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Abstract
Multimodal brain networks characterize complex
connectivities among different brain regions from
both structural and functional aspects and pro-
vide a new means for mental disease analysis.
Recently, Graph Neural Networks (GNNs) have
become a de facto model for analyzing graph-
structured data. However, how to employ GNNs
to extract effective representations from brain
networks in multiple modalities remains rarely
explored. Moreover, as brain networks provide
no initial node features, how to design informa-
tive node attributes and leverage edge weights for
GNNs to learn is left unsolved. To this end, we
develop a novel multiview GNN for multimodal
brain networks. In particular, we regard each
modality as a view for brain networks and employ
contrastive learning for multimodal fusion. Then,
we propose a GNN model which takes advantage
of the message passing scheme by propagating
messages based on degree statistics and brain re-
gion connectivities. Extensive experiments on
two real-world disease datasets (HIV and Bipo-
lar) demonstrate the effectiveness of our proposed
method over state-of-the-art baselines.

1. Introduction
Mental illness is nowadays highly prevalent and has shown
to be impactful for people’s physical health. Recent years
have witnessed a growing academic interest in brain net-
work analysis, which has demonstrates its effectiveness in
mental health analysis (Su et al., 2020). In neuroscience,
brain networks are often represented in different modali-
ties from structural (e.g., Diffusion Tensor Imaging (DTI))
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and functional aspects (e.g., functional Magnetic Resonance
Imaging (fMRI)) (Zimmermann et al., 2018). These net-
worked data represent complex structures of human brain
connectivities. For example, in fMRI networks, edge con-
nections represent correlations among brain regions with
functional stimulations. Therefore, they are of paramount
research values to understanding biologically mechanisms
of brain functions. Moreover, the existing body of research
on brain network analysis suggests that different modalities
of brain networks convey complementary information to
each other and the fusion of multiple modalities could lead
to consistent improvements for brain analysis (Sun et al.,
2017; Ma et al., 2017a; Zhang et al., 2018).

Recently, Graph Neural Networks (GNNs) have emerged
as a powerful tool for understanding graph-structured data
in many domains (Kipf & Welling, 2017; Veličković et al.,
2018; Yang et al., 2021), where graph structures (i.e., ad-
jacency matrices) and node features are embedded into a
low-dimensional space for downstream machine learning.
Unlike previous shallow network embedding models that
can be regarded as a certain case of matrix factorization,
GNN is more powerful in terms of representation ability
(Xu et al., 2019; Qiu et al., 2018), which makes it suitable
for analyzing brain networks usually of high nonlinearity
(Zhang et al., 2018).

To date, there remains a paucity of studies on applying
deep GNNs in analyzing multiview brain networks and we
identify two obstacles for effectively learning embeddings
of brain regions in multimodal data. Firstly, due to the
multimodal nature of brain network data, different modali-
ties encode different biomedical semantics of brain regions.
How to learn effective node embeddings in such a multiview
setting with GNNs remains rarely explored. Secondly, un-
like other conventional graphs such as social networks, most
brain networks could be expressed in a form of weighted ad-
jacency matrix describing connections among brain regions
without initial node features. How to design informative
node attributes and corresponding edge weights for GNNs
to learn is left unsolved.

To address these aforementioned challenges, in this work,
we develop a novel multiview framework for multimodal
brain network analysis, which we refer to BrainNN for
brevity. Unlike previous work which presumes the existence
of a common underlying graph structure beneath different
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modalities, we first treat the brain networks under differ-
ent modalities as multiple views of the brain and resort to
contrastive learning for jointly embedding structural and
functional brain networks. Particularly, we ensure cross-
view consistency by imposing a contrastive objective on
node embeddings across different views. In this way, we
are able to adaptively distill discriminative knowledge from
each modality without the need of defining or learning a
common brain network structure.

In addition, due to the lack of node and edge features in
brain network analysis, we propose to derive informative
attributes from the original multimodal data. For incorporat-
ing node attributes, we take advantage of existing structural
descriptors, such as degree profiles (Cai & Wang, 2018) to
extract features for each node. To make full use of edge con-
nectivity signals, contrary to directly utilizing edge weights
for aggregating neighborhoods, we propose a general mes-
sage passing scheme for brain networks such that we prop-
erly embed edge weights into learned node representations.
Through extensive experiments on two real-world brain
disease classification datasets (HIV and Bipolar), we find
that our BrainNN employing degree features and the mes-
sage passing scheme with edge embeddings can consistently
achieve better performance across different datasets.

2. The Proposed Method: BrainNN
2.1. Preliminaries

Problem definition. We consider the problem of multiview
brain network analysis, where each brain network describes
connectivities between brain regions in multiple modalities.
Suppose we are given a datasetM = {({Gs

i ,Gf
i}, yi)}Si=1

consisting of S subjects, where Gs
i and Gf

i represent the
structural and functional modalities of the ith subject de-
scribed in brain networks respectively and yi is its corre-
sponding disease label. Each modality can be described in a
weighted graph G∗i = (V, E∗i ,W ∗

i ), where V = {vi}Ni=1 is
the node set of size N defined by region of interest (ROI)
(same across subjects), E∗i = V × V is the edge set, and
W ∗

i ∈ RN×N is the weighted adjacency matrix describing
interconnections between ROIs. The purpose of multiview
brain network analysis is to learn a low-dimensional repre-
sentation for each subject. The learned subject embeddings
can be used to facilitate disease diagnosis and treatment.

Message passing graph neural networks. GNNs are
widely used as a backbone for extracting features of graph-
structured data. For the modeling of a node vi, a GNN
involves two key components: (1) aggregating messages
from its neighborhood and (2) updating its representation
in the previous layer with the aggregated message. The two
operations can be formulated as

a
(l)
i = agg(l)

(
msg(l)

({
h

(l−1)
j

∣∣∣ vj ∈ Ni ∪ {vi}
}))

, (1)

h
(l)
i = upd(l)

(
h

(l−1)
i ,a

(l)
i

)
. (2)

For simplicity, we denote a GNN model containing L

GNN

GNN Pooling
MLP

Pooling
MLP

Global-local contrast
DTI
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Figure 1: Our proposed BrainNN composed of two stages:
graph representation learning and multimodal fusion.

stacked layers as f (L) thereafter. For a graph G, an ex-
tra readout function g is required to obtain a graph-level
embedding:

z = g
({

h
(L)
i

∣∣∣ vi ∈ V}) , (3)

where h
(L)
i = f (L)(Gi) is the node embedding for node i.

2.2. The Overall Framework

Figure 1 summarizes the overall framework of our proposed
BrainNN method. We employ contrastive learning for aggre-
gating information from multiple modalities (§2.3), where
each modality is modeled as a single view network by a
specialized message passing GNN (§2.4).

Initially, we construct node features via local statistics for
each view of brain network and feed each modality graph
into a GNN model; the resulting node-level embeddings
are aggregated using a shared multilayer perception (MLP)
model to jointly learn structural and functional embeddings.
After that, we enforce cross-view consistency to adaptively
integrate information from the two views by contrasting
local and global representations.

2.3. Multimodal Fusion across Multiple Views

We compute graph embeddings for each subject and denote
the embeddings for functional and structural views as zf

i =
g(f (L)(Gf

i)) and zs
i = g(f (L)(Gs

i)) respectively. At the
inference time, we aggregate the representations from the
two views and take the average of them zi = (zf

i + zs
i)/2

as the graph representations for downstream tasks.

After that, inspired by recent success of graph contrastive
learning (Veličković et al., 2019; Zhu et al., 2020; 2021a;b),
we employ a contrastive objective that distinguishes node
representations of one view with graph representations of
the other and vice versa:

Jcon =
1

2S

∑
Gi∈M

 1

N

∑
vi∈V

(
I(hf

i;z
s
i) + I(hs

i;z
f
i)
) . (4)
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This global-local contrasting mode encourages multi-scale
consistency of graph representations (Hassani & Khasah-
madi, 2020) and is shown to be effective in graph-oriented
end tasks. For optimization efficiency, we estimate the mu-
tual information I(X;Y ) in Eq. (4) using Jason-Shannon
Divergence (JSD) (Hjelm et al., 2019) described as

I(hi; zi) = − sp(−d(hi, zi))

− 1

N − 1

∑
vj∈V\{vi}

sp(d(hi, zj)), (5)

where sp(x) = log(1+ex) and d is a discriminator function,
which takes the inner product with a sigmoid activation.
Finally, we train the model with the unsupervised objective
Jcon along with the supervised cross-entropy loss.

2.4. Message Passing GNNs for Brain Networks

Constructing node features for modality graphs. Non-
attributed brain networks for graph classification bring chal-
lenges for applying graph neural network techniques. We
take advantages of existing local statistical measures such as
degree profiles. In particular, we study local degree profiles
(LDP) (Cai & Wang, 2018) for each brain modality, where
each feature xn of modality graph Gij is computed as

xn = [deg(n);min(Dn);max(Dn);mean(Dn); std(Dn)] ,
(6)

where Dn = {deg(m) | (n,m) ∈ Eij} describes the de-
gree statistics of node n’s one-hop neighborhood, and [·; ·]
denotes concatenation. Such computation can be done in
O(E) time, which is computational friendly.

Implementing message passing GNN for handling edge
weights. After obtained node features for each modality
graph, we feed it into a message passing GNNs, with param-
eters shared across all modalities. For notation simplicity,
we focus on one modality graph in this section and thus
omit the subscript referring to specific graphs. Since the
brain region connectivity is expressed in edge weights, we
first construct a message vector mij ∈ RD composed of
node embeddings of a node i, its neighborhood j, and edge
weights wij :

m
(l)
ij = tΘ

([
h
(l)
i ; h

(l)
j ; wij

])
, (7)

where tΘ denotes a MLP layer parameterized by Θ, and l
is the index of the current GNN layer.

Then, we aggregate messages from all neighborhoods fol-
lowed by a non-linear transformation; the node-wise propa-
gation rule can be written as:

h
(l)
i = σ

 ∑
j∈Ni∪{i}

m
(l−1)
ij

 , (8)

where σ is a non-linear activation function such as

ReLU(·) = max(0, ·).
Finally, we employ another MLP with residual connections
(He et al., 2016) for summarizing all node embeddings to
compute graph-level embeddings z ∈ RD:

z′ =
∑
i∈V

h
(k)
i , z = tΦ(z

′) + z′. (9)

3. Experiments
3.1. Experimental Protocols

Datasets. We use two real-world datasets (see details in (Ma
et al., 2017b)) to evaluate the effectiveness of our method:
Human Immunodeficiency Virus Infection (HIV) con-
tains 35 patients (positive) and 35 seronegative controls
(negative). Each modality graph is with 90 nodes and edge
weights are calculated as correlations between brain regions.
Bipolar Disorder (BP) consists of 52 bipolar subjects in
euthymia and 45 healthy controls with matched age and gen-
der. It stimulates 82 brain regions, according to Freesurfer-
generated cortical/subcortical gray matter regions. In our
experiments, we randomly use 80% of data for training,
10% for validation, and the remaining 10% for test.

Metrics. In experiments, we report the classification per-
formance in terms of Accuracy and Area Under the ROC
Curve (AUC), which are widely used for disease identifica-
tion. Larger values indicate better performance.

Baselines. We include a broad range of baseline methods
for comprehensive evaluation. For shallow embeddings
methods, our experiments include M2E (Liu et al., 2018),
MIC (Shao et al., 2015), MPCA (Lu et al., 2008), and MK-
SVM (Dyrba et al., 2015). For these shallow baselines, we
feed modality graphs as input and obtain the embeddings
for all subjects. These embeddings are then fed into logistic
regression classifiers.

We also consider the following up-to-date deep learning
models: 3D-CNN (Gupta et al., 2013), GAT (Veličković
et al., 2019), GCN (Kipf & Welling, 2017), DiffPool (Ying
et al., 2018), and MVGCN (Zhang et al., 2018). Among
them, 3D-CNN and MVGCN are designed for multiview
learning and we perform classification in an end-to-end
manner. For the other three baselines, we apply it with each
single modality and report the best performance.

3.2. Results and Analysis

The overall performance is presented in Table 1. It is ap-
parently seen that our proposed method achieves the best in
two datasets. To be specific, BrainNN outperforms previous
graph-based baselines MVGCN and DiffPool by large mar-
gins, up to 11% absolute improvements, which demonstrates
the effectiveness of multiview fusion and the applicability
of message passing GNN on brain networks. Compared to
traditional tensor-based methods, such as M2E and MPCA,
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Table 1: Comparison of different models on HIV and BP
datasets. The highest performance is highlighted in boldface
and passed significant tests with p = 0.01.

Method
HIV BP

Accuracy AUC Accuracy AUC

M2E 50.61 51.53 57.78 53.63
MIC 55.63 56.61 51.21 50.12

MPCA 67.24 66.92 56.92 56.86
MK-SVM 65.71 68.89 60.12 56.78

3D-CNN 74.31 73.53 63.33 61.62
GAT 68.58 67.31 61.31 59.93
GCN 70.16 69.94 64.44 64.24

DiffPool 71.42 71.08 62.22 62.54
MVGCN 74.29 73.75 62.22 62.64

BrainNN 77.14 79.79 73.64 67.54

Table 2: Performance of ablated models on HIV and BP
datasets. Results passed significant tests with p = 0.01.

Method
HIV BP

Accuracy AUC Accuracy AUC

V-GCN 70.00 75.83 67.14 61.17
CONCAT 66.36 72.39 67.27 61.13
BrainNN 77.14 79.79 73.64 67.54

our work achieves significantly better results, which veri-
fies the necessity of incorporating deep GNN for learning
informative graph representations. The rationale of jointly
embedding structural and functional brain networks can be
further supported by the superiority of our work compared
with deep models designed for single view such as GCN and
GAT. Moreover, we notice that 3D-CNN obtains promising
results, owing to the ability of modeling locality of input
features. However, it computes graph representations with
mere pooling layers, which fails to model the interaction
among different views. Our work, on the contrary, leverages
contrastive learning to model interaction of structural and
functional views of brain networks, leading to discriminative
representations in an adaptive manner.

3.3. Ablation Studies

We further verify the effectiveness of two key components
in our model: message passing GNN and multiview fu-
sion based on contrastive learning. Firstly, to examine the
impact of the message passing GNN, we compare it with
a vanilla Graph Convolutional Network model (V-GCN).
The V-GCN directly treats the correlation weights as the
adjacency matrix and performs weighted spectral convolu-
tion, which does not properly handle edge weights. Sec-
ondly, to validate the effectiveness of our multimodal fusion
scheme, we further compare it against a simple baseline
model named CONCAT that concatenates embeddings of
all two views without multiview fusion. For fair comparison,
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Figure 2: Visualization of embedded features H and Z
from fMRI and DTI on the BP dataset.

all other experimental configurations are kept the same as in
previous section. The results are summarized in Table 2. We
observe that on the two datasets, our BrainNN method out-
performs its two downgraded versions. It is worthy noting
that the V-GCN still achieves close-to-optimal performance,
demonstrating the effectiveness of applying deep GNNs
with multiview interaction.

3.4. Visualization

To qualitatively examine the effectiveness of our method,
we visualize the embeddings learned by our model from
clinical perspective. In Figure 2, we show the learned node
embeddings in the left panel, where the coordinate system
represents neuroanatomy and color denotes the intensity of
brain activities. It is seen from the figure that node embed-
dings from structural and functional perspectives are widely
different to each other. We also present the visualization for
graph embeddings representing the factor strengths for both
patients and health controls. We observe a relatively positive
correlation in the controls’ embeddings, while the patients
have a relatively negative correlation with the factors. It is
thus evidently necessary to properly model and combine
both views to deliver ideal clinical diagnoses.

4. Conclusion
In this work, we have proposed a novel BrainNN framework
that jointly embeds multimodal brain networks with GNNs
for mental illness diagnosis. Extensive experiments on two
real-world datasets demonstrate the effectiveness of our
proposed method. The study of applying GNNs for brain
networks remains widely open with many challenges left to
solve. For example, the current databases of small scales
greatly confine the training of deep GNN models, for which
we plan to investigate transfer learning and pre-training
techniques (Hu et al., 2020a;b) in the near future.
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