

*This work was done under the mentorship of Dr. Carl Yang from Emory
University (j.carlyang@emory.edu).

BrainMixup: Data Augmentation for GNN-based
Functional Brain Network Analysis

 Alexis Li*
Hamilton High School

 Gilbert, United States of America
li.alexis1111@gmail.com

Abstract— Different data augmentation techniques such as
mixup have been applied to Graph Networks to reduce overfitting.
Many graph mixup techniques have complicated implementations
to deal with graph data’s non-Euclidian data structure. However,
not many papers have explored applying traditional mixup
techniques to brain data that has the unique capacity in that nodes
are defined in place by their ROIs. Thus, this paper proposes
BrainGMixup, applying previously proposed mixup techniques
meant for 1-D feature vectors to 2-D graph node features and edge
index matrices. The results and experiments in this paper
demonstrate that applying this simple modified mixup increases a
model like EdgeConv’ s ability to generalize on the training data
and boosts its performance on a variety of metrics.

I. INTRODUCTION
The human brain is a complex made of 86 billion neurons-

nearly the number of stars in the Milky Way- with an estimated
quadrillion synapse. Even now, scientists are still analyzing
these connections to map the function and mechanisms of the
human brain all of which is critical to battling neurodegenerative
disorders such as Alzheimer’s disease and gaining a new
understanding of mental disorders such as attention deficit
hyperactivity disorder (ADHD), schizophrenia, and autism
spectrum disorder (ASD).

Graph Neural Networks (GNNs) have been at the center of
non-Euclidian data analysis with applications in molecule
interaction prediction, social media recommenders, and drug
discovery [1]. As of late, GNNs have been applied to brain
connectome analysis which is key to advancing deep learning
classification and identification of brain related
conditions/disorders.

Previous works have explored attention based GNNs,
different methods of node feature extraction, pooling methods,
etc. One area of particular interest is developing different
methodologies to combat the issue of overfitting and network
memorization over generalization as graph data is often noisy
and low in quantity. Different data augmentation techniques to
mitigate these issues involve neighborhood level feature
generation [2], edge modification/removal [3], and consistency
regularization [4]. However, many of these methods end up
losing important node information by dropping them out or
don’t fully engage with the uniqueness of brain connectome

data. Insofar that brain connectome data doesn’t face issues of
graph isomorphism as pre-determined regions of interest (ROIs)
dictate the position of nodes, it is possible to explore previous
data augmentation methods for Euclidean data-based models.

The motivation of this paper is to explore the application of
a modified version of mixup based on the Vicinal Risk
Minimization principle [5] on an EdgeConv GNN for ASD
classification. It is important to note that variations of mixup for
Graph Neural Networks have been applied in previous papers
[6], but they deal with graph datasets that have fluctuating
numbers of nodes that come in different order that require far
more complex implementations. The form of mixup proposed in
this paper allows it to be utilized on 2-D node feature and edge
index matrices rather than just 1-D feature vectors that are
typical for image data types.

II. RELATED WORKS
Graph Mixup. Many Graph Mixup methods involve

constructing new synthetic graphs from probability matrices to
connect new sampled subgraphs to the original graph or to
reorder/mixup the original graph. All these methods also seek to
develop methods to combat graph data irregularity and keeping
parts of original graph structure. G-Mixup [6] applies the
principles of mixup to probability matrices with individual
points representing the likelihood of an edge existing between
two nodes. These graphons then allow for the creation of
synthetic graphs that retain properties of the original graph and
the new graphon. Graph Transplant [13] seeks to sample the top
salient nodes in a graph to retain the original structure and then
append a partial K-hop subgraph using node features to predict
edge existence.

However, brain data relies on preset ROI locations for all
nodes with a fixed structure so sampling subgraphs from other
regions of the brain and combining them with other sections
becomes more complicated when considering that the node
features are the correlation matrix measures between specific
node connections. Additionally, brain graph data’s fixed nature
allows it to become more malleable to typical image
classification mixup techniques.

 Fig 1. Graph Data Construction

III. PROPOSED MODELS

A. Graph Data Construction
Preprocessed functional MRI (fMRI) ASD data is fetched

from the ABIDE dataset using the nilearn pipeline [7] for 871
subjects. Functional MRI data is obtained by measuring changes
in blood flow over time in response to some kind of stimulation.
This dataset includes time series data, multiple scans for every
patient at different points of time, but this paper does not utilize
them.

The full graph data construction process is shown in Figure
1. The MSDL atlas from nilearn was used to determine 39 ROIs
for node placement. Each node had a correlation matrix and
partial correlation matrix extracted with the partial correlation
matrix representing the top 10 neighbors for a particular node
with the top 10 neighborhoods being labeled with 1 and the
others labeled with 0. The coefficient for the correlation between
two ROIs goes from 1 to -1 with 1 indicating high correlation
and -1 indicating inverse correlation. The correlation matrix

being calculated as the average for the ROIs coefficients over a
time series.

The correlation matrix served as the node features with the
edge indexes and weights being derived from the partial
correlation matrix. ABIDE also contains graph wide information
regarding the subject but individual nodes only have
connectivity matrix information to work off of. Edge attributes
were derived from the partial correlation matrix with all values
of 1 replaced with their original correlation matrix values.

A second dataset based in measuring the response of children
from the ages of 3-12 and adults to a film for 155 subjects was
also utilized with preprocessed T1W BOLD data [10]. Clinical
data regarding gender, handedness, and age was also provided.
Subjects watched a short movie, Pixar’s Partly Cloudy, while
fMRI scans were taken. No task was given. The classification
task for the network was a binary age classification (child/adult)
prediction. Graph data was generated in the same process that
ABIDE was with 39 node features for every node. This paper
will refer to this dataset as the Movie Watching Development
dataset (MWD).

Fig 2. Edge Conv Network

B. EdgeConv Network
The full EdgeConv Network is displayed in Figure 2. In an

EdgeConv layer, edge features as defined by
𝑒"# = ℎ& 𝑥", 𝑥# with ℎ&: ℝ+×ℝ+ → ℝ+. functioning as the
MLP for the model further defined by a non-linear function
parametrized by a set of learnable parameters [8]. In this
equation, 𝑥"	 represents the embedding of node i with 	𝑥#
representing the embeddings of all of node i’s neighbors. The
neighbors also include the node itself. In this case, a mean
aggregation operation is performed for all the edge features to
get the final embedding for the node’ and its neighbor’s edges
represented by the following equation:

 𝑥"
, : 𝑚𝑒𝑎𝑛
#3 ",# ∈5

ℎ& 𝑥"||𝑥# − 𝑥" (1)

This type of method allows for the extraction of
neighborhood level features and grouping of different nodes
based on nearest neighbor processing in data construction. Edge
Conv also allows for different aggregation methods such as the
mean across the embeddings of the node and its neighbors.

For this model, three EdgeConv layer were applied with
batch normalization being applied for each layer and ReLu
applied for the first two. One embedding was created using a
global mean pool for the entire batch with a linear layer then
Softmax applied. This embedding is used to do classification for
two classes for the network.

The graph is also dynamically updated by calculating the
pairwise distance matrix for the features and taking the closest k
neighbors for every point. Different variations of k were used in
this paper’s experiments to test the level of graph construction
needed to obtain desirable results.

C. MixUp
 Remedying issues of overfitting caused by memorization in
deep learning models has been a concern to all within the field.
Issues of lack of viable data have made it difficult in the areas of
brain analysis to gain proper results and proper methods of
developing truly synthetic have yet to be standardized.

 A method proposed utilizes a vicinal distribution labeled
mixup principle during training which reduces the empirical
vicinal risk rather than reducing empirical risk [5]. This method
has been proven to increase a model’s generalization capability
without generating computational stress by creating data within
the vicinity of given data points. However, this method was
initially created for 1-D feature input vectors which doesn’t
match most Graph Network datasets that input 2-D node feature
matrices.

 Methods that have adapted mixup for Graph Networks have
more complicated implementation than what is needed for brain
connectome graph analysis as node placement is fixed in ROIs.
To sidestep this issue, this paper proposes a modified version of
mixup that applies the function across all rows for both the node
feature matrix and edge index matrix:

 𝑥 = 𝜆𝑥" + 1 − 𝜆 𝑥#		(2) where i,j = 1, … , N, 𝑖 ≠ 𝑗

 𝑒𝑖 = 𝜆𝑒𝑖" + 1 − 𝜆 𝑒𝑖# (3) where i,j = 1, … , N, 𝑖 ≠ 𝑗

 𝑦 = 𝜆𝑦" + 1 − 𝜆 𝑦# (4)

 𝑁 representing the number of rows in a 2-D, 𝑥 representing
the node feature matrix, 𝑒𝑖 for the edge index matrix, and 𝑦 as
the labels. 𝑥 , 	𝑦 , 𝑒𝚤 are post-mixup versions of their above
matrices. Thus, all rows and all columns in a 2-D matrix have
been modified.

 𝑙 = 𝜆 ⋅ 𝑐 𝑝, 𝑦I + 1 − 𝜆 ⋅ 𝑐 𝑝, 𝑦J (5)

 The mixup loss criterion used from [5] uses the predicted
value (𝑝), a defined criterion function (𝑐), and the mixup labels
from the original mixup data function with 𝑦I as the original
label and 𝑦Jas the label from the data mixed in. Using a regular
criterion function would fail to factor in the new mixed y labels
and would thus muddle the training of the network.

 Mixup as a data augmentation technique is relatively easy to
implement and further encourages the model to behave in a more
linear manner and adjust to many different scenarios rather than
just the original training data. This also helps to prevent training
accuracy and metrics from drastically increasing within a few
epochs without the same effect in the test accuracy.

Fig 3. Graph Representation Learning and Prediction

IV. RESULTS/EXPERIMENTS

Model Mixup
Development Data

Accuracy (%) Sensitivity Specificity Recall F1

TransformerConv No 0.90 0.50 1.00 0.50 0.50

GCNConv No 0.90 0.71 0.96 0.71 0.77

EdgeConv No 0.90 0.83 0.92 0.83 0.77
Yes 0.94 0.67 1.00 0.67 0.80

TABLE 1. MWD RESULTS

Model Mixup
ABIDE Data

Accuracy (%) Sensitivity Specificity Recall F1

TransformerConv No 0.63 0.63 0.62 0.68 0.63

GCNConv No 0.54 0.60 0.45 0.60 0.59

EdgeConv
No 0.58 0.67 0.47 0.67 0.64

Yes 0.68 0.85 0.48 0.92 0.85

TABLE 2. ABIDE RESULTS

A. Comparative Models
Figure 3 displays the comparative models and EdgeConv.

The results of Edge Conv are compared with those of a
Transformer Convolution Network (TransformerConv) [11] and
a Graph Convolutional Networks (GCNConv) [12]. The
TransformerConv network utilizes three attention heads across
4 different layers with every layer having batch normalization
applied. The final x representation from a global mean pool
function goes through two cycles of ReLu on a linear layer with
dropout before applying Softmax for the final output. The
GCNConv network contains 3 layers with a convolution layer
and ReLu and dropout applied.

B. Performance comparison
Starting off by focusing on all models that did not use mixup,

EdgeConv without mixup is seen to be comparable to both
GCNConv and TransformerConv accuracy wise with the
highest sensitivity for both ABIDE and MWD data. Recall is
also higher for EdgeConv without mixup regarding MWD and
EdgeConv’ s F1 is the highest for ABIDE data. This seems to
indicate that for MWD data all models perform relatively
similarly which is not as surprising given the smaller data
quantity. For ABIDE data, TransformerConv has all the highest
metrics, except in sensitivity although not by much, which
indicates that focusing on the most important nodes helps ease
overfitting absent other data augmentation techniques.

EdgeConv with mixup outperforms all models on nearly
every metric. For MWD data, EdgeConv with mixup sees a 4%
increase in accuracy over all other models with one of the
highest specificities and f1 scores. For ABIDE data, it sees a 5%
increase in accuracy compared to the second highest accuracy
model, TransformerConv, with increase in sensitivity, f1, and
especially recall. Regarding EdgeConv accuracy, MWD data
saw a similar 4% increase and ABIDE data saw a 10% increase
with mixup. All of these metrics point to mixup’s ability to
increase generalization and number of correctly identified
positive patients for models.

V. CONCLUSION
This work allows for the application of mixup on 2-D brain

graph data, taking advantage of brain data fixed node structure
and mixup’s simplistic implementation to boost a model’s
generalization ability. This was shown through an increase in
accuracy for both MWD and ABIDE data for EdgeConv that
surpassed those of other models such as TransformerConv and
GCNConv. A data augmentation technique tailored to brain
graph data will provide a simple method to creating more robust
models for further experimentation. This also leads into future
exploration into creating more learnable brain mixup techniques
that rely less on random values covering a wide breadth of
vicinity graphs and more on selection based off of what
previously had not been covered.

ACKNOWLEDGEMENT
I thank Dr. Carl Yang, Mr. Xuan Kan, Ms. Hejie Cui and Mr.
Wei Dai from Emory University for their ideas, mentorship
and technical assistance.

REFERENCES
[1] S. Ivanov, “Top applications of graph neural networks 2021,” Criteo

R&D Blog, Jan. 17, 2021. https://medium.com/criteo-engineering/top-
applications-of-graph-neural-networks-2021-c06ec82bfc18

[2] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah, “Data
augmentation for graph neural networks,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 12, pp. 11015–11023,
May 2021, doi: 10.1609/aaai.v35i12.17315.

[3] Y. Rong, W. Huang, T. Xu, and J. Huang, “DropEdge: towards deep
graph convolutional networks on node classification,” openreview.net,
Mar. 11, 2020. https://openreview.net/forum?id=Hkx1qkrKPr (accessed
Oct. 12, 2022).

[4] H. Park et al., “Learning Augmentation for GNNs With Consistency
Regularization,” IEEE Access, vol. 9, pp. 127961–127972, 2021, doi:
10.1109/ACCESS.2021.3111908.

[5] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv:1710.09412 [cs, stat], Apr. 2018,
[Online]. Available: https://arxiv.org/abs/1710.09412

[6] X. Han, Z. Jiang, N. Liu, and X. Hu, “G-Mixup: Graph Data
Augmentation for Graph Classification,” arXiv:2202.07179 [cs], Feb.

2022, Accessed: Oct. 12, 2022. [Online]. Available:
https://arxiv.org/abs/2202.07179

[7] “nilearn.datasets.fetch_abide_pcp,” Nilearn.
https://nilearn.github.io/stable/modules/generated/nilearn.datasets.fetch_
abide_pcp.html (accessed Oct. 12, 2022).

[8] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,” ACM
Transactions on Graphics, vol. 38, no. 5, pp. 1–12, Nov. 2019, doi:
10.1145/3326362.

[9] O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, “Vicinal Risk
Minimization.” Accessed: Oct. 14, 2022. [Online]. Available:
https://papers.nips.cc/paper/2000/file/ba9a56ce0a9bfa26e8ed9e10b2cc8f
46-Paper.pdf

[10] “OpenNeuro,” openneuro.org.
https://openneuro.org/datasets/ds000228/versions/1.0.0 (accessed Oct.
14)

[11] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked
label prediction: unified message passing model for semi-supervised
slassification.” Accessed: Oct. 16, 2022. [Online]. Available:
https://arxiv.org/pdf/2009.03509.pdf

[12] T. Kipf and M. Welling, “Semi-Supervised classification with graph
convolutional networks” [Online]. Available:
https://arxiv.org/pdf/1609.02907.pdf

[13] J. Park, H. Shim, and E. Yang, “Graph transplant: node saliency-guided
graph mixup with local structure preservation,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 7, pp. 7966–7974, Jun.
2022, doi: 10.1609/aaai.v36i7.207

