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Functional brain networks illustrate the dynamic connec-
tivity patterns between anatomical regions of interest (ROIs)
for different cognitive states and different responses to disease
[1]. The study of functional brain networks provides insights
into the underlying mechanisms of human consciousness and
the neural bases of various neurological and psychiatric disor-
ders such as autism, ADHD, and depression [2]. However, ex-
isting tools often extract a single static graph structure based
on correlations among full BOLD signals, which ignores the
dynamic changes of functional connectivity [3, 4].

1. ABSTRACT

Functional brain networks represent dynamic and complex
interactions among anatomical regions of interest (ROIs),
providing crucial clinical insights for neural pattern discovery
and disorder diagnosis. In recent years, graph neural networks
(GNNs) have proven immense success in analyzing structured
network data. However, due to the high complexity of data
acquisition, resulting in limited training resources of neu-
roimaging data, GNNs, like all deep learning models, suffer
from overfitting. Moreover, their capability to capture useful
neural patterns for downstream prediction is also adversely
affected. To address such challenge, this study proposes
BrainSTEAM, an integrated framework featuring a spatio-
temporal module that consists of an EdgeConv GNN model,
an autoencoder network, and a Mixup strategy. In particular,
the spatio-temporal module aims to dynamically segment the
time series signals of the ROI features for each subject into
chunked sequences. We leverage each sequence to construct
correlation networks, thereby increasing the training data.
Additionally, we employ the EdgeConv GNN to capture ROI
connectivity structures, an autoencoder for data denoising,
and mixup for enhancing model training through linear data
augmentation. We evaluate our framework on two real-world
neuroimaging datasets, ABIDE for Autism prediction and
HCP for gender prediction. Extensive experiments demon-
strate the superiority and robustness of BrainSTEAM when
compared to a variety of existing models, showcasing the
strong potential of our proposed mechanisms in generalizing
to other studies for connectome-based fMRI analysis.

Method ABIDE Method HCP

Accuracy AUC Precision Recall Accuracy AUC Precision Recall

MAGE 75.86 83.14 71.53 79.24 ST-GCN 83.7 - - -
SVM+MTFS 76.7±2.7 81±0.31 72.5±3.2 76.7±2.7 LTSM 81.7 - - -
MISO-DNN 77.73±4.26 - 76.73±4.11 77.16±3.72 GCN 83.98 - 84.59 87.78

e-STAGIN(Sch 75.81±1.70 81.12±0.30 78.03±2.34 79.06±0.89 GC-LSTM 81.50 - - -
MAGIN 78.12±1.91 85.72±0.2 78.37±2.11 79.55±1.62 STAGIN-SERO 88.20±1.33 92.96 ±1.87 - -
IMAGIN 79.25±2.33 86.44±0.24 81.03±3.47 79.06±0.89 DECENNT 86.00 93.6 87.2 88.6

BrainSTEAM 87.5±0.99 89.23±0.88 82.24±2.48 96.11±2.47 BrainSTEAM 91.41±0.02 93.67±0.01 100±0.00 78.78±0.04

Table 1. Overall performance (%) comparison on two
datasets. Results with - were not provided in the original
work.

Method ABIDE Method HCP

Accuracy AUC Precision Recall Accuracy AUC Precision Recall

BrainSTEAM 87.5±0.99 89.23±0.88 82.24±2.48 96.11±2.47 BrainSTEAM 91.41±0.02 93.67±0.01 100±0.00 78.78±0.04

BrainEAM 62.86±0.87 62.36±0.78 67.23±0.09 63.95±1.70 BrainEAM 77.20±1.35 80.15±2.27 87.43±4.49 66.59±5.82

BrainEM 63.66±1.45 62.50±1.66 68.09±2.14 71.24±1.69 BrainEM 74.42±0.01 74.48±0.01 77.11±0.01 73.79±0.01

BrainE 59.43±1.48 59.24±1.64 60.22±0.61 63.98±1.34 BrainE 67.85±0.01 68.01±0.01 68.97±0.01 70.46±0.02

Table 2. The ablation study with different model variants:
BrainSTEAM is the full version with all components.

2. RESULTS

The overall prediction results presented in Table 1 show that
BrainSTEAM outperformed the baseline model MAGE by
9.38% on the ABIDE dataset, and achieves 7.71% improve-
ments over ST-GCN on the HCP dataset.

We further investigate the influence of each proposed
component by removing each at a time. The results are
shown in Table 2.
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