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Functional brain networks represent dynamic and complex interactions among anatomical
regions of interest (ROIs), providing crucial clinical insights for neural pattern discovery
and disorder diagnosis. In recent years, graph neural networks (GNNs) have proven im-
mense success and effectiveness in analyzing structured network data. However, due to the
high complexity of data acquisition, resulting in limited training resources of neuroimaging
data, GNNs, like all deep learning models, suffer from overfitting. Moreover, their capability
to capture useful neural patterns for downstream prediction is also adversely affected. To
address such challenge, this study proposes BrainSTEAM, an integrated framework featur-
ing a spatio-temporal module that consists of an EdgeConv GNN model, an autoencoder
network, and a Mixup strategy. In particular, the spatio-temporal module aims to dynam-
ically segment the time series signals of the ROI features for each subject into chunked
sequences. We leverage each sequence to construct correlation networks, thereby increasing
the training data. Additionally, we employ the EdgeConv GNN to capture ROI connectiv-
ity structures, an autoencoder for data denoising, and mixup for enhancing model training
through linear data augmentation. We evaluate our framework on two real-world neuroimag-
ing datasets, ABIDE for Autism prediction and HCP for gender prediction. Extensive ex-
periments demonstrate the superiority and robustness of BrainSTEAM when compared to
a variety of existing models, showcasing the strong potential of our proposed mechanisms
in generalizing to other studies for connectome-based fMRI analysis.
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1. Introduction

Functional brain networks illustrate the dynamic connectivity patterns between anatomical
regions of interest (ROIs) for different cognitive states and different responses to disease or in-
jury.1 The study of functional brain networks provides insights into the underlying mechanisms
of human consciousness, developmental processes, and the neural bases of various neurological
and psychiatric disorders such as autism, ADHD, depression, and schizophrenia.2 However,
existing computational tools often extract a single static graph structure based on correlations
among full BOLD signals, which ignores the dynamic changes of functional connectivity.3–5

Compared with other deep learning paradigms such as Convolutional Neural Networks
(CNNs),6 and Recurrent Neural Networks (RNNs),7 Graph Neural Networks (GNNs)8,9 pro-
vide unique benefits in functional brain network analysis due to its capability in modeling
connectivity structures.10–17 However, most GNN-based frameworks resort to static correla-
tion networks as data instances, and they are prone to unstable performances due to large
data noises in the BOLD signals and overfitting due to limited data labels of clinical outcomes.
This is especially true for the ABIDE dataset as the images come from 17 international sites
with differing imaging protocol, as well as heterogeneity within the dataset.18

To address the challenges above, this study proposes BrainSTEAM, an integrated pipeline
that features a spatio-temporal module, for brain connectome analysis on dynamic fMRI
networks. Specifically, we propose a temporal chunking approach to dynamically segment the
BOLD signals of each subject into partitioned sequences based on a tunable sliding window
to capture the local connectivity structures at different scales, which are further modeled
by EdgeConv. An autoencoder is devised to discover the important connectivity patterns
during ROI pooling through learnable dropout, where the objective is to reconstruct the full
connectivity patterns only based on the important ones. Mixup is applied to further stabilize
and enhance training of the whole framework through linear data augmentation to prevent
the model from memorizing certain data points.

Extensive experiments conducted in this study demonstrate that our BrainSTEAM model
outperforms state-of-the-art models on both mental disorder prediction and gender classifica-
tion, indicating its effectiveness in modeling functional brain networks and also highlighting
its flexibility and versatility. It is also promising to apply BrainSTEAM to the analysis of
functional brain networks for other clinical applications, as well as other dynamic graphs ex-
tracted from time-series data. For clinical applications in particular, this model would help to
address the limitations of MRI data collection as there are limited scans due to the expensive
nature of MRIs and constant exposure for the patient. Decreasing information loss can make
the model more robust, providing a more reliable aid for those in a clinical setting.

2. Related Work

2.1. Data Augmentation

Mixup utilizes the principles of vicinal risk minimization across different classes, constructing
new data as a combination of existing data points.19 Graph Mixup techniques often involve
creating synthetic graphs samples connected subgraphs or reorder the original graph structure.



Previous works such as G-Mixup use probability matrices to predict if an edge exists between
two nodes, and Graph Transplant samples the top nodes in a graph and then appends a partial
K-hope subgraph to predict edges.20,21 However, sampling subgraphs and appending them to
the original graph becomes problematic when considering the fixed nature of brain ROIs.

Additionally, previous studies have used temporal based augmentation techniques to im-
prove model generalization. STDAC proposed a module using random discontinuous sam-
pling period with a tensor fusion method to combine it with the spatial model.22 Multi-Head
GAGNN modeled both spatio and patterns of functional brain networks simultaneously to
fully utilize their characteristics.23 These methods are still often limited by small sizes, thus
there lies potential in combining a spatio-temporal data augmentation technique with mixup.

2.2. Graph Pooling

Previous Graph Pooling methods use hierarchical graph clustering methods, following the
principle of local neighborhoods with nodes.24 This has extended to deterministic clustering
algorithms and attention based mechanisms to increase the quality of assigning the clus-
ters.25,26 Other methods include node drop pooling to decrease the time and space required
for the process by simply selecting a subset of nodes to construct the coarsened graph. Tradi-
tional pooling methods include selecting the top-k nodes, using self-attention networks, and
a gated structured aware approach.27–29 Yet, these methods are also limited by small sample
sizes and are prone to focusing on local structures rather than the graph as a whole.

3. The Proposed Model

3.1. Capturing Dynamic Connectivity via Temporal Chunking and
EdgeConv Analysis

We define a directed graph as G = {V,E} for each brain network subject, where V is the set of
nodes with a time series and E represents the weighted connectivity. Temporal Chunking is
defined by looking at a smaller window of time in the subject’s time series data at any one point
in time rather than aggregating it as a whole. The window sizes vary from 128 to 50 to 64 and
the starting points of the window are randomly generated for each epoch. For each generated
window, the partial correlation matrices are extracted to form the adjacency matrix. This
dramatically increases the variety of the data the model has to work with, allowing for more
robust model at the end of training. It helps to combat the issue of overfititng that previous
models have cited as limitations. The model is relevant for clinical use as it can better adapt
to the small sample sizes that are commonly seen in MRI datasets and can better adapt to
new patients as well. Its novelty lies in its integration of BrainGMixup which ensures maximal
data variation by accounting for both spatial and temporal based data augmentation.

Edge features are defined as eij = hθ(xi,xj) with hθ = RF ×RF → RF ′
as the MLP for the

model with a nonlinear function parameterized by a set of learnable parameters. xi represents
the embedding of node i and xj represents the embeddings of all the neighbors of node i,
including the node itself. In this case, a sum aggregation operation is performed over all the
edge features to get the final embedding for the node’ and its neighbor’s edges represented by
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Fig. 1: Overview of the proposed BrainSTEAM architecture.

the following equation:

x′
i : sum

ji(i,j)∈E
hθ(xi||xj − xi) (1)

EdgeConv30 allows for the extraction of neighborhood-level features within the overall topolog-
ical structure of the network. Different aggregation methods can be used across the embeddings
of the node and the neighbors. By determining the pairwise distance matrices for the charac-
teristics and selecting the k nearest neighbors for each point, the graph is also dynamically
updated, where k is a hyper-parameter that can be varied to obtain desirable results.

3.2. Discovering Important Connectivity via Autoencoder-based Pooling

Graph pooling is a key component to compress the predictions of multiple nodes into a graph-
level classification. To discover important connectivity, we adapted Graph Autoencoder31 tech-
nique where the node dropping is performed to measure the importance of the node for re-
constructing the topological structure without labels. The new graph generated by the pooled
graph can be defined as:

G′ = POOL(G), (2)

where the pooling method SAGPool28 acts as the encoder of the autoencoder. The SAGPool
first generates scores for all the nodes from convolution and performs pooling by only taking the
top k scoring nodes, with the pooling ratio determined by a hyperparameter k. Those nodes
are then used to compose a new coarsened graph by learning the attribute and adjacency
matrices:

Z(l+1) = Z
(l)
idx(l) ⊙ S

(l)
idx(l) ∈ Rn(l+1)×1,

A(l+1) = A
(l)
(idx(l),idx(l))

∈ {0, 1}n(l+1)×n(l+1)

,
(3)

where idx serves at the indexing operator for the top-k significant scoring nodes, Z
(l)
idx(l) is

the row wise indexed embedding matrix, and ⊙ is the broadcast elementwise product. A

is displayed as the row-wise and column-wise adjacency matrix. Z l+1 and A
(l)
(idx(l),idx(l))

are

respectively the new attribute and adjacency matrices. S(l)
idx(l) represents the score matrix of



the top k selected nodes at layer l. The score matrix was calculated by inputting the adjacency
matrix and node embedding matrix at the layer l into a Graph Convolution Network (GCN).

The decoder reconstructs the embeddings of the dropped nodes, which includes the cre-
ation of an empty attribute matrix with the pooled node embeddings to reconstruct a new
embedding matrix, with zero padding operations performed. To measure the validity of this
reconstructed matrix, the Euclidean distance is calculated between the reconstructed attribute
matrix and the original input matrix. This becomes a loss function Lf . The Euclidean distance
is shown below:

L
(l)
f =

∥∥∥X − ψa(x̂
(l))

∥∥∥2
F
, (4)

L
(l)
d =

∥∥∥D(l) − ψd(Z
(l))

∥∥∥2
F
, (5)

where L(l)
f represents the loss of the node attributes for the lth layer, ∥∥F is the Frobenius

norm, and X represents the node feature matrix. An additional Ld is adopted to regularize
the distance between the true degree values and the reconstructed ones. This determines how
close the pooling mechanism reconstruction came to the original graph of the subject. ψa(x̂

(l))

represents the the reconstructed node attribute matrix. This method of pooling is preferrable
to the typical mean, max, or summation pooling as it identifies the most structurally important
nodes and reduces the number of noisy nodes allowing for more focused analysis.

3.3. Enhancing Model Training and Stability via Mixup

It is difficult for GNNs to properly analyze the underlying signals in functional brain images
with the overfitting and memorization of noise in specific training data.32 Vicinal risk mini-
mization33 rather than empirical risk minimization19 techniques have been applied to improve
generalization capability. Vicinal risk minimization referring to creating virtual examples of
training data based on their neighborhood of data.

This paper proposes BrainGMixup34 which utilizes 2D feature vectors from the node and
edge features rather than the 1D feature vectors for other forms of data such as CNN net-
works. This requires interpolation between the rows/ROIs of the graph rather than between
individual feature columns. This differs from traditional Graph Mixup approaches as it in-
volves interpolation instead of concatenation of smaller sub graphs. Mixup intends to take two
subjects and combine their feature and edge index information to create a new node for the
model to train on. The fixed nature of ROIs in the data allows for the mixup to be applied
across rows for the node feature matrix and edge index matrix,

X̃ = λXi + (1− λ)Xj , where i, j = 1, ..., N, i ̸= j,

Ẽ = λEi + (1− λ)Ej , where i, j = 1, ..., N, i ̸= j,
(6)

ỹ = λyi + (1− λ)yj . (7)

N represents the number of ROIs defined in the node feature matrix, E is the edge index
matrix, and y is the corresponding label. X̃, ỹ, and Ẽ are the mixup-augmented samples of



Fig. 2: The process of brain network construction.

the corresponding matrices. It involves the interpolation of the previous graph samples to
cover for in-between brain network variations

l = λ · c(p, ya) + (1− λ) · c(p, yb). (8)

The mixup loss criterion Lm utilizes the Vicinity distribution33 to find the chance that a
particular feature target is in the near area of that graph to generate Lm. The differentianting
lambda values ensures that even if data is taken at a similar timepoint, the resulting graph
will not be the same. The hyperparameter a is used to determine the degree of interpolation
between the different ROI regions and edge connectives. This serves as an efficient and effective
way of accounting for the heterogeneous, scarce, and noisy nature of brain networks. The total
overall loss is Lall = α ∗ Lf + β ∗ Ld + Lm. With, alpha and beta serving as hyperparameters to
determine the weight of the feature loss and degree loss. Mixup serves as an additional sample
size increase alongside temporal chunking to provide the model with more training modules.

4. Experiments

Datasets. We evaluate our framework using two publicly available real-world neuroimaging
datasets, the Autism Brain Imaging Data Exchange (ABIDE)35on the ASD prediction task
and the Human Connectome Project (HCP)36 on the gender classification task. The CPAC37

preprocessed ABIDE dataset is a collection of 4D resting-state functional MRI scans from a
total of 1,112 individuals with 539 Autism Spectrum Disorder (ASD) and 573 typical health
controls. The preprocessed HCP dataset, on the other hand, is a large-scale dataset that
includes resting-state fMRI scans from 1095 subjects with the gender split being 595 females
and 500 males with about 1200 frames in each scan.



Brain network construction. The brain Blood Oxygenation Level Dependent (BOLD)
signal time series is then extracted from those fMRI subset data with MSDL brain Prob-
abilistic atlas which defines soft parcellations of the brain to 39 ROI on ABIDE and
CIFTI(Connectivity Informatics Technology Initiative) (ROI=22) on HCP to produce ABIDE
time series matrix (196 × 39) and HCP time series matrix (1200 × 22). These were deter-
mined from previous experimentation and papers on the appropriate number depending on
the condition.38

Then, the brain connectivity matrices among ROI are calculated from time series data
with partial correlation and correlation matrix, followed by z-scores normalization . Non-zero
adjacency matrices mean a pair of ROI nodes share an edge, and the values of adjacency
matrices indicate edge weights between nodes. The sparse partial correlation matrix can help
to avoid the over-smoothing issue commonly seen in GNN applications. Node features are
initialized with the corresponding rows in the edge weight matrix.

The temporal windows/chunks of each subject is constructed using a graph represen-
tation object as seen in Figure 2’s third step. Each graph representation object then goes
through mixup to create a new graph that is a interpolation of two different subjects via the
BrainMixup module. This data is then fed into the EdgeConv model to train, and pooling is
conducted by the AutoEncoder.

The EdgeConv model contains three block which each block containing a dyanmic Edge-
Conv layer, a batch normalization layer, and a relu activation layer. Each block also includes
the feature decoder and degree decoder layers as a part of the AutoEncoder module. The loss
is calculated as seen in the methods section with different weights applied to the loss of the
model and Autoencoder loss in regards to the reconstructed feature and degrees in comparison
to their ground truth values.

Baselines. We compare our proposed BrainSTEAM with baseline model MAGE,39 SVM-
MTFS,40 MISO-DNN,41 e-STAGIN,41 MAGIN,42 IMAGIN42 on the ABIDE dataset, and with
ST-GCN,38 LTSM,43 GCN,8 GC-LSTM,43 STAGIN-SERO44 and DECENNT45 on the HCP
dataset.

Experimental settings. This study performs training and testing in 5-fold cross-validation,
and dynamically construct graph data object for each sub-sequences of different window sizes
with fixed optimum W as 128. The learning rate is set as 10−4, epochs as 10000 for ABIDE
and 30000 for HCP. All reported results are averaged of five runs of five-fold cross-validation.
Additional details regarding the experiment settings can be found in the supplementary ma-
terials.

Prediction performance. The overall prediction results presented in Table 2 show that
BrainSTEAM outperformed the baseline model MAGE by 9.38%, IMAGIN by 8.25% on the
ABIDE dataset, and achieves 7.71% improvements over ST-GCN and 3.21% improvements
over STAGIN-SERO on the HCP dataset. The results demonstrate the superiority of Brain-
STEAM in neuropsychiatric disorder prediction and gender classification compared to other
state-of-the-art models.



ABIDE HCP

Accuracy AUC Precision Recall Accuracy AUC Precision Recall

MAGE 75.86 83.14 71.53 79.24 ST-GCN 83.7 - - -
SVM+MTFS 76.7±2.7 81±0.31 72.5±3.2 76.7±2.7 LTSM 81.7 - - -
MISO-DNN 77.73±4.26 - 76.73±4.11 77.16±3.72 GCN 83.98 - 84.59 87.78

e-STAGIN(Sch 75.81±1.70 81.12±0.30 78.03±2.34 79.06±0.89 GC-LSTM 81.50 - - -
MAGIN 78.12±1.91 85.72±0.2 78.37±2.11 79.55±1.62 STAGIN-SERO 88.20±1.33 92.96 ±1.87 - -
IMAGIN 79.25±2.33 86.44±0.24 81.03±3.47 79.06±0.89 DECENNT 86.00 93.6 87.2 88.6

BrainSTEAM 87.5±0.99 89.23±0.88 82.24±2.48 96.11±2.47 BrainSTEAM 91.41±0.02 93.67±0.01 100±0.00 78.78±0.04

Table 1: Overall performance (%) comparison on two datasets. Results with - were not provided
in the original work.

ABIDE HCP

Accuracy AUC Precision Recall Accuracy AUC Precision Recall

BrainSTEAM 87.5±0.99 89.23±0.88 82.24±2.48 96.11±2.47 BrainSTEAM 91.41±0.02 93.67±0.01 100±0.00 78.78±0.04

BrainEAM 62.86±0.87 62.36±0.78 67.23±0.09 63.95±1.70 BrainEAM 77.20±1.35 80.15±2.27 87.43±4.49 66.59±5.82

BrainEM 63.66±1.45 62.50±1.66 68.09±2.14 71.24±1.69 BrainEM 74.42±0.01 74.48±0.01 77.11±0.01 73.79±0.01

BrainE 59.43±1.48 59.24±1.64 60.22±0.61 63.98±1.34 BrainE 67.85±0.01 68.01±0.01 68.97±0.01 70.46±0.02

Table 2: The ablation study with different model variants: BrainSTEAM is the full version
with all components, BrainEAM removes the temporal chunking, BrainEM removes both the
temporal chunking and autoencoder, and BrainE is only equipped with Edgeconv.

We further investigate the influence of each proposed component by removing each at a
time. The results are shown in Table 2. Results show the temporal module contributes to
the greatest increase in model prediction accuracy performance, improving about 23.84% on
ABIDE, and about 14.21% on HCP. The autoencoder module provides more stability to the
network as seen by the decrease in the standard deviation.

Key hyperparameter studies are shown in Fig. 3. (a) shows performance is about 1.87%
higher when k=10 than k=15; (b) shows performance is about 3.12% higher when window=128
than window=50; (c) shows performance is 7.03% higher when loss alpha and loss beta is set
to 0.3 vs 0.1; (d) and (e) show performance increase dramatically when epoch increases from
1k, 5k to 10k/30k with BrainSTEAM, on the contrary, performance stays flat for BrainEAM
when epoch increase accordingly both on ABIDE and HCP.

5. Interpretation Analysis

As summarized above, the proposed BrainSTEAM is shown to significantly outperform base-
line models. We claim the fundamental reason is that the other baselines only obtain one
graph from the subject full range of time series thus only resulting in 1112 graphs for ABIDE
and 1095 graphs for HCP. With our proposed time series temporal chunk combined with the
mixup, an exponential increase in the number of new graphs can be generated. Specifically, the
model is trained on the same 1000 subjects but the generation of time series chunks with 5-fold
cross-validation for 30,000 epochs leads to 150,000 different graphs. Hyperparameter tuning
with epochs reveals that the BrainEAM model hits a training accuracy of 99% in 200 epochs,



Fig. 3: The hyperparameter study for BrainSTEAM on the ABIDE dataset.

Fig. 4: The visualization of brain connectome, where the subfigure (a) & (e) represent the
connectome of ABIDE Health Control (HC) with the full sequence of time series; (b) & (f)
represent that of Autism; (c) & (g) represent HC with time series subsequence of window size
50; and (d) & (h) represent Autism with time series subsequence of window size 50.

but the validation accuracy stays in the low 60s indicating a typical sign of overfitting. When
applying temporal chunking, the training and validation accuracy scale more evenly with an
18.13% increase of validation accuracy as the number of epochs varies from 1000 to 10000.
The temporal chunking results as visualized in Fig. 4 demonstrates that graphs generated at
different time windows have significantly different levels of connectivity between ROIs. This



stood true for both health control and patients diagnosed with Autism. The level of interac-
tions for the health control is far more pronounced, as noted with the increase in deep red
boxes, than for the Autism patient. This fine-grained interaction difference is not expressed
within the graph generated from an average of the entire time series. This demonstrates that
the proposed temporal chunking method is able to better capture time specific interactions in
the brain and will generate more robust generalization patterns.

The model outperforms ST-GCN, demonstrating that only the temporal module might
not be comprehensive enough to cover all the issues that create overfitting and accuracy
deficits. A combination of retaining connectivity information and performing self-supervised
node dropping is needed to create the most robust version of the model.

6. Conclusion

This study proposes a dynamic functional brain network analysis framework BrainSTEAM,
which integrates the temporal sliding window module with EdgeConv, Autoencoder and Mixup
for the first time. Extensive experiments on two real-world neuroimaging datasets exhibit sig-
nificant performance improvement over the state-of-the-art. This study also shows the con-
tribution of each component to the system, demonstrating the temporal chunking approach
as the major contributor to performance improvement, which allows for the representation
of functional brain connectivity within smaller time windows to capture unique fine-grained
ROI interactions. In the meantime, the study also shows EdgeConv helps in capturing the
connectivity structures of the brain networks, autoencoder helps in reducing data noise and
identifying the most relevant connectivity patterns, and mixup helps in enhancing the model
training through linear interpolation. For future work, we look to improve BrainSTEAM with
explainability, such as identifying meaningful biomarkers linked to neuropsychiatric disorders
and mental development, understanding which neural systems contribute most to the predic-
tion of a specific disease, applying the model to other datasets and tasks, and exploring its
potential applications in clinical settings.
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