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ABSTRACT
Epilepsy is one of the most serious neurological diseases, affect-

ing 1-2% of the world’s population. The diagnosis of epilepsy de-

pends heavily on the recognition of epileptic waves, i.e., disordered
electrical brainwave activity in the patient’s brain. Existing works

have begun to employ machine learning models to detect epilep-

tic waves via cortical electroencephalogram (EEG), which refers to

brain data obtained from a noninvasive examination performed on

the patient’s scalp surface to record electrical activity in the brain.

However, the recently developed stereoelectrocorticography (SEEG)

method provides information in stereo that is more precise than

conventional EEG, and has been broadly applied in clinical practice.

Therefore, in this paper, we propose the first data-driven study to

detect epileptic waves in a real-world SEEG dataset. While offering

new opportunities, SEEG also poses several challenges. In clinical

practice, epileptic wave activities are considered to propagate be-

tween different regions in the brain. These propagation paths, also

known as the epileptogenic network, are deemed to be a key factor

in the context of epilepsy surgery. However, the question of how

to extract an exact epileptogenic network for each patient remains

an open problem in the field of neuroscience. Moreover, the nature

of epileptic waves and SEEG data inevitably leads to extremely

imbalanced labels and severe noise. To address these challenges, we

propose a novel model (BrainNet) that jointly learns the dynamic

diffusion graphs and models the brain wave diffusion patterns. In

addition, our model effectively aids in resisting label imbalance and

severe noise by employing several self-supervised learning tasks

and a hierarchical framework. By experimenting with the exten-

sive real SEEG dataset obtained from multiple patients, we find

that BrainNet outperforms several latest state-of-the-art baselines

derived from time-series analysis.
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1 INTRODUCTION

Background. Epilepsy, which is one of the most common serious

neurological diseases, is characterized by abnormal neurophysio-

logical activity, leading to epileptic seizures or abnormal behavior.

Today, in 2021, there are more than 65million epilepsy patients glob-

ally, approximately one-third ofwhom aremedication-resistant [26].

In other words, medication will not be effective for these patients,

and surgical removal of the area of the brain involved in seizures is

considered the only effective treatment.

To measure the seizure onset zone (SOZ) or so-called epilepto-
genic foci, and guide epilepsy surgery, it is necessary to record the

electrical activity of the patient’s brain. There are two main types of

such electrophysiological monitoring methods: EEG and SEEG. The

former is noninvasive, while the latter is invasive (i.e., requires elec-
trodes to be inserted into the brain), and thus contains more stereo

information. For example, when the SOZ is located in the deeper

structures of the brain (such as the hippocampus or the insula),

or when the laterality of seizures [21] is unknown, non-invasive
testing will fail to pinpoint the exact seizure focus, in which case

the SEEG approach is necessary.

Problem. To facilitate the development of epilepsy treatment,

we collect a real-world SEEG dataset, which is made up of high-

frequency and multi-channel SEEG signals obtained from multiple

epilepsy patients (each patient has a 77GB record of 53 hours on

average) in a specific first-class hospital. Based on the dataset, we

further propose to automatically detect epileptic waves. Besides,

the fact that epileptic wave activities propagate among different

brain regions in clinical practice inspires us to further study the

https://doi.org/10.1145/3534678.3539178
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Figure 1: Illustration of epileptic wave detection. (a) An elec-
trode with three channels (A1, A2, and A3) is inserted into the brain
to collect SEEG signals across two regions of a patient’s brain. (b) Our
solution is to jointly learn the process by which epileptic seizures dif-
fuse and detect epileptic waves, which are marked by yellow squares
among the SEEG signals in (a), on multiple levels.

underlying epileptogenic network [37], which characterizes the re-

lations among the brain regions involved in the production and

propagation of epileptic activities. It is deemed to be a key factor

in the context of epilepsy surgery, but how to extract an exact

epileptogenic network for each patient is still an open problem in

neuroscience [3].

By the example illustrated in Figure 1, we further introduce the

details of our problem. The top part of Figure 1(a) shows a human

brain into which an electrode with three channels has been inserted

from the upper left corner. Notably, in real clinical diagnosis, doc-

tors will insert multiple electrodes (each with multiple channels)

into the suspected epileptogenic areas of the brain, which vary

across different patients and may span multiple brain regions. Af-

ter inserting the electrode, the doctor can collect and monitor the

patient’s SEEG data; as the bottom part of Figure 1(a) shows, this

can be regarded as a contiguous multi-channel time series.

Given the SEEG data, our target is to formulate an automatic

data-driven method to pinpoint the time and location at which

epileptic waves appear (marked by yellow squares in Figure 1(a)).

It is worth mentioning that, in this work, we focus on epilepsy

detection for individual patients. More specifically, given a partic-

ular patient, we aim to train a model based on his/her historical

SEEG data, then utilize the model to identify epileptic waves in the

current SEEG data, following existing works with similar settings

on EEG data [22]. An alternative solution would involve a model

to handle all patients together. However, individual differences

in epileptogenic foci result in deep subdural electrodes being uti-

lized with different numbers and locations from person to person,

which further leads to dramatic variation in the collected signals

across patients. Before properly handling the signals of individual

patients, it is hard to directly study the possible shared patterns

and generalization of models across patients. Therefore, we focus

on patient-specific models and predictions in this work as the first

study on SEEG-based epilepsy detection.

Challenges. Compared with existing works that study epileptic

waves derived from the much simpler EEG data, there are several

unique challenges for us in fully leveraging the SEEG data, which

are caused by the nature of the data and the lack of understanding

regarding the diffusion mechanisms of brain waves.

1 Capturing the true epileptogenic network [3]. The propagation

of epileptic seizures cannot be observed directly and does not

follow any known routines. Indeed, an epileptic seizure will not

diffuse in a manner consistent with the anatomical brain struc-

ture [7], while its propagation paths may dramatically change

over time [3]. Therefore, quantifying the dynamic diffusion graph

(i.e., epileptogenic network) structure is challenging.
2 Handling imbalanced labels. SEEG often generates extremely

large amounts of data. This is partly due to its high frequency of

data acquisition (mostly ranging from 256Hz to 1024Hz). More-

over, patients are monitored with electrodes for an average of

11 days, and sometimes for up to 33 days [25]. However, the

epileptic seizure process lasts only for tens of seconds among

days of records. Consequently, the low epileptic wave rate leads

to the imbalanced label issue.

3 Handling data noise. Due to inherent problems like flaws in

electrode artifacts, mechanical noises, and the interference of

epileptic interval waves, SEEG data is severely affected by noise.

Solution. To address the above challenges, in this paper, we pro-

pose a novel epileptic wave detection model, referred to as BrainNet.
To handle the first challenge, we aim to find out the underly-

ing epileptogenic network tracking the process of epileptic wave

diffusion across time. To this end, BrainNet adopts graph neural

networks along with a structure learning algorithm in order to

both learn and quantify the epileptic wave diffusion process. More

specifically, as the duration of epileptic waves may be longer or

shorter, BrainNet learns two types of diffusion processes. Longer

epileptic waves naturally result in diffusion from one time segment

to the next, which is called cross-time diffusion, denoted by solid

black lines in Figure 1(b). Meanwhile, within the same time seg-

ments of each channel, there also exists a diffusion process that

occurs as the electric signals spread quickly. The dotted black lines

in Figure 1(b) represent the inner-time diffusion described above.

For the second challenge, the BrainNet adopts a self-supervised
learning approach to overcome extremely imbalanced labels. Specif-

ically, we propose bidirectional contrastive predictive coding (BCPC)

to pre-train the representation of every segment in each channel.

Compared with existing self-supervised algorithms, BCPC makes

BrainNet more capable of extracting bidirectional information by

taking full advantage of the sufficient (unlabeled) SEEG data.

Finally, to make the model more robust to noise, we propose

auxiliary learning tasks with a hierarchical framework. Inspired

by the diagnosis process used by doctors, which usually consid-

ers information from different levels simultaneously—including

channels (micro-level), brain regions (meso-level), and patients

(macro-level)—to make more appropriate and accurate diagnoses,

we propose to make BrainNet further predict whether a particular
brain region or patient will be epileptic at a specific time. More

specifically, a sample in the brain-region/patient level is said to

be normal if none of its corresponding channels/brain-regions are

epileptic. By adopting this approach, the input sensitivity of lower

levels will be weakened at higher levels. Intuitively, BrainNet ag-
gregates accurate information at higher levels, and in turn feeds
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it back to the lower levels, reducing the likelihood of inaccurate
information being accumulated there.

To sum up, by utilizing all technical designs discussed above,
BrainNetpossesses the ability to capture the dynamic di�usion
process and enhance the accuracy of epileptic wave detection tasks.
The main contributions can be summarized as follows:

� We are the �rst to formulate and study the epileptic wave detec-
tion problem using an automatic end-to-end data-driven method
for SEEG data.

� We proposeBrainNet to jointly learn the dynamic di�usion
graphs and model the brain wave di�usion patterns thereon
to achieve accurate epileptic wave detection under conditions of
imbalanced labels and severe noise.

� We conduct extensive experiments on a large-scale real-world
SEEG dataset involving multiple patients. Our results validate
the e�ectiveness of our model on epileptic wave detection, while
case studies show its superiority to capture the di�usion process.

2 PROBLEM DEFINITION

We take Figure 1 as an example to illustrate our studied prob-
lem. In Figure 1(a), for an individual patient, we have the set of
three brain regions1 B, represented by three colors. All the elec-
trode contacts (i.e.blue solid nodes) consist of a set of channels
C. Each channelc 2 C belongs to a unique brain region1¹cº 2 B,
where1¹�º is a function that maps a channel to its corresponding
brain region, which is derived from domain knowledge. For ex-
ample, channels� 1 and� 2 both belong to the same orange brain
region, while� 3 is located in another red region. After locating
the contactors, the machine begins to record the signals of every
channel so as to collect the SEEG data�shown at the bottom of
Figure 1(a)�as a multivariate time series) = f - 8g

j) j
8=1 2 Rj) j� j Cj,

where- 8 = fG8•cgc2C 2 RjCj represents a vector of the channel

signals belonging to time point8. Moreover,. = f . 8g
j) j
8=1 denotes

multivariate labels, where. 8 = f~8•cgc2C are the labels of every
channel at the8-th time point. Here,~8•c 2 f 0•1g indicates whether
an epileptic seizure is occurring (i.e.~8•c = 1) or not (i.e.~8•c = 0).
The positive sample ratio in practice is pretty low (around0”003).

In line with existing works on time-series analysis [2, 24, 31],
we use a sliding window with length: and stride; to divide the
raw time-series) into smaller segments( = f ( Cgj( j

C=1 where j( j =
b¹j) j � : º•;c ¸ 1 is the number of segments. The annotation( C=
fBC•cgc2C 2 RjCj� : represents the segment withjCj channels and
BC•c = fG; �¹ C� 1º¸ 8•cg:

8=1 2 R: is theC-th time segment of one chan-
nel c. Using the same division strategy, we can also divide the
labels. into small segments. ( = f . (

C gj( j
C=1. If one segment in-

cludes a seizure point, we consider it to be a seizure segment;i.e.,
~(

C•c = max:8=1f~; �¹ C� 1º¸ 8•cg. By means of basic time-series data seg-
mentation, we formally de�ne the studied problem as follows:

Definition 1 (Epileptic Wave Detection). Given the historic
segment set̂( and corresponding label set. (̂ of an individual patient,

1We de�ne brain regions according to the automated anatomical labeling (AAL) [35],
which is a digital atlas of the human brain and de�nes 116 di�erent regions in total.

we aim to predict the labels. ( of the future segment set( :

%¹~(
C•cj(• (̂• . (̂ º• C= 1• ” ” ” •j( j• c 2 C•

where the target is the probability of an epileptic state occurring in
theC-th segment of channelc in the future segment set.

We emphasize here that our problem is de�ned on an individual
patient. A similar problem has been de�ned in [33]; however, their
results were all based on EEG data, which are much simpler than
SEEG data due to limited tracking of deep brain activities. To the
best of our knowledge, we are the �rst to formally propose and
analyze the epileptic detection task on SEEG data. We summarize
important notations in Appendix A.1.

3 PROPOSED MODEL

3.1 General Description
In real-world scenarios, doctors diagnose epilepsy patients step
by step: whether the patient su�ers from seizures, which brain
regions are suspected epileptic areas, and the particular location
in the brain that is directly causing the seizures (which might be
surgically removed). Inspired by this, we propose a novel framework
BrainNet, which employs a hierarchical structure to jointly model
epileptic waves and their di�usion process in three di�erent levels,
ranging from high to low: the patient, the brain-region, and the
channel levels (with each channel corresponding to a particular
location in the brain). While the problem under study focuses on the
channel level, we �nd that higher levels provide a macroscopic view,
which is helpful in capturing epileptic waves more precisely and
improves the model's robustness to handle severe noise in SEEG
data. Figure 1(b) illustrates the hierarchical structure ofBrainNet.

Orthogonal to the three levels,BrainNetconsists of three major
components:pre-trainingfor input SEEG data,graph di�usionover
time and apredictionmodule. We begin from the channel level
to explain how these components work together. Given the mas-
sive SEEG data, with low epileptic wave rate, we �rst pre-train the
representation of every segment to fully capture and leverage the
patterns of normal brain waves by performing a self-supervised
learning task (Section 3.2). To capture the dependency between
each segment and the propagation of brain waves ignored by the
pre-training component, we design thegraph di�usioncomponent.
Speci�cally, with the pre-trained representation taken as input, the
graph di�usioncomponent incorporates a graph neural network
along with a structure learning algorithm to explore how brain
waves di�use among channels (or brain regions in the higher level),
and encodes these di�usion patterns into the segment representa-
tion (Section 3.3). The obtained representation then can be directly
piped to a classi�er forprediction. Similar procedures are followed
at the brain-region and patient levels, where we use an aggregation
strategy to obtain the brain-region/patient level representations
from the channel/brain-region level (Section 3.4). In summary, each
component of the model is designed to capture every segment's
own characteristics and its property of dynamic di�usion on the
three di�erent levels. In the remainder of this section, we introduce
the details of each component.
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Figure 2: Schematic diagram of BCPC: the left represents the
pretext task; the right is the corresponding mask matrix.

3.2 Model Pre-training

Within the massive amount of SEEG records obtained from a pa-
tient lasting for days, there are often only seconds of epileptic waves.
To handle this issue and fully leverage the massive (unlabeled) data,
we propose a self-supervised learning (SSL) algorithm, Bidirec-
tional Contrastive Predictive Coding (BCPC), for pre-training the
representation of SEEG data.

For a self-supervised algorithm, the key to learning discrimina-
tive representations is building an e�ectivepretext task[18]. By
following Contrastive Predictive Coding (CPC) [27], the classical
SSL model for time series, we set the pretext task as to predict the
%local features obtained from the encoder on the head and tail
of the segment, with global contextual features acquired from the
autoregression model based on the local features from the middle
part. Di�erent from CPC, we believe a bidirectional model will
be more e�ective by enabling the contextual features to have the
semantic information from both directions in the time dimension,
which has also been illustrated in existing works such as BERT [11]
and ELMo [28]. Therefore, we design our pre-training model to
predict the pretexts in both directions in a skip-gram fashion.

Speci�cally, we use a pre-de�ned multi-layer CNNq\ 1 to embed
the raw SEEG signals aslocal featuresq\ 1 ¹GCº. In order to ensure
the model's ability to extract bidirectional information, we adopt a
Transformer [36] k \ 2 with a designed mask matrix as the autore-
gression model to obtain theglobal contextual featuresz. As Figure 2
shows, we divide a sequence into two equal half sub-sequences: the
left-hand one is used to encode reverse direction information, while
the right-hand one is for the forward direction. We set the center of
the sequence as0 in the time coordinates, and assign positive (neg-
ative) subscripts to elements in the forward (backward) sequence.
With this de�nition, the C-th row in the mask matrix indicates the
observable local features when constructing the global contextual
featuresI C, i.e., zC = k \ 2 ¹q\ 1 ¹GCº• ” ” ” • q\ 1 ¹G� Cºº. After that, based
on the InfoNCE loss, we letzCpredict the unobserved local features
that is ?-step away from the global context,i.e., q\ 1 ¹GÇ sgn¹Cº �?º.
Formally, we de�ne our contrastive loss at timeCas

L C= �
1
%

%Õ

?=1

log

2
6
6
6
6
6
4

Score?
�
q\ 1 ¹GÇ sgn¹Cº �?º•zC

�

Í
n2NC Score?

�
q\ 1 ¹nº•zC

�

3
7
7
7
7
7
5

• (1)

whereNCdenotes the random noise subset of the negative samples
plus one positive sample, whilesgn¹�º is the signed function. A
bilinear classi�er is utilized for prediction.

3.3 Graph Di�usion Learning

Although we have obtained the representation of every seg-
ment, interactions between channels and the underlying di�usion
patterns have been ignored. We further propose agraph di�usion
component to explicitly model the di�usion process in the human
brain. More speci�cally, we adopt the approach of alternating be-
tween graph structure learning and brain wave di�usion to achieve
the target, in an end-to-end data-driven fashion.

Graph structure learning. Overall, the challenge for modeling
graph di�usion is that we do not know the underlying correlation
and di�usion paths among the channels. We therefore propose
to learn a graph structure where all the channels are the nodes.
The key to tackling this problem is how to quantify the impact
from one channel to another. Inspired by the phenomenon that
in the brain's electrical activities, there universally existtraveling
waves[6], which keep some characteristics such as shape and fre-
quency during the propagation across di�erent channels, we aim
to propose our structure learning algorithm based on it.

Under the assumption that similar channels are more likely to
carry the sametraveling wavesthat propagate over time, we use the
cosinefunction as our metric to measure the correlation between
pairs of channels. We leave the exploration of other similarity func-
tions that might be more appropriate for time series data as future
work. Considering the asymmetric time delays of the traveling
waves, we need to distinguish the direction of correlation. There-
fore, we use a pair of source and target learnable weight parameters
] 1 and] 2 to identify important features before the similarity com-
putation. Formally, we obtain the score matrixA 0 between every
node pair from the cartesian product of source and target node sets
v1 � v2 with node featuresh1 andh2 as follows:

A 0¹8• 9º = cos¹] 1 � h1¹8º•] 2 � h2¹9ºº• (2)

where82 v1, 92 v2 and� denotes the Hadamard product. Notice
that, A 0 is very likely to represent a dense graph. To maintain
the sparsity of graph structure that works of neuroscience sug-
gest [1, 38], and remove insigni�cant and spurious connections
caused by low frequency �uctuation or physiological noises, we
�lter unnecessary edges by using a threshold-based �lter function
� \ ¹�º with a tunable hyper-parameter\ as follows:

� \ ¹Gº =
� G• G� \ ;

0• GŸ \ ”
(3)

Finally, the graph structureA¹ 8• 9º = � \ ¹A 0¹8• 9ºº is obtained.

Brain wave di�usion. The constructed graphA represents the
relative correlation between channels. The greater the edge weight,
the more possible di�usion will occur. We aim to trace the di�u-
sion along the constructed graph to enhance the representation of
the traveling waves. During seizures, more rapid and signi�cant
propagation of spike-and-wave discharges will appear [29], which
implies more distinguishable representations after propagation. We
therefore adopt GNNs to model the brain wave di�usion process
due to their natural message-passing ability on a graph. For sim-
plicity and clear performance attribution, we use the standard GCN
model in this work and take the one-layer directed GCN [39] as
an example to describe the process. Speci�cally, given the graph
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Figure 3: Architecture of BrainNet at the channel level. The �rst part represents the process of obtaining segment representation r C
using the pre-trained BCPC. The second part describes the cross-time di�usion process from C� 1 to C, in which the cross-time di�usion graph
is �rst generated by the cross-time graph structure learning sub-module, and then a GNN is utilized on the learned graph. The third part
corresponds to the inner-time di�usion process, which is based on a mechanism similar to the cross-time process. The outputs of the part will
be utilized in the cross-time di�usion process of the next time step. The fourth part takes the input of the iteratively di�used representation
h8=

C and combines it with the original representation r C to predict whether an epileptic seizure occurs at time C.

G = ¹¹v1•v2º•A •¹h1•h2ºº, we obtain the representation of the
target node92 v2 after di�usion as follows:

h0
2¹9º = f

�
h2¹9º ¸

Í
82v1 A¹ 8• 9º � h1¹8º

1 ¸
Í

82v1 A¹ 8• 9º
�

�
• (4)

where� is the learnable linear transformation matrix for directed
GCN andf ¹�º denotes the ReLU activation function.

Putting it all together. Owing to the epileptic waves lasting
longer or shorter,BrainNetlearns two types of di�usion processes.
Concretely,cross-time di�usionnaturally models the propagation
of longer epileptic waves between two consecutive time segments.
Meanwhile, fast signal spreading within the same time segments
of each channel are captured byinner-time di�usion. Based on the
structure learning and brain wave di�usion process, we formu-
late (2)-(4) as a functionF] 1•] 2•� ¹v1•v2•h1•h2• \ º. We will then
use the notation to introduce the graph di�usion component in-
volving the two types of di�usion.

Graph di�usion component executes the two di�usion steps in
the order of cross-time followed by inner-time. Given the represen-
tations obtained from the (C� 1)-th inner-time di�usion process
hin

C� 1, we derive the cross-time di�usion at theC-th time segment:

hcr
C = F] cr

1 •] cr
2 •� cr ¹CC� 1•CC•hin

C� 1•rC• \ crº• (5)

where both the source and target node sets consist of all channels,
i.e., CC = C for C = 1• ” ” ” •j( j. Here we use the subscript only
to emphasize the time index. Essentially, the cross-time di�usion
models the impact from the representation of last segments (hin

C� 1)
to that of current segments (rC), which is obtained from Section 3.2.

Following the cross-time di�usion at theC-th time segment, with
a slight di�erence in the formula, the inner-time process traces the
correlations among the representationhcr

C of segments within the
same time:

hin
C = F] in

1 •] in
2 •� in ¹CC•CC•hcr

C•hcr
C• \ inº” (6)

The output representationhin
C obtained after inner-time di�usion

will then be involved in the next cross-time di�usion and, eventually,
to the prediction stage. It is worth mentioning that the �rst cross-
time di�usion has no historical representations of previous time
segments. To handle this, we de�ne a virtual node setv0 and virtual
representationh0 to construct an empty graph and di�use on it.

As shown above, Eq.(5) and Eq.(6) separately models the two
di�usion patterns, and the two steps are alternately connected.
Until now, we have acquired the representations after the graph
di�usion component for further classi�cation. Moreover, we also
process the segments in the reverse time direction independently
to obtain the reverse representations after inner-time di�usionhin

� C
at theC-th time segment.

3.4 Hierarchical Predictions

Given the representations obtained from the graph di�usion
component, we concatenatehin

C , hin
� CandrCtogether so as to obtain

the predicted probability of seizureŝ~C through a discriminator�
that implemented by a two-layer MLP. The objective function for
epileptic wave detection of the channel is then de�ned as the binary
cross-entropy:

L ch = �
j( jÕ

C=1

Õ

c2C

h
~(

C•c log~̂C•c ¸ ¹ 1 � ~(
C•cº log¹1 � ~̂C•cº

i
” (7)

However, the di�usion process for the channel level alone has
limited horizons and lacks a more macroscopic perception. As Sec-
tion 3.1 inspires, the synthesized information of the channel, brain-
region, and patient level will be considered simultaneously to fa-
cilitate more accurate diagnoses. We describe the hierarchical task
design combining these three levels in more details below.

Hierarchical label construction. The labels are originally sit-
uated at the channel level. Following the reverse logic order of
doctor's diagnosis, we mark a brain region as epileptic if at least
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one of the channels in it is epileptic. Similarly, the patient is re-
garded as being in a seizure state if at least one brain region is
abnormal. More formally, given theC-th segment labels with all
channels~(

C (see Section 2), we �rst divide the channels into di�er-
ent brain regions through the mapping1¹�º. Then for each brain
regionb 2 B, we assign the segment label as follows:

~brain
C•b = max

c:1¹cº=b
~(

C•c” (8)

In a similar fashion, we can also construct the patient-level's seg-
ment labels based on labels of brain regions:

~patient
C = max

b2B
~brain

C•b ” (9)

High-level representation learning. We aggregate representa-
tions from the lower levels to obtain representations in the higher
levels. While there are many available choices for permutation-
invariant pooling, we adopt max pooling to aggregate the represen-
tations, because this approach is more aligned with the hierarchical
label construction process and we need the features that contribute
most to the epileptic state in the lower levels. Formally, taking
the brain region representationsr brain as an example, we use the
element-wise max-pooling method as follows:

r brain
C•b ¹8º = max

2:1¹2º=b
rC•2¹8º• 8= 1• ” ” ” •3• (10)

whereb 2 B and3 denotes the dimension of the representations.
After the pooling operation, the graph di�usion component is

implemented on the high-level representations to obtain the re-
spective objectives,i.e., L br andL pa, each of which is de�ned as
the binary cross-entropy similar to Eq.(7). Considering that the
completely independent parameters cannot guarantee a consistent
optimization direction, we therefore let the three levels share the
same parameter sets in the graph di�usion component and the
discriminator� in order to align their representation spaces.

Finally, we jointly optimize the three tasks in di�erent levels.
With the guidance of labeled data, we optimize the proposed model
via back propagation and learn the representation spaces for epilep-
tic wave detection. Through the hierarchical task framework,Brain-
Net is expected to aggregate accurate information at higher levels,
and in turn feed it back to the lower levels, resisting the data noise
and improving the model performance.

4 EXPERIMENTS

4.1 Dataset

Data collection. The SEEG dataset used in our experiment is
provided by a �rst-class hospital. The dataset statistics is summa-
rized in Table 4 (Appendix A.2). More speci�cally, for a patient
su�ering from epilepsy,4 to 10invasive electrodes with52to 126
channels are used for recording256Hz to 1024Hz SEEG signals;
these �gures vary from patient to patient. Notably, as SEEG signals
are collected with high-frequency across multiple channels, our
dataset is massive. In total, we have collected526hours of SEEG
signals with769GB. Although each prediction is patient-speci�c, to
validate the generalizability and stability of our model, we repeat

all experiments on multiple patients. Based on our dataset, two pro-
fessional neurosurgeons helped us to label the epileptic waves. We
regard all time points within an epileptic wave as positive samples
and the remainder as negative ones. The positive sample ratio of
a single patient in our dataset is around0.003on average, which
is extremely imbalanced. The dataset will be released after further
cleansing and scrutinization.

Preprocessing. In order to conduct the self-supervised learning
task (Section 3.2), for each patient, we randomly sample 10000 nor-
mal segments with a window length of 1 second. Ninety percent
of the sampled segments are then used for training, with the re-
mainder used for validation. As for the epileptic wave detection
task, for each patient, we �rst obtain 13300 segments to train our
model (85%for training and 15%for validation). For the testing, to
explore the performance of di�erent models under datasets with
di�erent positive sample ratios, we sample three test sets, each of
which includes 1140, 9690 and 95190 segments for each patient, with
positive-negative sample ratio of1:5, 1:50and1:500respectively.

4.2 Experimental Setup
First, we train a model for each patient independently and evalu-
ate the performance. Then we repeat the experiments on all pa-
tients and obtain the average results. Owing to di�erent numbers
of recording channels in di�erent brain regions for di�erent pa-
tients, generalization between patients is di�cult, and we will leave
this issue as future work. Therefore, we only conduct experiments
on a single patient. Considering the advantage conferred by the
hierarchical task framework, we validate the e�ectiveness of our
proposedBrainNetat both the channel and patient levels. As for
the baselines, to the best of our knowledge, no existing model can
handle these two levels of tasks at the same time. Therefore, for
each task, we adopt task-speci�c baselines. Speci�cally, for the
channel-level epileptic wave detection task, we compareBrainNet
with several univariate time series classi�cation models including
TSF [10], STSF [4], MiniRocket [9], WEASEL [32], LSTM-FCN [19]
and TS-TCC [12]. For each baseline, we train an independent model
for every single channel and obtain the average results on all chan-
nels for one patient. As for thepatient-level epileptic wave detection
task, we use the following multivariate time series classi�cation
models as baselines: EEGNet [23], TapNet [40], MLSTM-FCN [20]
and NS [15]. We provide details of these baselines, the evaluation
metrics and the hyperparameter analysis in the Appendix. These
baselines are designed to deal with raw time series data rather than
representation space, so we do not use representations pre-trained
by BCPC as input to these models.

4.3 Experimental Results
The average performance over all patients of di�erent methods are
presented in Table 1. Overall,BrainNetoutperforms all baselines
on every evaluation indicator in both channel and patient levels.

Results in channel-level. In the channel-level task,BrainNet
improves12.31%, 36.66%, 142.03%in terms of� 2 on the test datasets
with positive-negative sample ratio of 1:5, 1:50 and 1:500 respec-
tively. In particular, as the labels become more and more imbalanced,
the performance of baselines drops rapidly, whileBrainNetkeeps a
relatively much better performance than baselines. The increasing
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Table 1: The average performance of epileptic wave detection tasks at the channel and patient levels. Test datasets with di�erent
positive-negative sample ratios are used for evaluation.

1 : 5 1 : 50 1 : 500

Models

Ratio

Pre. Rec. � 1 � 2 AUC Pre. Rec. � 1 � 2 AUC Pre. Rec. � 1 � 2 AUC

Channel
Level

TSF 51.22 45.33 44.02 44.16 83.4716.99 46.62 21.92 29.71 85.002.42 36.52 3.96 7.52 79.66
STSF 53.51 57.65 51.79 54.26 86.7518.21 56.98 24.69 34.48 87.802.61 49.73 4.63 9.22 84.07
MiniRocket 55.68 56.84 53.55 54.84 87.0721.82 55.30 28.12 36.85 87.474.02 48.93 6.83 12.42 84.10
WEASEL 50.38 43.92 43.84 43.24 80.9317.91 43.61 22.44 29.11 82.212.79 36.83 4.84 9.05 77.50
LSTM-FCN 36.32 33.85 30.35 30.99 73.4110.73 35.64 13.91 19.65 75.681.68 30.12 2.79 5.38 70.88
TS-TCC 56.20 53.48 50.81 51.58 85.5721.60 52.59 26.87 34.79 86.333.93 46.63 6.40 11.41 82.49

BrainNet 68.19 62.71 61.90 61.59 95.2242.74 58.21 45.29 50.36 94.8016.87 51.69 21.88 30.06 92.19

Patient
Level

EEGNet 55.24 64.62 57.37 60.74 84.8113.20 64.02 21.07 33.56 83.321.38 54.73 2.66 6.04 78.25
TapNet 71.48 57.93 63.37 59.88 91.7330.55 61.89 38.33 47.56 90.15 OOM
MLSTM-FCN 68.68 70.96 66.77 68.70 89.6028.00 73.32 34.38 46.14 90.694.39 62.25 7.43 13.47 85.50
NS 57.68 54.99 55.80 55.19 80.7614.70 54.13 22.52 33.70 80.171.67 44.88 3.20 7.06 73.24

BrainNet 79.61 79.08 76.69 76.87 94.9240.31 80.53 49.37 60.30 93.8612.36 72.58 18.57 28.85 91.93

ratio of performance improvement implies our model has the ability
to handle more imbalanced data, which is more aligned with the
practical clinical scenarios. Compared with univariate baselines,
BrainNettakes the advantage of learning how the epileptic waves
di�use across channels. For example, two channels A1 and A2 have
a low correlation in the normal state,i.e., the di�usion of the nor-
mal brain waves between them is very weak. However, during the
seizures, their correlation increases signi�cantly, which is re�ected
in the larger edge weight in the di�usion graph learned by our
model. WhenBrainNetdetermines that A1 contains seizures, it can
further infer the epileptic status of A2 with more certainty through
the di�usion process along with the learned graph structure. This
makes the prediction result of A2 more reliable compared with the
situation only considering A2 alone.

Results in patient-level. At the patient level,BrainNetalso im-
proves the performance by50.95%in terms of� 2 in average on the
three test datasets. The results show the superiority of our hier-
archical task design to make more accurate predictions through
utilizing more re�ned information at lower levels. In more detail,
BrainNetcan o�er some evidence of the speci�c local (channel-
and brain-region-level) information for the global system (patient),
which bene�ts the detection task in patient-level. For example,
being aware of which particular brain region has epileptic waves in-
creases the model's con�dence when inferring whether the patient
is su�ering from epilepsy.

4.4 Ablation Study
In this section, we conduct ablation experiments to verify the e�ec-
tiveness of each major component in our model. More speci�cally,
we remove each of the following components from our model to
see how it in�uences the performance respectively: pre-training
(BrainNet-BCPC), inner-time di�usion step (BrainNet-Inner), cross-
time di�usion step (BrainNet-Cross), hierarchical task framework
(BrainNet-Multi) and graph di�usion component (BrainNet-graph).

Table 2: Results of ablation study.

Models
Metrics

Pre. Rec. � 1 � 2 AUC

Channel
Task

BrainNet-BCPC 3.86 33.84 5.26 8.42 80.12
BrainNet-Graph 3.26 20.15 4.00 6.07 71.61
BrainNet-Inner 11.43 38.58 13.76 17.99 91.14
BrainNet-Cross 4.78 41.40 7.56 12.81 85.05
BrainNet-Multi 11.80 44.19 14.70 19.68 88.81

BrainNet 16.87 51.69 21.88 30.06 92.19

Patient
Task

BrainNet-BCPC 1.22 49.84 2.32 5.09 81.71
BrainNet-Inner 5.27 62.24 9.20 17.08 88.12
BrainNet-Cross 3.60 56.32 6.54 13.08 86.79

BrainNet 12.36 72.58 18.57 28.85 91.93

We report the evaluation results of the ablation experiments on
the test dataset with 1:500 positive-negative sample ratio in Table 2.
It can be observed thatBrainNetachieves the best performance to
all ablated model versions in all metrics, which demonstrates the
e�ectiveness of each component in our model design. ForBrain-
Net-BCPC, the striking drop in performance indicates the powerful
representation ability of BCPC. Comparison withBrainNet-Graph,
which obtains the representations from BCPC and feeds them into
MLP directly, reveals that our model achieves superior performance
(improves more than390%in terms of� 2). It suggests the signi�-
cance of modeling the di�usion process.

4.5 Case Study
We at last present a case study to illustrate how cross di�usion
works. As shown in Figure 4, 10 contiguous time segments are pre-
sented with a corresponding learned cross di�usion graph structure.
We can see that at time1.5s epileptic waves appear in two brain
regions for the �rst time, and then di�use to other brain regions.
The edge weights are lower in the normal state, while edges with
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Figure 4: A case of cross-time di�usion. The horizontal direction
is arranged in chronological order with 10 contiguous segments at
intervals of 0.5s, while the 7 di�erent brain regions in patient P-
4 are expanded in the vertical direction. The black nodes denote
the normal state of the corresponding brain regions predicted by
BrainNet , and red ones indicate the predicted epileptic brain regions.

high weights are widely observed when epileptic waves appear in
multiple brain regions. This phenomenon is consistent with some
domain knowledge in the �eld of neuroscience. More speci�cally,
dramatic changes of brain connectivity in SEEG can be tracked
during seizures [3]. During normal status, most brain regions have
relatively weak connections. When a seizure occurs, brain regions
gradually form a resonance, which means that strong connections
between brain regions will be observed. This phenomenon increases
the credibility of our epilepsy di�usion graph. Moreover, if a seizure
occurs in the two brain regions as �rst time predicted by our model,
there is a higher probability that SOZ will be located in these two
brain regions, which can assist the doctors with diagnosis in clinical
practice.

4.6 Online System

We have deployedBrainNetinto an online system, where doctors
could upload the SEEG data of patients. ThenBrainNetwill detect
the epileptic waves from the data and present the results in the
visualization panel. Therefore, doctors can review the predicted
epileptic waves very quickly to obtain the basic seizure patterns of
patients. This will save much time for doctors to develop further
treatment plans.

Figure 5 shows the screenshot of the system interface. The top
part of Figure 5 is the pro�le page ofpatient overview. We show the
overview of a 12-hour patient �le after being reviewed by doctors.
Each square with di�erent colors denotes a 1-minute data segment.
The gray squares¹ º denote that no epileptic waves exist, while the
green ones¹ º, the blue ones¹ º and the red ones¹ º represent
correct, wrong and missing predictions of our model respectively.
Doctors can see the detailed SEEG data that may contain a seizure
onset predicted by our model by clicking one square. The bottom
part of Figure 5 shows the prediction results of epileptic wave
detection of the clicked square. The top toolbar is used to change
the presented time period. The data operation panel and epileptic
wave events can be found on the right. In the center of the page,
the purple part represents the real epileptic waves labels, if any,
o�ered by doctors and the yellow part is our model's prediction. As
shown in the �gure, the predictions of our model match the actual
seizures well.

Figure 5: Demonstration of the online system.

5 RELATED WORK

Epilepsy is a disorder of the brain that can be detected using
SEEG signals. Features of the SEEG are patient-speci�c in nature
and vary largely from one person to another. Much work has been
conducted over the past few decades in an attempt to design an
automated system that can analyze and detect seizures and predict
them before their occurrence, so that required measures can be
taken to record them. Numerous works have been conducted by
researchers to understand epilepsy and the characteristics of brain
activity that accompanies an epilepsy attack so as to detect and
predict the onset of the seizure. The earliest of these studies can
be traced back to a 1982 work byGotman[17], who developed
patient non-speci�c detectors. Seizures consist of various kinds of
wave-forms, such as spikes, sharp waves, sleep spindles, and peri-
ods [13]. Accurate patient-speci�c detectors were designed using
SVM classi�ers in [14]. Sensitivity and false detection rate were
used as the standard for measuring performance by researchers
in [34]. There are limitations in automatically detecting and pre-
dicting seizures [16].

Using traditional machine learning methods to detect epileptic
waves requires feature engineering, which in turn requires large
amounts of domain knowledge and is also time-consuming. As
an end-to-end method, deep learning is widely employed to per-
form this task.Roy et al.combine a one-dimensional convolutional
layer and Gated Recurrent Unit (GRU) to perform epileptic wave
detection [30]. Hisham Daoud et al.design a deep convolutional
autoencoder architecture that pre-trains the model in an unsuper-
vised manner. After pre-training, the trained encoder is connected
to a Bidirectional Long Short-Term Memory (Bi-LSTM) Network
for classi�cation [5]. Lawhern et al.propose a model named EEG-
Net, which is composed of two-dimensional convolution layers and
pooling layers and was designed for EEG-based brain-computer
interfaces; it can also be used to perform epileptic wave detection
based on EEG [23].

6 CONCLUSION
In this paper, we proposed a novel model,BrainNet, to learn the
di�usion graph via a hierarchical framework for epileptic wave
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