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1 Related Work

We emphasize the novelty of our work through comparison with the related three
lines of research.

1.1 Heterogeneous Network Modeling

Networks provide a natural and generic way of modeling real-world structured
data. Among them, heterogeneous networks have drawn increasing research at-
tention in the past decade, due to its capacity of retaining rich type information
[31]. The rich representation of nodes and links facilitates various downstream
applications including link prediction [16], classification [8], clustering [33], rec-
ommender systems [45], outlier detection [46], etc.

The modeling of heterogeneous networks is mainly around similarity learning
under meta-paths [32, 39, 4, 19, 28, 38]. For example, [32] defines the proximity
between two nodes by the normalized count of path instances following a user-
specified meta-path, and shows that this measure captures better peer similarity
semantics than random walk based similarity measures like SimRank [10] and
PPR [11]. Other methods, while leveraging different techniques to combine or
generate multiple meta-paths, all assume a given or enumerable set of useful
meta-paths up to a certain empirically decided length, and none of them consider
node contents.

Recently, network embedding algorithms based on the advances in neural
network models like Skip-gram models [21] and convolutional neural networks
[14] have been extremely popular [25, 36, 6, 23, 13, 7]. They aim to compute dis-
tributed representations of nodes that capture their network proximities re-
garding both neighborhood similarity and structural similarity [40, 26, 18]. The
learned embedding vectors can then be leveraged for various network learning
tasks including link prediction [44], node classification [43], community detection
[42], etc. Following this trend, researchers have also been actively studying the
embedding of heterogeneous networks [3, 27, 9, 5, 29, 37]. However, all existing
heterogeneous network modeling methods are developed based on the assump-
tion that proper meta-paths are given or can be enumerated, and none of them
considers the integration of rich contents on the nodes.



In this work, we break free the requirements of given or enumerable meta-
paths, and instead, we automatically explore and learn the useful paths with
efficient reinforcement learning, based on a small set of example pairs of similar
nodes. Furthermore, we integrate rich node contents through joint deep embed-
ding, and thus are able to find discriminative paths among instances of the same
meta-paths.

1.2 Reinforcement Learning

Reinforcement learning has been widely used in robot control, human-computer
interaction and automated decision making, in which software agents need to
consider interactions with a dynamic environment and take actions towards cer-
tain goals [34, 12]. They study the problems by learning policies to make decisions
and maximize a reward signal from the environment. Some recent significant
progress has been made by combining advances in deep learning for sensory
processing with reinforcement learning [14], resulting in the super-human per-
formance on high-dimensional game controls [22, 30].

As close to our work, several approaches have been proposed to solve the
inherent path discovery problem for reasoning over knowledge bases with rein-
forcement learning [41, 2]. Policy gradient [35] is used based on the discrete state
space encoded by [1] to learn a conditional stochastic policy for fact predic-
tion in [41], while [2] utilizes LSTM to construct a policy network over discrete
states without pretraining for query answering. These methods have achieved
notable successes on knowledge bases. However, when it comes to our scenario
of similarity modeling over heterogeneous networks, the algorithms are no longer
appropriate, since we consider fewer node types but with more outgoing edges,
as well as the probabilistic measure of paths together with node contents.

In this work, we connect continuous control policy gradient with network
embedding to form a coherent semi-supervised learning framework. The train-
ing of policy network is supervised by example similar pairs of nodes, whereas
the autoencoder based network embedding is unsupervised. The two objectives
are jointly trained to automatically explore useful paths and rich semantics in
content-rich heterogeneous networks, and enable inductive learning on unlabeled
nodes. To the best of our knowledge, this is the first research effort to leverage
reinforcement learning for heterogeneous network similarity modeling with effi-
cient path exploration.

1.3 Deep Embedding

Embedding or representation based on neural networks has been intensively
studied recently in various artificial intelligence related fields.

To empower the information exploration of reinforcement learning on content-
rich heterogeneous networks, we propose to leverage deep embedding for content
representation learning. As we discussed before, node contents on heterogeneous
networks can be of various formats, so we want the embedding technique to be
general and flexible. Moreover, since we aim to achieve inductive learning on the



network, i.e., learn the important paths and contents on a small set of exam-
ple pairs of nodes and infer the similarity among arbitrary pairs, we want the
embedding of node attributes to be unsupervised.

To this end, we employ deep denoise autoencoder (DAE) [15], which has been
proven advantageous in capturing the intrinsic features within high-dimensional
sparse, noisy inputs in an unsupervised fashion. To deal with multiple types of
inputs, we can insert various differentiable neural networks after the raw content
vectors, and concatenate multiple outputs before sending to the generic DAE.
For example, for categorical contents, we can insert a look-up embedding layer;
for numerical contents, simple linear feedforward neural networks with nonlinear
activations can be devised; for textual and visual contents, classic RNN [20] and
CNN [14] can be leveraged, respectively. Finally, for nodes with a meaningful
name but no contents in the network, we can also leverage their semantics by
finding the embedding of the words in their names from precomputed word
embeddings like [24], and then compute the average before sending to the DAE.

2 Discussions

2.1 Again, Why Continuous Space?

Most heterogeneous network modeling algorithms assume a given or enumer-
able set of meta-paths, including both directly computing the meta-path-based
adjacency matrixes through path counting [32, 39, 4, 28, 38, 16, 8, 33, 45, 46] and
network embedding through path sampling [3, 27, 9, 5, 29, 37]. Only until very re-
cently have we found a few works that attempt to deal with the situation where
meta-paths are not given. One of them [19], explicitly searches for the important
paths based on a tree structure and a heuristic measure. However, the search
space can be very large, which leads to problematic efficiency, as we have shown
in the experiments. Also, there is no guarantee for finding the best paths, as
there is no clear correlation between the heuristic measure and similarity mod-
eling performance. Another work [4], which is very similar in spirit to [19], tries
to grow larger meta-graphs from smaller ones, again suffers from efficiency prob-
lems even with the optimization tricks and has no guarantee towards optimal
similarity model, because the meta-graph discovery and proximity learning steps
are separate.

The natural end-to-end learning of useful paths is through reinforcement
learning, which has been explored on knowledge bases [41, 2]. However, the two
works both consider discrete policy gradient, which boils down to breadth-first
search from one end or both ends of the paths, which, to be strict, is essen-
tially not reinforcement learning. As we discussed in our preliminaries, while the
node types can be modeled by discrete softmax functions, node contents are too
complex for softmax, which naturally calls for continuous representations.

Our continuous policy gradient is smart in two folds. The first is it does not
require explicit breadth-first search. Instead, the reinforcement learning agent
starts with randomly exploring the paths, and gradually learns the preferable



paths by estimating and leveraging similar paths in the embedding space. The
second is it can be naturally combined with content embedding through joint
training, thus effectively differentiating instances of the same meta-paths, which
might carry different semantic meanings. Therefore, we believe continuous rein-
forcement learning is the right solution for automatic path discovery on content-
rich heterogeneous networks.

2.2 Meta-Paths or Semantic Paths?

In this paper, we leverage the power of heterogeneous networks in modeling
multi-typed nodes and links. However, we also leverage the rich contents around
nodes. To some extent, node types and contents are similar in nature: What
should be modeled as types and what should be modeled as contents is actually
an open question, and in practice, it really depends on what is preferred or
stressed by the person who constructs the heterogeneous networks.

Careful readers might notice that in our model, by representing node contents
and types together into the same embedding space, we intentionally weaken the
difference between types and contents, because they are essentially similar things.
However, we do pay special attention to the information that has been commonly
modeled by node types through the discrimination loss. The implication of this
treatment on the reinforcement learning agent is that, it is thus able to look for
paths characterized by both types and contents, rather than just node types as
all existing algorithms focus on. Therefore, it is indeed inaccurate to say our
algorithm is automatically discovering meta-paths, but rather it is discovering
certain semantic paths.

In our experiments, we find both the reconstruction loss and the discrimina-
tion loss are playing important roles, while the discrimination loss does matter
more. This might also explain why people commonly model those node types as
they are.

2.3 Shorter Paths?

Another outstanding advantage of our algorithm is we do not need to set a
maximum length of paths to be explored. Rather, by allowing the reinforcement
learning agent to go back to the start node at every step, we give it the chance to
learn when it should stop exploring paths that are too long. We conjecture that
this might lead the agent to always prefer shorter paths by keeping returning to
the start since in this way it might get to the target node through fewer steps
and thus get more rewards. However, we find in our experiments that the agent
can be smart enough to decide on what networks to explore longer paths (such
as DBLP) and on what else to prefer shorter ones (such as IMDb). Therefore, we
believe our algorithm truly breaks free the requirement of given maximum length
of paths. Such requirements are not practical at all but assumed by almost all
existing frameworks.



2.4 Random Paths?

Finally, while we were unable to conduct comparison experiments with two very
recent works on heterogeneous network proximity learning [16, 17], our work is
conceptually different from theirs: Our algorithm starts with randomly exploring
the paths, but efficiently learns to be able to choose the better paths along the
way, while their algorithms always randomly sample the paths, which should
be way less efficient and may be unable to scale to really large networks like
the ones we use in our experiments. As we also notice, their experiments were
all done on quite small networks with the largest one being a DBLP dataset
with a few thousand authors and the smaller ones like a LinkedIn dataset and
a Facebook dataset with a few hundred users, which might indicate a lack of
scalability, which renders them hardly applicable to experimental settings.

3 Demo

We released our code with a demo function on Github1, and also included it
together with this submission in the Supplementary Materials.

Since the submission website does not accept .zip files this year, we changed
the suffix into .doc. Please change it back to .zip in order to properly access the
code. If you have any problem opening the file, please find the code through our
Github link.

Here we briefly introduce how to run our code and discuss about some results,
while more details can be found through playing with our demo!

Our AutoPath pipeline is implemented with TensorFlow2 on Python2.
Please make sure you have the newest version of both of them. To train the
model on our default IMDb dataset (provided together with the code), simply
use the command python2 train.py. You may also change the parameters as you
like in config.py. With our default parameter settings, training the model roughly
takes a few minutes on CPU. Note that, you need to remove the tmp folder if
you change the neural network structures before training a new model. If you
have any problem running the code, please feel free to contact us.

After training the model, use the command python2 demo.py to play with
the demo. This demo basically allows you to look for similar movies regarding
genres. Note that finding movies with exactly the same set of genres is very
challenging because genres can be multiple and ambiguous. Nonetheless, our
results show that most movies returned by our model at least share a few genres
with the queried movie. To play with the demo, input one or more movie ids
(separated by space) at each time. In Figure 1, we provide some example inputs
and outputs of the demo.

As we can see through this demo, our algorithm can efficiently capture the
semantic similarities among entities in content-rich heterogeneous networks. The

1 https://github.com/yangji9181/AutoPath
2 https://www.tensorflow.org/



Fig. 1. Example inputs and outputs of our demo.

model effectively explores paths on the network, differentiating paths with dif-
ferent nodes, while avoiding the need to go through every possible path, thanks
to our appropriate continuous reinforcement learning with deep embedding tech-
niques. The model does not need to be fully trained (e.g., till convergence) to
produce reasonable results.
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