspects, but also 2) related
(e.g., DM↔DB) to each other to some extent so as to capture some
common information shared among aspects.

To this end, we introduce a novel aspect regularization frame-
work, called regasp, which is given by:

regasp =
K−1∑
i=1

K∑
j=i+1

A-Sim(Q(i )∗ , Q(j )∗ ) (10)

where Q(i)∗ ∈ Rn×d is the aspect embedding matrix in terms of
aspect i for all nodes v ∈ V; |V| = n, and A-Sim(·, ·) measures
the similarity score between two aspect embedding matrices: large
A-Sim(Q(i)∗ ,Q

(j)
∗ ) refers to the two aspects sharing some informa-

tion in common, whereas small A-Sim(Q(i)∗ ,Q
(j)
∗ ) means aspect i

and aspect j capture vastly di�erent properties. The aspect similar-
ity score A-Sim(Q(i)∗ ,Q

(j)
∗ ) is computed by the sum of the similarity

scores between aspect embeddings of each node:

A-Sim(Q(i )∗ , Q(j )∗ ) =
|V |∑
h=1

f (Q(i )h , Q(j )h ) (11)

where Q(i)h ∈ R
d is the embedding vector of node vh in terms of

aspect i , and f (Q(i)h ,Q
(j)
h ) denotes the aspect similarity score (ASS)

between embeddings of aspects i and j with respect to node vh .
By minimizing regasp in Eqn. 10, we aim to learn diverse aspect
embeddings capturing inherent properties of each aspect. In this
work, we evaluate the ASS based on the cosine similarity between
two aspect embedding vectors given by the following equation:

f (Q(i )h , Q(j )h ) =
〈Q(i )h , Q(j )h 〉

‖Q(i )h ‖ ‖Q
(j )
h ‖

, −1 ≤ f (Q(i )h , Q(j )h ) ≤ 1 (12)

However, as mentioned earlier, the aspect embeddings should
not only be diverse but also to some extent related to each other
(e.g., DM↔DB). In other words, as the aspects are not completely
independent from each other, we shouldmodel their interactions. To
this end, we introduce a binary maskwh

i, j to selectively penalize the
aspect embedding pairs according to their ASSs [2]. More precisely,
the binary mask is de�ned as:

wh
i, j =

{
1,

���f (Q(i )h , Q(j )h )
��� ≥ ϵ

0, otherwise
(13)

where ϵ is a threshold parameter that controls the amount of in-
formation shared between a pair of aspect embedding vectors of a
given node: large ϵ encourages the aspect embeddings to be related
to each other, whereas small ϵ encourages diverse aspect embed-
dings. Speci�cally, for a given node vh , if the absolute value of
ASS between the aspect embedding vectors of aspect i and j, i.e.,���f (Q(i)h ,Q(j)h )���, is greater than ϵ , then we would like to penalize, and
accept it otherwise. In other words, we allow two aspect embedding
vectors of a node to be similar to each other to some extent (as
much as ϵ). By doing so, we expect that the aspect embeddings to
be su�ciently diverse, but at the same time share some information
in common.

Note that the aspect regularization framework is more e�ective
for networks with diverse aspects. For example, users in social net-
works tend to belong to multiple (diverse) communities compared
with authors in academic networks, because authors usually work

on a limited number of research topics. Therefore, as the aspect
regularization framework encourages the aspect embeddings to be
diverse, it is expected to be more e�ective in social networks than
in academic networks. We later demonstrate that this is indeed
the case, which implies that asp2vec can also uncover the hidden
characteristics of networks. We consider both positive and negative
similarities by taking an absolute value of the cosine similarity, i.e.,
| f (·, ·)| , because negative similarity still means the two aspects are
semantically related yet in an opposite direction.

Armed with the binary mask de�ned in Eqn. 13, Eqn. 11 becomes:

A-Sim(Q(i )∗ , Q(j )∗ ) =
|V |∑
h=1

wh
i, j |f (Q

(i )
h , Q(j )h ) | (14)

The �nal objective function is to jointly minimize the context–based
multi-aspect network embedding loss Lasp2vec in Eqn. 8, and the
aspect regularization loss regasp in Eqn. 10:

L = Lasp2vec + λ regasp (15)

where λ is the coe�cient for the aspect regularization.
Discussions on the Number of Parameters. A further appeal
of our proposed framework is its superior performance with a rela-
tively limited number of parameters. More precisely, PolyDW [15],
which is one of the most relevant competitors, requires 2|V |dK pa-
rameters for node embeddings (|V |dK each for target and context)
in addition to the parameters required for the o�ine clustering
method. i.e., matrix factorization, which requires another 2|V |d ,
thus 2|V |d(K+1) in total. Moreover, Splitter [6] requires |V |d(K+2)
for node embeddings (2|V |d for Deepwalk parameters and |V |dK
for persona embedding), and additional parameters for local and
global clustering. On the other hand, our proposed framework only
requires |V |d(K+1) for node embeddings (|V |d for target and |V |dK
for context) without additional parameters for clustering. Hence,
we argue that asp2vec outperforms state-of-the-art multi-aspect
network embedding methods with less parameters.

4.4 Task: Link Prediction
To evaluate the performance of our framework, we perform link pre-
diction, which is to predict the strength of the linkage between two
nodes. Link prediction is the best choice for evaluating the multi-
aspect network embedding methods, because aspect embeddings
are originally designed to capture various interactions among nodes,
such as membership to multiple communities within a network,
which is best revealed by the connection information. Moreover,
link prediction is suggested by recent work as the primary evalua-
tion task for unsupervised network embedding methods compared
with node classi�cation that involves a labeling process that may
be uncorrelated with the graph itself [1, 6].

Recall that in our proposed framework, a node vi has a center
embedding vector Pi ∈ Rd , and K di�erent aspect embedding
vectors {Q(s)i ∈ R

d }Ks=1, which add up to K + 1 embedding vectors
in total for each node. In order to obtain the �nal embedding vector
for node vi , we �rst compute the average of the aspect embedding
vectors, and add it to the center embedding vector:

Ui = Pi +
1
K

K∑
s=1

Q(s )i (16)
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Figure 3: Two di�erent cases should be considered
for asp2vec-het.

where Ui ∈ Rd is the �nal embedding vector for node vi . Note
that in previous work [6, 15] that learn multiple embedding vectors
for each node, the �nal link prediction is done by calculating the
sum [15] or the maximum [6] of the cosine similarity between all
possible pairs of aspect embedding vectors. Both requireO(|V|2K2)
dot product operations to compute the link probability between all
pairs of nodes, which is time consuming. In this work, we simply
use the �nal embedding vector Ui on which any o�-the-shelf classi-
�cation algorithm, such as logistic regression, is trained facilitating
more practical usage in the real-world.

4.5 Extension to Heterogeneous Network
Heretofore, we described our approach for learning context–based
multi–aspect node representations for a network with a a single
type of nodes and a single type of edges. i.e., homogeneous network.
In this section, we demonstrate that our proposed multi-aspect net-
work embedding framework, asp2vec, can be readily extended to
learn representations for nodes in a HetNet. Note that PolyDW [15]
also showed its extendability to a HetNet. However, it is only lim-
ited to a bipartite network without node attribute information,
whereas asp2vec can be extended to any type of HetNets with node
attribute information.

Recall that in Sec. 4.4 we de�ned our primary task as link predic-
tion. In this regard, among various link prediction tasks that can be
de�ned in a HetNet such as, recommendation [10] (i.e., user-item),
and author identi�cation (i.e., paper-author), we speci�cally focus
on the task of author identi�cation in big scholarly data whose task
is to predict the true authors of an anonymized paper [4, 19, 32],
i.e., link probability between paper-typed nodes and author-typed
nodes. Note that each paper is assumed to be associated with its
content information. i.e., abstract text.

4.5.1 Context–basedMulti–aspectHeterogeneousNetwork
Embedding. To begin with, we �rst perform meta-path guided
random walk [5] to generate sequences of nodes, which is an ex-
tension of the truncated random walk [8, 20] to a HetNet. More
precisely, random walks are conditioned on a meta-path P [5],
which is a composition of relations that contains a certain semantic.
Figure 3 shows an example metapath “Author-Paper-Author (APA)”
that refers to a co-authorship relation. After generating a set of ran-
dom walksWP guided by a meta-path P, we aim to maximize the
probability of context nodes given a target node similar to Eqn. 2.
However, unlike the former case, a walk w ∈ WP now contains
multiple types of nodes. Hence, we propose asp2vec-het by revising

Eqn. 2 to incorporate the heterogeneity as follows:

J
(w)
asp2vec-het =

∑
vi ∈w

∑
t∈TV

∑
vj ∈Nt (vi )

K∑
s=1

p(δ (vi ) = s) logp(vj |vi , p(δ (vi ) = s))

(17)

where TV denotes the set of node types (e.g., author, paper, and
venue), and Nt (vi ) denotes node vi ’s context nodes with type t .

In order to apply asp2vec to a HetNet, we need to consider the
following two cases andmodel them di�erently: 1) case 1: the aspect
of the target node is unknown, thus should be inferred, and 2) case
2: the aspect of the target node is already revealed, thus there is no
need to infer its aspect. Concretely, taking a sample of random walk
guided by meta-path APA (Figure 3), case 1 is when the target node
is author, and case 2 is when the target node is paper. Speci�cally,
in case 2 shown in Figure 3b, we argue that the aspect (i.e. topic)
of a paper can be easily inferred by looking at its content (i.e.,
text), whereas in case 1 shown in Figure 3a, the aspect of an author
should still be inferred from its context. Therefore, case 1 should
be modeled by our asp2vec-het framework in Eqn. 17, and case 2
can be simply modeled by the previous single aspect embedding
method, such as metapath2vec [5] as follows:

J
(w)
HetDW =

∑
vi ∈w

∑
t∈TV

∑
vj ∈Nt (vi )

logp(vj |vi ) (18)

The �nal objective function is to jointly optimize Eqn. 17 (case
1) and Eqn. 18 (case 2) in addition to the aspect regularization
framework in Eqn. 10 as follows:

LHet = −
∑
P∈S(P)

∑
w∈WP

[
J
(w)
asp2vec-het + J

(w)
HetDW

]
+ λ regasp (19)

where S(P) denotes all prede�ned meta-path schemes.
Note that although we speci�cally described the scenario in the

author identi�cation for the ease of explanations, asp2vec-het can
be easily applied to other tasks such as recommendation, where
the task is to infer the user-item pairwise relationship.

4.5.2 Determining node aspect in a HetNet. Recall that in
Sec. 4.2, given a homogeneous network, we determine the aspect
of a target node based on its context nodes. In a HetNet, the node
aspects can be similarly determined, however, we should take into
account the heterogeneity of the node types among the context
nodes. In other words, some node types might be more helpful than
others in terms of determining the aspect of the target node. For ex-
ample, for a target node “author” in Figure 3, a context node whose
type is “paper” is more helpful than another author-typed node
because a paper is usually written about a single topic, whereas an
author can work on various research areas. Moreover, it is impor-
tant to note that determining the aspect of the target node becomes
evenmore straightforward if node attribute information is provided,
for example, the content of the paper. In this regard, we leverage the
paper abstract information to obtain the paper embedding vector,
and rely only on the paper nodes to determine the aspect of the
target author node. Speci�cally, we employ a GRU-based paper
encoder introduced in [32] that takes pretrained word vectors of an
abstract, and returns a single vector that encodes the paper content.
Refer to Section 3.1 of [32] for more detail.



Table 1: The overall performance for link prediction in terms of AUC-ROC (OOM: Out of memory).

dim (d × K ) 100 (d = 20, K = 5) 200 (d = 40, K = 5) 500 (d = 100, K = 5)
DW DGI PolyDW Splitter asp2vec DW DGI PolyDW Splitter asp2vec DW DGI PolyDW Splitter asp2vec

Filmtrust 0.6850 0.6973 0.6953 0.6128 0.7426 0.7399 0.7094 0.6841 0.6111 0.7460 0.7415 0.7215 0.6643 0.6097 0.7501
Wiki-vote 0.6273 0.5860 0.5557 0.5190 0.6478 0.6277 0.5741 0.5179 0.5085 0.6464 0.6260 0.6540 0.5161 0.5048 0.6507
CiaoDVD 0.7136 0.6809 0.6528 0.5978 0.7430 0.7014 0.6696 0.6263 0.5881 0.7447 0.7140 0.6897 0.6058 0.5819 0.7450

BlogCatalog 0.8734 0.9191 0.7505 0.8441 0.9503 0.9220 0.9083 0.6944 0.8199 0.9548 0.9331 OOM 0.6249 0.7876 0.9429
Epinions 0.7188 0.6684 0.7038 0.6880 0.7416 0.7223 0.6711 0.6884 0.6733 0.7441 0.7312 OOM 0.6720 0.6581 0.7459
Flickr 0.9506 0.9214 0.9146 0.9528 0.9584 0.9580 OOM 0.8862 0.8582 0.9571 0.9570 OOM 0.8582 0.9299 0.9678
PPI 0.8236 0.8087 0.7286 0.8372 0.8887 0.8237 0.8341 0.6995 0.8346 0.8947 0.8214 0.8593 0.6693 0.8336 0.8991

Wikipedia 0.7729 0.8984 0.6259 0.6897 0.9049 0.8677 0.8927 0.5920 0.6939 0.9040 0.8414 0.9029 0.5218 0.7018 0.9011
Cora 0.9181 0.8223 0.8504 0.8357 0.8814 0.9110 0.8300 0.8416 0.8361 0.9056 0.8814 0.9475 0.8393 0.8412 0.9181

ca-HepTh 0.9080 0.8661 0.8806 0.8827 0.8989 0.9160 0.8787 0.8812 0.9076 0.9119 0.9219 0.7402 0.8831 0.9058 0.9185
ca-AstroPh 0.9784 0.9144 0.9661 0.9731 0.9734 0.9803 0.9690 0.9734 0.9791 0.9821 0.9775 OOM 0.9754 0.9827 0.9842

4area 0.9548 0.9253 0.9441 0.9355 0.9503 0.9551 0.9349 0.9449 0.9496 0.9587 0.9553 OOM 0.9463 0.9550 0.9627

Table 2: Statistics of the datasets. (Dir.: directed graph.)

Dataset Num. nodes Num. edges

H
om

og
en
eo
us

N
et
w
or
k

So
ci
al

N
et
w
or
k

Filmtrust (Dir.) 1,642 1,853
Wiki-vote (Dir.) 7,066 103,689
CiaoDVD (Dir.) 7,375 111,781
BlogCatalog 10,312 333,983
Epinions (Dir.) 49,290 487,181

Flickr 80,513 5,899,882
PPI 3,890 76,584

Wikipedia (Word co-occurrence) 4,777 184,812

Ac
ad
em

ic
N
et
w
or
k Cora 2,708 5,429

ca-HepTh 9,877 25,998
ca-AstroPh 18,772 198,110

4area 27,199 66,832

HetNet DBLP Num. authors Num. papers Num. venues
27,920 21,808 18

5 EXPERIMENTS
Datasets. We evaluate our proposed framework on thirteen com-
monly used publicly available datasets including a HetNet. The
datasets can be broadly categorized into social network, protein
network, word-co-occurrence network, and academic network. Ta-
ble 2 shows the statistics of the datasets used in our experiments.
Refer to the appendix for more detail.
Methods Compared. As asp2vec is an unsupervised multi-aspect
network embedding framework that can be applied on both ho-
mogeneous and heterogeneous networks, we compare with the
following unsupervised methods:
(1) Unsupervised embedding methods for homogeneous networks
• Models a single aspect
– Deepwalk [20]/node2vec [8]: They learn node embeddings
by random walks and skip-gram. As they generally show
similar performance, we report the best performing method
among them.

– DGI [27]: It is the state-of-the-art unsupervised network em-
bedding method that maximizes the mutual information be-
tween the graph summary and the local patches of a graph.

• Models multiple aspects
– PolyDW [15]: It performs MF–based clustering to obtain
aspect distribution for each node from which an aspect for
the target and the context nodes are independently sampled.

– Splitter [6]: It splits each node into multiple embeddings by
performing local graph clustering, called persona2vec.

(2) Unsupervised embedding methods for heterogeneous networks
• Models a single aspect

– M2V++ [5]: It learns embeddings for nodes in a HetNet by
performing meta-path guided random walk followed by het-
erogeneous skip-gram. Following [19], we leverage the paper
abstract for paper embeddings.

– Camel [32]: It is a task-guided heterogeneous network em-
bedding method developed for the author identi�cation task
in which content-aware skip-gram is introduced.

• Models multiple aspects
– TaPEm [19]: It is the state-of-the-art task-guided heteroge-
neous network embedding method that introduces the pair
embedding framework to directly capture the pairwise rela-
tionship between two heterogeneous nodes.

Experimental Settings and Evaluation Metrics. For evalua-
tions of asp2vec and asp2vec-het, we perform link prediction and
author identi�cation, respectively. For link prediction, we follow
the protocol of Splitter [1, 6], and for author identi�cation, we fol-
low the protocol of [19, 32]. As for the evaluation metrics, we use
AUC-ROC for link prediction, and recall, F1, and AUC for author
identi�cation. Note that for all the tables in this section, the number
of aspects K is 1 for all the single aspect embedding methods, i.e.
DW, DGI, M2V++, Camel, and TaPEm. For more information regard-
ing the hyperparameters and the model training–related details,
refer to the appendix.

5.1 Performance Analysis
Overall Evaluation. Table 1 shows the link prediction perfor-
mance of various methods. We have the following observations:
1) asp2vec generally performs well on all datasets, especially out-
performing other methods on social networks, PPI and Wikipedia
networks. We attribute such behavior to the fact that nodes in
these networks inherently exhibit multiple aspects compared with
nodes in the academic networks, where each node is either a pa-
per (Cora) or an author (ca-HepTh, ca-AstroPh, and 4area) that
generally focuses on a single research topic, thus we have less
distinct aspects to be captured. In particular, nodes (authors) in
ca-AstroPh and ca-HepTh networks are even more focused as they
are speci�cally devoted to Astro Physics and High Energy Physics
Theory, respectively. On the other hand, social networks contain
various communities, for example, BlogCatalog is reported to have
39 ground truth groups in the network. 2) We observe that the
prediction performance on the academic networks are generally
high for all methods, which aligns with the results reported in
[6] where DW generally performs on par with Splitter under the



Table 3: Bene�t of the Gumbel-Softmax.
d = 20, K = 5 Softmax Gumbel-Softmax Improvement
Filmtrust 0.6421 0.7426 15.65%
Wiki-vote 0.6165 0.6478 5.08%
CiaoDVD 0.6162 0.7430 20.58%

BlogCatalog 0.7323 0.9503 29.77%
Epinions 0.6693 0.7416 10.80%
Flickr 0.8956 0.9584 7.01%
PPI 0.6919 0.8887 28.44%

Wikipedia 0.8269 0.9049 9.43%
Cora 0.8605 0.8814 2.43%

ca-HepTh 0.8890 0.8989 1.11%
ca-AstroPh 0.9116 0.9734 6.78%

4area 0.9286 0.9503 2.34%

a) Filmtrust-PolyDW b) ca-HepTh-PolyDW
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Figure 4: Variance of the aspect selection probability over
the frequency of the node appearing in random walks (Top
row: PolyDW, Bottom row: asp2vec).
same embedding size. We conjecture that this is because links in
academic networks are relatively easy to predict because academic
research communities are relatively focused, thereby nodes having
less diverse aspects as mentioned above. 3)We observe that DGI
generally performs better as the embedding size increases, outper-
forming others in some datasets when d = 500. However, DGI is
not scalable to large dimension sizes, which is also mentioned in
the original paper [27] (DGI �xed d = 512 for all datasets, but due
to memory limitation, d is reduced to 256 for pubmed dataset that
contains 19,717 nodes).
Bene�t of Aspect Selection Module. Table 3 shows the compar-
isons between asp2vec with conventional softmax (Eqn. 3), and the
Gumbel-Softmax trick (Eqn. 7). We found that the Gumbel-Softmax
indeed is bene�cial, and more importantly, we observe that the
improvements are more signi�cant for social networks, PPI, and
Wikipedia network, compared with the academic networks. This
veri�es that the aspect modeling is more e�ective for networks
with inherently diverse aspects, such as social and PPI networks.

To further verify the bene�t of the aspect selection module com-
pared with the o�ine clustering–based method, we examine how
the aspects are actually assigned to nodes. Our assumption is nodes
that frequently appear in random walks (i.e.,W) are more likely to
exhibit more aspects compared with the less frequently appearing
ones. Therefore, the variance of aspect probability distribution of a
frequently appearing node will be relatively smaller than that of the
less frequently appearing one. For example, given four aspects, a fre-
quently appearing node may have an aspect probability distribution
[0.2,0.3,0.3,0.2], whereas that of a less frequently appearing node is
likely to have a skewed distribution that looks like [0.7,0.0,0.3,0.0]
with a higher variance. In Figure 4, we plot the variance of the
aspect probability distribution of each target node according to
its frequency within the random walks. Precisely, each dot in the

Table 4: Link prediction performance (AUC-ROC) without
regasp, and over various thresholds (ϵ).

dim = 100
(d = 20, K = 5)

No
regasp

Threshold (ϵ ) best vs.
No regasp0.9 0.7 0.5 0.3 0.1

Filmtrust 0.660 0.743 0.742 0.740 0.738 0.735 12.58%
Wiki-vote 0.616 0.647 0.648 0.647 0.647 0.645 5.15%
CiaoDVD 0.617 0.743 0.742 0.742 0.738 0.735 20.37%

BlogCatalog 0.791 0.948 0.950 0.949 0.939 0.869 20.11%
Epinions 0.684 0.742 0.741 0.738 0.731 0.693 8.37%
Flickr 0.897 0.955 0.958 0.954 0.954 0.929 6.85%
PPI 0.729 0.880 0.885 0.889 0.881 0.819 21.97%

Wikipedia 0.841 0.896 0.904 0.905 0.880 0.850 7.60%
Cora 0.879 0.881 0.880 0.881 0.862 0.857 0.23%

ca-HepTh 0.879 0.899 0.896 0.898 0.893 0.864 2.30%
ca-AstroPh 0.921 0.973 0.973 0.971 0.967 0.939 5.56%

4area 0.919 0.950 0.949 0.946 0.940 0.915 3.44%

�gure represents the variance of the aspect distribution to which
each target node is assigned. As expected, asp2vec (Figure 4 bottom)
tends to assign low variance aspect distribution to high frequency
nodes, and low frequency nodes have high variance aspect distri-
bution. On the other hand, as PolyDW determines aspects by an
o�ine clustering algorithm, there is no such tendency observed
(Figure 4 Top), which veri�es the superiority of our context–based
aspect selection module.
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Figure 5: Heatmaps showing the similarity between the as-
pect embeddings (Best viewed in color).

Bene�t of Aspect Regularizer. Table 4 shows the link prediction
AUC-ROC over various thresholds (ϵ) for regasp. 1) We observe
that the performance drops signi�cantly when ϵ = 1, that is, when
the aspect regularization framework is not incorporated (no regasp),
which veri�es the bene�t of the aspect regularization framework.
2) The aspect regularization framework is less e�ective on the
academic networks (see best vs. No regasp). Again, this is because
academic networks inherently have less diverse aspects, which
reduce the need for modeling diverse aspect embeddings. 3) In
Figure 5, we illustrate heatmaps where each element denotes the
cosine similarity between a pair of aspect embedding vectors. More
precisely, we compute the pairwise similarity between aspect em-
bedding vectors for all nodes, and then compute their average to
obtain the �nal heatmap. We observe that the aspect embeddings
are trained to be highly similar to each other without regasp (Fig-
ure 5a), which shows the necessity of the aspect regularization
framework. Moreover, when ϵ = 0.1 (Figure 5b), the similarity
among the aspect embeddings is small, which demonstrates that
a small ϵ encourages the aspect embeddings to be diverse. Finally,
when ϵ = 0.9 (Figure 5c), we observe that some of the aspect em-
beddings are trained to be less similar (i.e. green) than others (i.e.
red) allowing more �exibility in learning the aspect embeddings.
Evaluations on HetNet. Table 5 shows the result of author iden-
ti�cation. 1)We observe that asp2vec-het signi�cantly outperforms
the state-of-the-art task-guided author identi�cation methods in all



Table 5: Author identi�cation results in terms of recall, F1,
and AUC over various dimensions (d × K).

dim Methods Recall@N F1@N AUC5 10 5 10

200
M2V++ 0.4607 0.6115 0.2691 0.2100 0.8752
Camel 0.5774 0.7270 0.3384 0.2518 0.9021
TaPEm 0.6150 0.7473 0.3593 0.2586 0.9031

asp2vec-het 0.6474 0.7701 0.3832 0.2709 0.9137

500
M2V++ 0.4137 0.5662 0.2442 0.1970 0.8433
Camel 0.4788 0.6243 0.2827 0.2197 0.8602
TaPEm 0.5193 0.6592 0.3058 0.2319 0.8643

asp2vec-het 0.6601 0.7671 0.3879 0.2693 0.9161

the metrics, which veri�es the bene�t of our context–based aspect
embedding framework. More precisely, asp2vec-het outperforms
TaPEm [19], which is a recently proposed method whose motiva-
tion is similar to ours in that it models multiple aspects of each
node by the pair embedding framework. This veri�es that explicitly
learning multiple aspect embedding vectors for each node is supe-
rior to learning an embedding vector for every possible node pairs.
2) Recall that there are multiple types of nodes in a HetNet, and
some types of nodes are more helpful than others in determining
the aspect of a target node. Table 6 shows the performance when
di�erent types of context nodes are used for determining the aspect
of the target node, i.e., author node. We observe that using paper
(type) only performs the best, whereas using author only performs
the worst. This is expected because we encode the paper abstract
to generate paper embeddings, and thus the aspect of the target
author can be readily determined by examining paper nodes within
its context nodes. On the other hand, the author embeddings only
capture the local structural information, which is less deterministic
of the target aspect compared to the node attributes.

Table 6: Using di�erent types of context for asp2vec-het.
asp2vec-het

dim= 200 (d = 40, K = 5) Recall@10 F1@10 AUC

Context Type
Author 0.7627 0.2677 0.9099
Paper 0.7701 0.2709 0.9137

Author+Paper 0.7682 0.2695 0.9127

6 CONCLUSION
In this paper, we present a novel multi-aspect network embed-
ding method called asp2vec that dynamically determines the aspect
based on the context information. Major components of asp2vec is
1) the aspect selection module, which is based on the Gumbel-
Softmax trick to approximate the discrete sampling of the aspects,
and facilitate end-to-end training of the model, and 2) the aspect
regularization framework that encourages the learned aspect em-
beddings to be diverse, but to some extent related to each other. We
also demonstrate how to extend asp2vec to a HetNet. Through ex-
periments on multiple networks with various types, we empirically
show the superiority of our proposed framework.
Acknowledgment: IITP2018-0-00584, IITP2019-0-01906, IITP2019-
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APPENDIX FOR REPRODUCIBILITY
A EXPERIMENTAL DETAILS

A.1 Code and Datasets
asp2vec is implemented using PyTorch. The source code and instruc-
tions on how to run the code can be found here1. Table 7 shows the
urls of the author implementations of the compared methods, and
Table 8 shows the urls from which the datasets can be downloaded.
Nodes in social networks refer to users, nodes in PPI network refer
to protein, nodes Wikipedia refer to words, nodes in Cora (citation
network) refer to papers, and nodes in ca-HepTh, ca-AstroPh and
4area (all three are co-authorship networks) refer to authors. Each
node in Cora is associated with a bag-of-words representation of
a document (size=1433), whereas the remaining datasets do not
have node attribute information. Finally, as DGI uses node attribute
information, we used the adjacency matrix to initialize the node
attribute matrix to apply DGI on datasets without node attribute
information (i.e., all but Cora).

Table 7: URL links to the code.
Methods URL link to the code

DGI https://github.com/PetarV-/DGI
PolyDW github.com/ninghaohello/Polysemous-Network-Embedding

Splitter github.com/google-research/
google-research/tree/master/graph_embedding/persona

camel https://github.com/chuxuzhang/WWW2018_Camel
TaPEm https://github.com/pcy1302/TapEM

Table 8: URL links to the datasets.

URL link to the dataset

Filmtrust https://www.librec.net/datasets.html#�lmtrust
Cora https://github.com/tkipf/pygcn/tree/master/data/cora
PPI https://snap.stanford.edu/node2vec/
Wikipedia https://snap.stanford.edu/node2vec/
Wiki-vote https://snap.stanford.edu/data/index.html
CiaoDVD https://www.librec.net/datasets.html#�lmtrust
ca-HepTh https://snap.stanford.edu/data/index.html
BlogCatalog http://socialcomputing.asu.edu/datasets/BlogCatalog3
ca-AstroPh https://snap.stanford.edu/data/index.html
4area http://www.perozzi.net/projects/focused-clustering/
Epinions http://www.trustlet.org/downloaded_epinions.html
Flickr http://socialcomputing.asu.edu/datasets/Flickr

DBLP https://github.com/pcy1302/TapEM/tree/master/data

A.2 Evaluation Protocol
Homogeneous Network: Link Prediction. For link prediction
in homogeneous networks, we follow the convention of [1, 6, 8].
More precisely, we �rst split the original graph into to two equal
sized set of edges, i.e., Etrain, and Etest. To obtain Etest, we randomly
remove the edges while preserving the connectivity of the original
graph. To obtain the negative counterparts of Etrain and Etest, we
1https://github.com/pcy1302/asp2vec

randomly generate a set of edges of size 2 × |Etest | and split it
in half into Etrainneg and Etestneg , respectively. We train a logistic
regression classi�er on the Etrain ∪ Etrainneg [1, 6], and the link
prediction performance is then measured by ranking (AUC-ROC)
the removed edges Etest among Etest∪Etestneg . Finally, for the above
preprocessing, we used 2, which is from the implementation of [1].
Heterogeneous Network: Author Identi�cation. For author
identi�cation in a heterogeneous network, we follow the conven-
tion of [19, 32]. More precisely, we use papers published before
timestamp T (= 2013) for training, and split papers that are pub-
lished after timestamp T in half to make validation and test datasets.
We report the test performance when the validation result is the
best. For �nal evaulation, we randomly sample a set of negative
authors and combine it with the set of true authors to generate 100
candidate authors for each paper, and then rank the positive paper
among them.

Table 9: Link prediction result over various d and K under a
limited d × K .

dim= 200 (d × K = 200)
d = 20,
K = 10

d = 50,
K = 4

d = 40,
K = 5

d = 100,
K = 2

Filmtrust 0.7426 0.7455 0.7425 0.7537
Wiki-vote 0.6478 0.6450 0.6480 0.6476
CiaoDVD 0.7430 0.7445 0.7385 0.7370

BlogCatalog 0.9503 0.9538 0.9515 0.9292
Epinions 0.7416 0.7436 0.7441 0.7370
Flickr 0.9584 0.9524 0.9571 0.9629
PPI 0.8887 0.8947 0.8947 0.8530

Wikipedia 0.9049 0.9040 0.8987 0.8783
Cora 0.8814 0.8827 0.8770 0.8701

ca-HepTh 0.8989 0.9051 0.9088 0.9082
ca-AstroPh 0.9734 0.9803 0.9821 0.9812

4area 0.9503 0.9547 0.9573 0.9600

A.3 Experimental Settings
• For all the compared methods, we use the hyperparameters that
are reported to be the best by the original papers. For PolyDW [15],
number of random walks for each node is 110, the length of each
walk is 11, window size is 4, number of samples per walk (R in [15])
is 10, and the number of negative samples is 5. For Splitter [6],
number of random walks for each node is 40, the length of each
walk is 10, the window size is set to 5, and the number of negative
samples is 5. We found that the above setting works the best.
• Prior to training asp2vec, we perform warm-up step. More pre-
cisely, we initialize target and aspect embedding vectors of asp2vecwith
the �nal trained embedding vecotrs of Deepwalk [20]. We found
that the warm-up step usually gives better performance.
• For DW and asp2vec, we follow the setting of node2vec [8] where
the number of random walks for each node is 10, the length of
each walk is 80, the window size is 3, and the number of negative
samples is 2. τ and λ of asp2vec are set to 0.5, and 0.01, respectively.
Note that we also tried other settings than those mentioned above,
but no signi�cant di�erent results were obtained.
• Moreover, we �rst tried gensim implementation3 of DW [20] /
node2vec [8] but we found that the results were inconsistent.

2https://github.com/google/asymproj_edge_dnn/blob/master/create_dataset_ar-
rays.py
3https://radimrehurek.com/gensim/models/word2vec.html



Table 10: Link prediction result of asp2vec for various number of aspects given a �xed d .

Num.
Aspects (K )

dim = d × K (d = 20)

2 3 4 5 6 7 8 9 10

Filmtrust 0.7427 0.7408 0.7381 0.7426 0.7412 0.7398 0.7436 0.7417 0.7430
Wiki-vote 0.6466 0.6474 0.6484 0.6478 0.6479 0.6476 0.6483 0.6483 0.6483
CiaoDVD 0.7419 0.7428 0.7427 0.7430 0.7431 0.7436 0.7435 0.7437 0.7439

BlogCatalog 0.9227 0.9448 0.9504 0.9503 0.9500 0.9489 0.9483 0.9479 0.9475
Epinions 0.7285 0.7389 0.7410 0.7416 0.7415 0.7414 0.7416 0.7415 0.7415
Flickr 0.9267 0.9459 0.9520 0.9584 0.9519 0.9508 0.9492 0.9480 0.9476
PPI 0.8531 0.8814 0.8875 0.8887 0.8891 0.8883 0.8893 0.8896 0.8897

Wikipedia 0.8928 0.8792 0.9022 0.9049 0.9053 0.9045 0.9034 0.9024 0.9009
Cora 0.8831 0.8835 0.8872 0.8814 0.8877 0.8880 0.8869 0.8860 0.8849

ca-HepTh 0.8977 0.9005 0.9001 0.8989 0.8978 0.8962 0.8950 0.8952 0.8955
ca-AstroPh 0.9610 0.9699 0.9730 0.9734 0.9731 0.9728 0.9725 0.9721 0.9717

4area 0.9496 0.9512 0.9511 0.9503 0.9491 0.9479 0.9453 0.9447 0.9438

Algorithm 1: Pseudocode for training asp2vec.
Input :A network G = (V, E), target embedding matrix

P ∈ R|V |×d , aspect embedding matrix
{Q(s )∗ ∈ R|V |×d }Ks=1

Output :Final embedding matrix U ∈ R|V |×d
1 Perform a set of random walksW on G
2 while Convergence do
3 foreach w ∈ W do
4 J

(w)
asp2vec ← run_asp2vec(w)

5 end
6 Lasp2vec = −

∑
w∈W J

(w)
asp2vec ; // Eqn. 8

7 regasp =
∑K−1
i=1

∑K
j=i+1 A-Sim(Q

(i )
∗ , Q(j )∗ ) ; // Eqn. 10

8 L = Lasp2vec + λ regasp ; // Eqn. 15

9 Update embedding matrices P and {Q(s )∗ }Ks=1 by minimizing L
10 end
11 Compute �nal embedding matrix U ; // Eqn. 16

12 Function run_asp2vec(w):
13 foreach vi ∈ w do
14 foreach vj ∈ N(vi ) do
15 for s = 1; s < K ; s = s + 1 do
16 Compute p(δ (vi ) = s |N(vi )) // Eqn. 7

17 p(vj |vi , p(δ (vi ) = s)) ←
exp(〈Pi ,Q

(s )
j 〉)∑

vj′ ∈V
exp(〈Pi ,Q

(s )
j′ 〉)

18 end
19 logp(vj |vi ) ←

∑K
s=1 p(δ (vi ) =

s |N(vi )) logp(vj |vi , p(δ (vi ) = s))
20 end

21 J
(w),N(vi )
asp2vec ←

∑
vj ∈N(vi ) logp(vj |vi )

22 end

23 J
(w)
asp2vec ←

∑
vi ∈w J

(w),N(vi )
asp2vec // Eqn. 2

24 return J(w)asp2vec

Speci�cally, for BlogCatalog, PPI, Wikipedia, and Cora, we found
the performance of gensim DW signi�cantly underperformed our
implementation of DW. Therefore, we reported the results of our
DW/node2vec which produced consistent results that were con-
sistently better than gensim implementation.
• It is important to note that while we successfully reproduced the
results of Splitter on ca-HepTh, and ca-AstroPh reported in [6],
Wiki-vote could not be reproduced. This is because the implemen-
tation of Splitter is intended for an undirected graph, whereas
Wiki-vote is a directed graph. We conjecture that Epasto et al. [6]
converted Wiki-vote into an undirected graph, and reported the
results. However, we used a directed version of Wiki-vote as input,
which decreased the link prediction performance.
• For fair comparisons, we �xed the number of dimensions for each
node throughout all the comparedmethods. For example, ifd = 100
for DW, then we set d = 20 and K = 5 for asp2vec to make the
total dimension size 100, even though we do not concatenate the
aspect embedding vectors.
• For asp2vec-het, we set the window size to 3, and number of
negative samples to 2, and for a fair comparison, we follow [19]
and we use a metapath “APA”.
Other Results. Table 10 shows the results for various number of
aspects K when d is �xed to 20. We observe that K = 5 consistently
gives competitive results albeit not the best for some cases. This is
the reason why we �xed K = 5 in our experiments. Table 9 shows
results for di�erent combinations of d and K that multiplied to
be 200. We observe that the best combination of d and K di�ers
according to the datasets, where we could observe even better
results compared with the results reported in our paper. Again,
since d = 50 and K = 4 consistently gives competitive results, we
used it for our experiments with dim=200 in our paper. Algorithm 1
shows the pseudocode for training asp2vec.
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