
Similarity Modeling on Heterogeneous Networks
via Automatic Path Discovery

Carl Yang, Mengxiong Liu, Frank He, Xikun Zhang, Jian Peng, and Jiawei Han

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{jiyang3, mliu60, shibihe, xikunz2, jianpeng, hanj}@illinois.edu

Abstract. Heterogeneous networks are widely used to model real-world
semi-structured data. The key challenge of learning over such networks
is the modeling of node similarity under both network structures and
contents. To deal with network structures, most existing works assume
a given or enumerable set of meta-paths and then leverage them for
the computation of meta-path-based proximities or network embeddings.
However, expert knowledge for given meta-paths is not always available,
and as the length of considered meta-paths increases, the number of
possible paths grows exponentially, which makes the path searching pro-
cess very costly. On the other hand, while there are often rich contents
around network nodes, they have hardly been leveraged to further im-
prove similarity modeling. In this work, to properly model node similarity
in content-rich heterogeneous networks, we propose to automatically dis-
cover useful paths for pairs of nodes under both structural and content
information. To this end, we combine continuous reinforcement learning
and deep content embedding into a novel semi-supervised joint learning
framework. Specifically, the supervised reinforcement learning compo-
nent explores useful paths between a small set of example similar pairs
of nodes, while the unsupervised deep embedding component captures
node contents and enables inductive learning on the whole network. The
two components are jointly trained in a closed loop to mutually enhance
each other. Extensive experiments on three real-world heterogeneous net-
works demonstrate the supreme advantages of our algorithm.
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1 Introduction

Networks are commonly used to model relational data such as people with so-
cial relations and proteins with biochemical interactions. Recently, increasing
research attention has been paid to heterogeneous networks, highlighting multi-
typed nodes and connections. Their modeling of rich semantics in terms of both
node contents and typed links enables the integration of real-world data from
various sources and facilitates wide applications [22, 13, 30, 31, 33].

The key challenge of learning with heterogeneous networks is the modeling of
node similarities (also known as proximities) [21]. To deal with this, meta-paths
have been introduced to constrain the counting of path instances [22, 28] or guide
meaningful network embedding [3, 18]. However, we summarize the drawbacks
of most existing heterogeneous network learning algorithms into the following
two aspects and explain them in details with our toy example in Figure 1.



Fig. 1. A toy example of modeling the Yelp data with heterogeneous networks.

Drawback 1: Assumption of given or enumerable sets of meta-paths.
Most existing methods for heterogeneous network modeling assume a known set
of useful meta-paths, either given by domain experts or exhaustively enumerable.
Then they combine the information of multiple meta-paths through uniform
addition [22, 3, 18, 8], or importance weighing [5, 33, 28, 4, 14]. However, given any
arbitrary heterogeneous network, the process of composing meta-paths according
to domain knowledge is ad hoc. Moreover, it is not always efficient or even feasible
to enumerate or search for all potentially useful paths, since the number of paths
grows exponentially as we consider longer paths, and it is notoriously costly to
instantiate the paths on the network.

Consider our toy example in Figure 1, which is a simple heterogeneous net-
work constructed with the Yelp data similarly as done in [33]. We only consider
five node types: businesses (B), users (U), locations (L), categories (C) and stars
(S). As for links, we only consider users reviewing businesses (U – B), businesses
residing in locations (B – L), businesses belonging to categories (B – C), businesses
having stars (B – S), users being friends with users (U – U) and categories belong-
ing to categories (C – C), while other links such as those between adjacent star
levels and pairs of geographically nearby locations are ignored for the simplicity
of the example.

On this simple heterogeneous network, if we only consider meta-paths be-
tween pairs of businesses with length no longer than 4, we already have 6 paths
(1-6). Once we increase the length to 5, since meta-paths of length 5 can be
composed by two meta-paths of length 3 or one meta-path of length 4 with an
additional node, the number of meta-paths of length 5 alone is around 20 (4× 4
for the combination of two paths of length 3 plus 2 for paths with 3 categories
or users in a row between two businesses).

Note that this is a simplified heterogeneous network with a few node types
and link types, and we are only considering meta-paths with lengths no longer
than 5, while each meta-path can have millions of instances. Real-world hetero-
geneous networks can be much more complex. Also, while existing works argue
that longer paths are less useful, there exists no solid support for this argument,
nor a good way of setting the maximum length of paths to consider.



Drawback 2: No leverage of rich contents around network nodes.
Furthermore, networks can have various contents [32], but no existing algorithm
on heterogeneous networks has considered the integration of such rich informa-
tion. For instance, in the example in Figure 1, users have attributes like number
of reviews, time since joining Yelp, number of fans, average rating of all reviews.
Such contents well characterize user properties like preference and expertise.

In this paper, we argue that even instances of the same meta-path can carry
rather different semantic meanings. To give a few examples, suppose the user on
path 7 enjoys high-end restaurants while that on path 8 prefers cheap ones. The
two pairs of businesses on the ends of the paths are then close in different ways.
Likewise, if the two users on path 7 and 9 have been to very different numbers of
places, they may choose the places to go based on quite different criteria, and thus
again lead to different path semantics. Besides users, categories can be differen-
tiated based on the generality, while locations cover different ranges. Stars also
correspond to different similarities, as 1-star means equally bad whereas 5-star
means comparably fantastic. Due to such observations, existing heterogeneous
network learning algorithms are incompetent, because they do not consider the
node contents and, as a consequence, model every instance of a meta-path as
the same. It is urgent that we develop a powerful framework to incorporate such
semantics and better model node similarity on heterogeneous networks.

Insight: Semi-Supervised Learning with limited labeled examples.
In this work, we propose to leverage SSL to capture both structural and content
information that is important for measuring the similarities among nodes on
heterogeneous networks. Given an arbitrary network, unlike existing methods,
we do not require a known set of useful meta-paths, nor do we try to enumerate
all of them up to a heuristic length limit. Instead, we depend on a small number
of example pairs of similar nodes which can be easily composed. Then we de-
sign an efficient algorithm to automatically explore useful paths on the network
under the supervision of these labeled node pairs. In this way, the structural
information on the heterogeneous networks can be fully leveraged.

Moreover, to incorporate content information such as node attributes, we
combine an unsupervised objective of content embedding with the supervised
path discovery into an SSL framework. By modeling the unlabeled node contents
in an unsupervised way, it allows our algorithm to induce the similarity among
unlabeled nodes on the whole network, as well as unseen nodes that might be
added to the network in the future. It also avoids the requirements for large
amounts of training data that cover the whole network.

Approach: Reinforcement Learning with Deep Content Embedding.
In this work, we propose AutoPath, to solve the problem of similarity modeling
on content-rich heterogeneous networks.

As we discussed before, the number of paths between nodes is exponential to
the length. Moreover, searching for paths on networks is notoriously expensive.
To deal with such challenges, we leverage reinforcement learning, which has been
found efficient in sequential decision making and successfully applied for path
exploration on knowledge bases [29, 2]. However, to the best of our knowledge,



there is no previous work on employing reinforcement learning to model hetero-
geneous networks, which have quite a few unique properties, such as the large
action spaces at each node when growing the paths and the large numbers of valid
paths between each pair of nodes. Such properties make the direct application of
existing algorithms on knowledge bases to heterogeneous networks impossible.
Another major distinction between heterogeneous networks and knowledge bases
is the prevalence of rich node contents, which has hardly been explored before by
existing algorithms. The existence of such node contents that potentially differ-
entiate the semantics on instances of the same meta-paths further increases the
difficulty of similarity modeling over heterogeneous networks. Such situations, as
we will discuss more in Section 2, urge the development of a specifically designed
reinforcement learning framework.

To overcome the challenges of large action spaces and node contents simulta-
neously, we leverage continuous reinforcement learning and incorporate deep con-
tent embedding to learn the state representations. Specifically, continuous policy
gradient effectively estimates similar actions and avoids the explicit search over
all discrete actions. Moreover, we devise conjugate deep autoencoders to cap-
ture node types and contents, and jointly train them with the policy and value
networks of the reinforcement learning agent in a closed loop, so as to allow
the mutual enhancement between embedding and learning. More details of our
models are discussed in Section 3.

As we will demonstrate in Section 4, our proposed AutoPath algorithm
is able to break free the requirements of known sets of meta-paths, leverage
node contents, and achieve state-of-the-art performance on the task of similarity
search with very limited supervision. Extensive quantitative experiments and
qualitative analysis on three real-world heterogeneous networks demonstrate the
advantages of AutoPath over various state-of-the-art heterogeneous network
modeling algorithms.

2 Preliminaries

In this section, we briefly introduce the key concepts and relevant techniques of
heterogeneous network modeling and reinforcement learning. Due to space limit,
a broader discussion of related works is placed into our Supplementary Materials.

2.1 Heterogeneous Network Modeling

Heterogeneous network has been intensively studied due to its power of accom-
modating multi-typed interconnected data [21, 22, 3, 30]. In this work, we stress
that rich contents are prevalently available on nodes in the networks, and we
define content-rich heterogeneous networks as follows.

Definition 1. Content-Rich Heterogeneous Network. A content-rich heteroge-
neous network is defined as a directed graph N = {V, E ,A}. For each node
v ∈ V and its corresponding node type φ(v) = T , a content vector ATv ∈ A is
associated with v. Depending on the node type T and available data, AT can be
categorical, numerical, textual, visual, etc., or any mixture of them.



To properly model heterogeneous networks, [22] introduces the concept of
meta-path, which has been the golden measure of similarity among nodes on
heterogeneous networks [22, 28, 4, 14, 19, 27], and recently have also enabled var-
ious heterogeneous network embedding algorithms [3, 18, 8, 5, 20, 26]. However,
most existing heterogeneous network modeling algorithms assume a given or
enumerable set of useful meta-paths up to a certain empirically decided length,
which is not always practical. Moreover, they do not consider contents in the
networks, and thus regard all instances of the same meta-paths as the same.

2.2 Reinforcement Learning

The main challenge of heterogeneous network modeling without a known set of
meta-paths is to automatically explore and find the useful ones, which is natu-
rally a combinatorial problem. For automatic path discovery on heterogeneous
networks, as we consider K types of nodes and meta-paths of length L, the
number of all possible meta-paths can be at the same scale as KL. Moreover, we
stress that on content-rich heterogeneous networks, instances of the same meta-
paths can carry different semantics, and the search space is further enlarged to
approximately ρL, where ρ is the average out-degree of nodes on the network
and is often much larger than K.

Reinforcement learning has been intensively studied for solving complex plan-
ning problems with consecutive decision makings, such as robot control and
human-computer games [15, 23]. Recently, there are several approaches based on
reinforcement learning to tackle the combinatorial optimization problems over
network data [1, 9], as well as reasoning over knowledge bases [2, 29], which are
shown to be effective. Motivated by their success, we aim to leverage reinforce-
ment learning to efficiently solve the combinatorial problem of automatic path
discovery on heterogeneous networks.

Different from knowledge bases, although content-rich heterogeneous net-
works have fewer node types, each type has much larger number of nodes. Cat-
egorical actor networks used in [2, 29] have poor convergence property in our
heterogeneous network setting. To address this issue, continuous reinforcement
learning serves as an appropriate paradigm. Our action is applied in the deep
embedding space which is trained together with conjugate autoencoders to rep-
resent node types and contents. Unlike DDPG [12] or Q-learning [15] which learn
a deterministic policy, our algorithm is designed to learn a probability distribu-
tion over actions as a policy. By sampling from the learned policy, our framework
assigns large probabilities to high-quality paths. To briefly summarize, our al-
gorithm leverages both structural and content information and automatically
discover meaningful paths, under the guidance of limited labeled data.

3 AutoPath

In this section, we describe our AutoPath algorithm, which combines reinforce-
ment learning and deep embedding over content-rich heterogeneous networks
into a semi-supervised learning framework.



3.1 Overall Semi-Supervised Learning Framework

We start with a formal definition of our problem.

Definition 2. Similarity Modeling. Consider a content-rich heterogeneous net-
work G = {V, E ,A} with a corresponding type function φ. The problem of simi-
larity modeling is to measure the similarity between any pair of nodes, under the
consideration of various meta-paths and rich node contents on the path instances.

We stress that similarity modeling is the key challenge of learning with content-
rich heterogeneous networks, as its solution naturally enables various subsequent
tasks like link prediction, node classification, community detection and so on.

In this work, we aim to automatically learn the important meta-paths and
node contents by leveraging limited labeled data. Therefore, besides a graph
G = {V, E ,A}, we consider the basic input as a set of example similar pairs of
nodes P, upon which we build a supervised learning module using reinforcement
learning to explore their prominent connecting paths characterized by network
links E . To make the learning algorithm efficient and aware of node contents A,
we further build an unsupervised learning module with deep content embedding,
which also enables inductive learning on the whole network G not necessarily
covered by P. Figure 2 shows the overall framework of AutoPath, and in what
follows, we describe the two major components of this framework in details.

Fig. 2. Overall framework of AutoPath: Nodes are encoded by their embedding vec-
tors based on both structure and content information on the network, where different
colors denote different node types. The black solid lines denote actual network links,
and the line weights denote the importance of the paths discovered by the algorithm.
The colored dash lines indicate the connections between node embeddings and their
content embedding models w.r.t. the corresponding node types. The supervised module
with an objective J1 is trained w.r.t. the labeled node pairs in the given example set,
and the unsupervised module with an objective J2 is trained over the whole network.

3.2 Path Exploration using Reinforcement Learning

Learning Paradigm. As we discussed before, automatic path exploration is
essentially a combinatorial problem over enormous search spaces, which can-
not be well solved by exhaustive enumeration or searching with greedy pruning.
Motivated by the recent success of reinforcement learning on sequential deci-
sion making, we propose to leverage the following paradigm for efficient path
exploration.



For an example pair of similar nodes p = {s, t} ∈ P, we call s a start node
and t a target node. From each start node, we repeatedly train the reinforcement
learning agent by looking for the next node to go on the network. A partial
solution is represented as a sequence S = (s, v1, v2, . . .). At each step, based
on the model parameters and the current state, the agent will either choose a
neighboring node to go to (vk) or return to the start node (s). Every time the
agent reaches the target node (t), it gets a positive reward and returns to the
start node (s). We will depict the details of P on different datasets in Section 4.

Framework Representation. To deal with the aforementioned large action
space challenge, we propose to leverage a novel network embedding method,
which captures the node types and contents into a low-dimensional latent space.
The details of the embedding method are deferred to the next subsection. Similar
to [1], our neural network architecture models a stochastic policy π(a | S,G),
where a is the action of selecting the next node from the network G and S is the
current partial solution.

We define the components in our reinforcement learning framework as follows.

1. State: A state S is a sequence of nodes we have selected. Based on our
novel network embedding method, a state is represented by a κ-dimensional
vector

∑
v∈S xv, while it is also possible to use mean pooling, max pooling

or neural networks like LSTM.
2. Action: An action a is a node v ∈ V. We cast the details of actions later.
3. Reward: The reward r of taking action a at state S is r = 1 if a = t, and
r = 0 otherwise.

4. Transition: The transition is deterministic by simply adding the node v we
have selected according to action a to the current state S. Thus, the next
state S′ := (S, v).

Our actor network (policy network) µΘ(S) and critic network (value function)
νΘ(S) are both fully connected feedforward neural networks, each containing
four layers including two hidden layers of size H, as well as the input and output
layers. Rectified linear unit (ReLU) is used as the activation function for each
layer, and the first hidden layer is shared between two networks. Both networks’
inputs are κ-dimensional node embeddings. The output of the actor network
µΘ(S) are κ-dimensional vectors µ and σ2, whereas the output of critic network
νΘ(S) is a real number.

Learning Algorithm. To overcome the large action space problem, we adopt
continuous policy gradient as our learning algorithm. Our policy selects actions
in node embedding space [17, 12]. At each time step, we select a continuous
vector and then retrieve the closest node from the current neighborhood plus
the start node by comparing the action vector with the node embeddings.

Consider our policy π(a | S), unlike in the discrete action domain where the
action output is a softmax function, here the two outputs of the policy network
are two real number vectors which we treat as the mean µ and variance σ2 of a



multi-dimensional normal distribution with a spherical covariance Σ = σ2I. To
act, the input is passed through the model to the output layer where a Gaussian
exploration is determined by µ and σ2 as

π(a | S, {µ,Σ}) =
1√

2π |Σ|
exp

(
−1

2
(a− µ)TΣ−1(a− µ)

)
. (1)

Since our goal is to find the important path S, our training loss is

Jp(Θ | G) = −Eτ∼pΘ(S|G)R(τ), (2)

where τ denotes an episode of the state-action trajectory, Θ is the set of pa-
rameters, and R is the reward. Jp is called the surrogate loss in reinforcement
learning which evaluates the quality of the entire path S constructed by τ . To
derive the gradient of Jp, we use the policy gradient theorem [23] which gives

∇ΘJp = − 1

α

α∑
i=1

T−1∑
t=0

∇ΘπΘ(a
(i)
t | S

(i)
t )Ât, (3)

Ât =

(
T−1∑
k=t

r(S
(i)
k , a

(i)
k )− b(S(i)

k )

)
, (4)

where α is the number of trajectories, T is the trajectory length, Ât is advantage
and b is the baseline for variance reduction. By exploiting the fact that

∇ΘπΘ(a | S) = πΘ(a | S)
∇ΘπΘ(a | S)

πΘ(a | S)
= πΘ(a | S)∇Θ log πΘ(a | S), (5)

we have the approximate gradient estimator as

g = Et[∇Θ log πΘ(at | St)Ât], (6)

where Et denotes the empirical average over a mini-batch of samples in the algo-
rithm that alternates between sampling and optimization using policy gradient.

In order to reduce the variance, we choose the value function VΘ as the
baseline. VΘ is learned by using Monte Carlo method to minimize the loss

Jv = ‖VΘ(St)−
T−1∑
k=t

r(Sk, ak)‖22. (7)

Subsequently, we define our policy gradient loss as the sum of surrogate loss
and value function loss, i.e., J1 = Jp+Jv, which can be regarded as a supervised
loss under the example similar pairs of nodes.

3.3 Content Understanding with Deep Embedding

Conjugate Autoencoders. In order to make AutoPath aware of node con-
tents and able to perform inductive learning on the whole network, we design
a novel unsupervised node embedding method. Unlike existing network embed-
ding methods designed to capture link structures, we aim to represent node types
and contents in a shared low-dimensional space. To this end, we get inspired by
recent success in deep learning for feature composition [11], which has been
proven advantageous in capturing intrinsic features within complex contents in
an unsupervised learning fashion.



To be specific, we propose conjugate autoencoders, which is a novel variant
of deep denoise autoencoder. It consists of two non-linear feedforward neural
network layers, i.e., two encoder layers and two decoder layers. The first encoder
layers and the last decoder layers have individual embedding weights for each
node type, while the other two layers are shared across different node types, as
demonstrated in Figure 2. Therefore, the embedding xi for node vi of type k
(i.e., φ(vi) = k) is computed as

xi = foe (fke (ai)), where f je (x) = ReLU(Wj
eDropout(x) + bje). (8)

Similarly, the reconstructed feature ãi of node vi is computed as

ãi = fkd (fod (xi)), where f jd(x) = ReLU(Wj
dDropout(x) + bjd). (9)

The parameters in foe and fod are shared across all node types, while the param-
eters in {fke , fkd }Kk=1 are different for each node type.

Content Reconstruction Loss. To learn the intrinsic node features in an
unsupervised fashion, a content reconstruction loss is computed over the whole
network as

Jr =

n∑
i=1

l(ai, ãi). (10)

Depending on the contents in the datasets, l can be implemented either as a
cross entropy (for binary features, such as user attributes) or a mean squared
error (for continuous features, such as TF-IDF scores of words).

Type Discrimination Loss. While Jr enforces the capture of node contents,
node embeddings computed in this way does not necessarily discriminate differ-
ent types of nodes in the shared embedding space, which weakens the ability of
the algorithm to differentiate various meta-paths. To deal with this, we further
impose a type discrimination loss over the whole network as

Jd = −
n∑
i=1

log(p(i)), where p(i) =
exp(W

φ(vi)
c xi)∑

k exp(W
k
cxi)

. (11)

It is basically a softmax classifier towards node types with cross-entropy loss,
which acts as adversarial to the shared reconstruction loss to make sure different
types of nodes do not mingle too much in the shared embedding space.

The two losses can be combined with a tunable weighting parameter λ as
J2 = Jr + λJd. We use Φ to denote all parameters related to these two losses.

3.4 Joint Training of Reinforcement Learning and Deep Embedding

Training Pipeline. To realize our SSL framework, we integrate the training of
reinforcement learning and deep embedding into a joint learning pipeline, with
the overall loss J = J1 + J2. We firstly pre-train the content embedding with
all parameters in Φ until J2 is sufficiently small, which captures the intrinsic
distribution of node contents in a low-dimensional space. Then we detach the
encoder layers and learn the rest of the model through co-training. Such detach-
ment and separation of pre-training and co-training are necessary for allowing



the node embeddings to become different for nodes even with the same contents
to respect the network structures. Specifically, during co-training, we iteratively
train the actor and critic networks by updating the parameters in Θ, and the
embedding networks by updating the parameters in Φ except for those in the
encoder. Note that, in both processes, the node embeddings X will also get up-
dated, to reflect both important network structures and node contents. In each
epoch, when updating Θ and X , we sample a set Ω of α trajectories of length
m using the current policy πΘ(a | S), with each trajectory starting from a ran-
dom start node in the set of example node pairs P, and construct the surrogate
loss and value function loss in J1; when updating Φ, we sample a set Ψ of β
nodes from all nodes V in the whole network G, and compute the reconstruction
loss and discrimination loss in J2. Mini-batch SGD is then used to optimize the
objectives iteratively for γ epochs, where all model parameters in {Θ,Φ,X} are
updated by Adam [10]. We released our code with a demo function on Github1

and also included it in our Supplementary Materials.

Computational Complexity. We theoretically analyze the complexity of Au-
toPath. For the reinforcement learning component, during each step of training,
AutoPath generates a target mean µΘ in constant time and then selects a node
from G that is the closest to µΘ. Note that, to grow a path, we only need to
compare nodes in the direct neighborhood of the current node plus the start
node, the size of which is much smaller than n and can be regarded as a con-
stant number ρ. Since computing the quality function and updating the neural
network model based on particular trajectories take constant time, the overall
complexity of training and planning with the reinforcement learning agent is
O(αρm) in each epoch. For the deep embedding component, AutoPath uni-
formly samples the nodes in O(β) time, and then compute the losses and update
the models in O(1) time. Therefore, the overall training time of AutoPath is
O((αρm + β)γ). The time of model inference for particular nodes is ignorable
compared with model training.

4 Experimental Evaluations

In this section, we evaluate the performance of our proposed AutoPath algo-
rithm on three real-world content-rich heterogeneous networks in different do-
mains, i.e., IMDb from a movie rating platform2, DBLP from an academic pub-
lication collection3, and Yelp from a business review service4. Through extensive
quantitative experiments and qualitative analysis in comparison with various
baselines, we show that AutoPath can efficiently leverage both structural and
content information on heterogeneous networks, which leads to supreme perfor-
mance on the key task of similarity modeling.

1 https://github.com/yangji9181/AutoPath
2 http://www.imdb.com/
3 https://dblp.uni-trier.de/
4 https://www.yelp.com/



4.1 Experimental Settings

Datasets. We describe the datasets we use as follows and the statistics are
summarized in Table 1.

1. IMDb: We use the MovieLens-100K dataset5 made public by [7]. There are
four types of nodes in the network, i.e., users (U), movies (M), actors (A), and
directors (D). The edge types include users reviewing movies, actors featuring
in movies, and director making movies. The contents we use for users include
simple demographics like age, gender, occupation, zipcode. For movies, actors
and directors, we collect the first textual paragraph of the main content in
their corresponding Wikipedia6 page if available.

2. DBLP: We use the Arnetminer dataset V87 collected by [25]. It contains
four types of nodes, i.e., authors (A), papers (P), venues (V), and years (Y).
The edge types include authors writing papers, papers citing papers, papers
published in venues, and papers published in years. As for contents, we use
titles and abstracts for papers, full names for venues, and also the first textual
paragraph of the main content in Wikipedia for authors if available.

3. Yelp: We use the public dataset from the Yelp Challenge Round 118. Fol-
lowing an existing work that models Yelp data with heterogeneous networks
[33], we extract five types of nodes, i.e., businesses (B), users (U), locations
(L), categories (C), and stars (S). The edge types include users reviewing
businesses, businesses belonging to categories, businesses residing in locations,
businesses having average stars, category related to categories and users being
friends with users. We further extract contents for businesses like latitudes,
longitudes, review counts, etc., and for users like review counts, time since
joining Yelp, number of fans, average stars, etc. For nodes with no additional
contents but a name like categories (e.g., Mexican, Burgers, Gastropubs) and
locations (e.g., San Francisco, Chicago, London), we use the pre-trained word
embeddings9 provided by [16] as initial contents.

As we can see, the structures and sizes of networks are quite different across the
experimented datasets, and the network contents are of various types including
categorical, numerical, textual and mixtures of them. In this work, we model all
textual contents simply as bag-of-words.

Dataset Size #Types #Nodes #Links #Classes #Pairs

IMDb 16.1MB 4 45,913 153,645 23 4,000

DBLP 4.33GB 4 335,185 2,704,655 4 10,000

Yelp 6.52GB 5 1,123,649 8,912,736 6 20,000

Table 1. Statistics of the three experimented public datasets.

5 https://grouplens.org/datasets/movielens/100k/
6 https://en.wikipedia.org/wiki/Main Page
7 https://aminer.org/citation
8 https://www.yelp.com/dataset
9 https://nlp.stanford.edu/projects/glove/



Baselines. We compare with both path matching and network embedding based
heterogeneous network modeling algorithms to comprehensively evaluate the
performance of AutoPath.
• PathSim [22]: Normalized meta-path constrained path counts for measuring
node similarity on heterogeneous networks.
• RelSim [28]: Exhaustive meta-path enumeration up to a given length and su-
pervised weighting for combining the normalized counts of multiple meta-paths.
• FSPG [14]: Greedy meta-path search to a given length and similarity compu-
tation through a linear combination of biased path constrained random walks.
• PTE [24]: Heterogeneous network embedding by decomposing the network
into a set of bipartite networks and capturing first and second order proximities.
•Metapath2vec [3]: Heterogeneous network embedding through heterogeneous
random walks and negative sampling.
• ESim [18]: Heterogeneous network embedding through meta-path guided path
sampling and noise-contrastive estimation.

Evaluation protocols. We study the efficacy of all algorithms on similarity
modeling, which can be naturally evaluated under the setting of standard link
prediction. The links are generated from additional labels of semantic classes
not directly captured by the networks. For IMDb, we use all 23 available genres
such as drama, comedy, romance, thriller, crime and action. For DBLP, we use the
manual labels of authors from four research areas, i.e., database, data mining,
machine learning and information retrieval provided by [22]. For Yelp, we extract
six sets of businesses based on some available attributes, i.e., good for kids, take
out, outdoor seating, good for groups, delivery and reservation. For each dataset, we
assume that movies (businesses, authors) within each semantic class are similar
in certain ways, and generate pairwise links among them.

Following the common practice in [4, 14], we firstly sample certain amounts
of linked pairs of nodes, the numbers of which are listed in Table 1. We use them
as training data, i.e., example pairs of similar nodes. Since all pairs are positive,
we also randomly generate an equal amount of negative pairs, each consisting
of two entities not in the same semantic class. PathSim needs no training, while
RelSim and FSPG are both trained on the training data in a supervised way.
For embedding algorithms, we compute the embeddings in an unsupervised way
on the whole network, and train a standard SVM10 on the training data. For
AutoPath, we train the reinforcement learning agent with the training data
and deep embedding on the whole network. After training, similarity scores can
be computed by starting from any particular node, planning with the agent
for multiple times, and taking the empirical probabilities of reaching the target
nodes. For testing, we randomly select 10% start nodes disjointly with the train-
ing pairs, and retrieve all target nodes from the same semantic class for each of
them to form the ground-truth lists. Each baseline ranks all nodes on the net-
work w.r.t. each start node, and we compute the average precision at K, recall
at K and AUC over all selected start nodes, which are the standard evaluation
metrics for link prediction [6]. We also record the runtimes of all algorithms.

10 http://scikit-learn.org/stable/modules/svm.html



Parameter settings. When comparing AutoPath with the baseline methods,
we slightly tune the parameters via cross-validation. For the IMDb dataset,
the parameters are empirically set to the following values: For reinforcement
learning, we set the length of trajectories m to 10, the sample size α to 400; for
deep embedding, we set the sample size β to 2000 and the weighting factor λ to
0.1; for both components, we set the size of hidden layers to 64, and the number
of epochs γ to 200. The parameters on other datasets are slightly different due to
different data sizes. During cross-validation, we find AutoPath to be quite robust
across different parameter settings. All parameters of the compared baselines are
either set as given in the original work on the same datasets, or tuned to the
best through standard five-fold cross validation on each dataset.

4.2 Quantitative Evaluation

As we can observe from Figure 3 and Table 2: (1) the compared algorithms have
varying results, while AutoPath is able to constantly outperform all of them
with significant margins on all experimented datasets, demonstrating its gen-
eral and robust advantages; (2) the performance improvements of AutoPath
are more significant on DBLP and Yelp datasets where rich node contents are
available, indicating the advantage of content embedding; (3) FSPG and Rel-
Sim perform much better than PathSim, and even better than the advanced
network embedding algorithms, especially on DBLP, probably because they con-
sider different weights of meta-paths. AutoPath also performs well on DBLP,
indicating the advantage of reinforcement learning in automatically discovering
important paths; (4) the runtimes of AutoPath are shorter than FSPG and
RelSim, which try to enumerate or search for all useful meta-paths, especially
on large networks like DBLP and Yelp, indicating its efficiency and scalability.
Due to space limit, we put more discussions into our Supplementary Materials
and defer more detailed experimental studies into the future work.

Algorithm
AUC Runtime

IMDb DBLP Yelp IMDb DBLP Yelp

PathSim 0.584± 0.018 0.692± 0.022 0.541± 0.006 119s 241s 468s

RelSim 0.602± 0.023 0.788± 0.028 0.595± 0.011 325s 1498s 4394s

FSPG 0.568± 0.011 0.759± 0.024 0.612± 0.013 186s 1062 3186s

PTE 0.544± 0.008 0.707± 0.018 0.608± 0.015 46s 238s 424s

Metapath2vec 0.539± 0.010 0.726± 0.021 0.622± 0.015 127s 1170s 2824s

ESim 0.573± 0.012 0.715± 0.016 0.636± 0.018 256s 312s 684s

AutoPath 0.635± 0.015 0.840± 0.018 0.713± 0.016 163s 466s 1620s

Table 2. Quantitative evaluation results: AUC and runtime of compared algorithms.

4.3 Qualitative Analysis

As we stress in this work, a unique advantage of AutoPath is the automatic dis-
covery of useful meta-paths from enormous search spaces without a pre-defined



(a) Precision-IMDb (b) Precision-DBLP (c) Precision-Yelp

(d) Recall-IMDb (e) Recall-DBLP (f) Recall-Yelp

Fig. 3. Quantitative evaluation results: Precision and recall of compared algorithms.

maximum length. To demonstrate such utility, after training our model, we plan
on random nodes for 10,000 times and summarize the most frequently traveled
meta-paths in Table 3. As we can see, the meta-paths with variable lengths and
importance discovered by our algorithm are indeed intuitive for each dataset,
indicating the power of it in automatically discovering important paths.

IMDb DBLP Yelp

M – A – M (0.372) A – P – V – P – A (0.781) B – L – B (0.414)

M – D – M (0.315) A – P – A (0.132) B – U – B (0.277)

M – U – M (0.298) A – P – A – P – A (0.046) B – S – B (0.236)

Table 3. Top 3 meta-paths automatically found and deemed important by AutoPath.

5 Conclusions

Heterogeneous networks have been intensively studied recently, due to its power
of incorporating different types of data from various sources. In this work, we
focus on the key challenge of learning with heterogeneous networks, i.e., similar-
ity modeling. To fully leverage both structural and content information over
heterogeneous networks, we break free the requirement of pre-defined meta-
paths through automatic path discovery with efficient reinforcement learning
and incorporate rich node contents to empower discriminative path exploration
through deep content embedding. We demonstrate the effectiveness and effi-
ciency of our AutoPath algorithm through extensive quantitative and qualita-
tive experiments on three large-scale real-world heterogeneous networks.



For future works, more in-depth experiments can be done to study the indi-
vidual effectiveness of our reinforcement learning and content embedding frame-
works. Meanwhile, various improvements can also be thought of for both of them,
such as the embedding of more complex contents like texts and images, the in-
terpretation of discovered paths, and the generation of heterogeneous network
embedding for various other downstream applications.
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