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Abstract

Human brains are commonly modeled as net-
works of regions of interest (ROIs) and their con-
nections for brain functions and mental disorders
understanding. Recently, Transformer-based mod-
els have been studied over different types of data,
including graphs, shown to bring performance
gains widely. In this work, we study Transformer-
based models for brain network analysis. Driven
by the unique properties of data, we model brain
networks as graphs with nodes of fixed size
and order, which allows us to (1) use connec-
tion profiles as node features to provide natu-
ral and low-cost positional information and (2)
learn pair-wise connection strengths among ROIs
with efficient attention weights across individuals
that are predictive towards downstream analysis
tasks. Moreover, we propose an ORTHONORMAL
CLUSTERING READOUT operation based on self-
supervised soft clustering and orthonormal projec-
tion. This design accounts for the underlying func-
tional modules that determine similar behaviors
among groups of ROIs, leading to distinguishable
cluster-aware node embeddings and informative
graph embeddings. Finally, we re-standardize
the evaluation pipeline on the only one publicly
available large-scale brain network dataset of
ABIDE, to enable meaningful comparison of dif-
ferent models. Experiment results show clear im-
provements of our proposed BRAIN NETWORK
TRANSFORMER on both the public ABIDE and
our restricted ABCD datasets. The implemen-
tation is available at https://anonymous.
4open.science/r/BrainTransformer.
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1. Introduction
Brain network analysis has been an intriguing pursuit for
neuroscientists to understand human brain organizations
and predict clinical outcomes (Satterthwaite et al., 2015;
Wang et al., 2016; Wang & Guo, 2019; Bullmore & Sporns,
2009; Deco et al., 2011). Among various neuroimaging
modalities, functional Magnetic Resonance Imaging (fMRI)
is one of the most commonly used for brain network con-
struction, where the nodes are defined as Regions of In-
terest (ROIs) given an atlas, and the edges are calculated
as pairwise correlations between the blood-oxygen-level-
dependent (BOLD) signal series extracted from each region
(Smith et al., 2011; Simpson et al., 2013; Wang et al., 2016).
Researchers observe that some regions can co-activate or
co-deactivate simultaneously when performing cognitive-
related tasks such as action, language, and vision. Based on
this pattern, brain regions can be classified into diverse func-
tional modules to analyze diseases towards their diagnosis,
progress understanding and treatment.

Nowadays Transformer-based models have led a tremen-
dous success in various downstream tasks across fields in-
cluding natural language processing (Vaswani et al., 2017;
Dai et al., 2019) and computer vision (Dosovitskiy et al.,
2021; Chu et al., 2021). Recent efforts have also emerged
to apply Transformer-based designs to graph representation
learning. GAT (Velickovic et al., 2018) firstly adapts the
attention mechanism to graph neural networks (GNNs) but
only considers the local structures of neighboring nodes.
Graph Transformer (Dwivedi & Bresson, 2021) injects edge
information into the attention mechanism and leverages the
eigenvectors of each node as positional embeddings. SAN
(Kreuzer et al., 2021) further enhances the positional em-
beddings by considering both eigenvalues and eigenvectors
and improves the attention mechanism by extending the
attention from local to global structures. Graphomer (Ying
et al., 2021), which achieves the first place on the quantum
prediction track of OGB Large-Scale Challenge (Hu et al.,
2020a), designs unique mechanisms for molecule graphs
such as centrality encoding to enhance node features and
spatial/edge encoding to adapt attention scores.

However, brain networks have several unique traits that
make directly applying existing graph Transformer models
impractical. First, a brain network is a correlation matrix
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defined on a complete graph. This impedes the designs like
centrality, spatial, and edge encoding because each node in
the brain network has the same degree and connects to every
other node by a single hop. Second, in previous graph trans-
former models, eigenvalues and eigenvectors are commonly
used as positional embeddings because they can provide
identity and positional information for each node. Never-
theless, in brain networks, the connection profile, which is
defined as each node’s corresponding row in the brain net-
work adjacency matrix, is recognized as the most effective
node feature (Cui et al., 2022). This node feature naturally
encodes both structural and positional information, making
the aforementioned positional embedding design based on
eigenvalues and eigenvectors redundant. The third challenge
is scalability. Typically, the numbers of nodes and edges
in molecule graphs are less than 50 and 2500, respectively.
However, for brain networks, the node number is generally
around 100 to 400, while the edge number can be up to
160,000. Therefore, operations like the generation of all
edge features in existing graph transformer models can be
time-consuming, if not infeasible.

In this work, we propose to develop BRAIN NETWORK
TRANSFORMER (BRAINNETTF), which leverages the
unique properties of brain network data to fully unleash the
power of Transformer-based models for brain network analy-
sis. Specifically, motivated by previous findings on effective
GNN designs for brain networks (Cui et al., 2022), we pro-
pose to use the effective initial node features of connection
profiles. Empirical analysis shows that connection profiles
naturally provide positional features for Transformer-based
models and avoid the costly computations of eigenvalues
or eigenvectors. Moreover, recent work demonstrates that
GNNs trained on learnable graph structures can achieve
superior effectiveness and interpretability (Kan et al., 2022).
Inspired by this insight, we propose to learn fully pairwise
attention weights with Transformer-based models, which
resembles the process of learning predictive brain network
structures towards downstream tasks.

One step further, when GNNs are used for brain network
analysis, a graph-level embedding needs to be generated
through a readout function based on the learned node em-
beddings (Kawahara et al., 2017; Li et al., 2021; Cui et al.,
2022). As is shown in Figure 1(a), a property of brain net-
works is that brain regions (nodes) belonging to the same
functional modules often share similar behaviors regarding
activations and deactivations in response to various stimu-
lations (Caramazza & Coltheart, 2006). Unfortunately, the
current labeling of functional modules is rather empirical
and far from accurate. For example, (Akiki & Abdallah,
2019) provides more than 100 different functional module
organizations based on hierarchical clustering. In order to
leverage the natural functions of brain regions without the
limitation of inaccurate functional module labels, we de-

sign a new global pooling operator, ORTHONORMAL CLUS-
TERING READOUT, where the graph-level embeddings are
pooled from clusters of functionally similar nodes through
soft clustering with orthonormal projection. Specifically,
we first devise a self-supervised mechanism based on (Xie
et al., 2016) to jointly assign soft clusters to brain regions
while learning their individual embeddings. To further fa-
cilitate the learning of clusters and embeddings, we design
an orthonormal projection and show its effectiveness in
distinguishing embeddings across clusters, thus obtaining
expressive graph-level embeddings after the global pooling,
as illustrated in Figure 1(b).

Finally, the lack of open-access datasets has been a non-
negligible challenge for brain network analysis. The strict
access restrictions and complicated extraction/preprocessing
of brain networks from fMRI data limit the development of
machine learning models for brain network analysis. Specif-
ically, among all the large-scale publicly available fMRI
datasets in literature, ABIDE (Cameron et al., 2013) is the
only one provided with extracted brain networks fully acces-
sible without permission requirements. However, ABIDE is
aggregated from 17 international sites with different scan-
ners and acquisition parameters. This inter-site variability
may conceal inter-group differences that are really meaning-
ful, which is reflected in the unstable training performance
and the significant gap between validation and testing per-
formance in practice. To address these limitations, we pro-
pose to apply a stratified sampling method in the dataset
splitting process and standardize a fair evaluation pipeline
for meaningful model comparison on the ABIDE dataset.
Our extensive experiments on this public ABIDE dataset
and a restricted ABCD dataset (Casey et al., 2018) show
significant improvements brought by our proposed BRAIN
NETWORK TRANSFORMER.

2. Background and Related Work
2.1. GNNs for Brain Network Analysis

Recently, emerging attention has been devoted to the gen-
eralization of GNN-based models to fMRI-based brain net-
work analysis (Li et al., 2019). GroupINN (Yan et al., 2019)
utilizes a grouping-based layer to provide interpretability
and reduce the model size. BrainGNN (Li et al., 2021)
designs the ROI-aware GNNs to leverage the functional
information in brain networks and uses a special pooling op-
erator to select these crucial nodes. In addition, FBNetGen
(Kan et al., 2022) considers the learnable generation of brain
networks and explores the interpretability of the generated
brain networks towards downstream tasks. Another bench-
mark paper (Cui et al., 2022) systematically studies the
effectiveness of various GNN designs over brain network
data. Different from other work focusing on static brain
networks, STAGIN (Kim et al., 2021) utilizes GNNs with
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Orthonormal Bases Non-orthonormal Bases

(a) Node features projected to a 3D space 
with PCA. Colors indicate functional modules.

(b) Orthonormal bases can make indistinguishable nodes in non-
orthonormal bases easily distinguishable.

Figure 1: Illustration of the motivations behind ORTHONORMAL CLUSTERING READOUT.

spatio-temporal attention to model dynamic brain networks
extracted from fMRI data.

2.2. Graph Transformer

Graph Transformer raises many researchers’ interest cur-
rently due to its outstanding performance in graph repre-
sentation learning. Graph Transformer (Dwivedi & Bres-
son, 2021) firstly injects edge information into the attention
mechanism and leverages the eigenvectors as positional
embeddings. SAN (Kreuzer et al., 2021) enhances the posi-
tional embeddings and improves the attention mechanism by
emphasizing neighbor nodes while incorporating the global
information. Graphomer (Ying et al., 2021) designs unique
mechanisms for molecule graphs and achieves the STOA
performance. Besides, a fine-grained attention mechanism
is developed for node classification (Zhao et al., 2021). Also,
the Transformer is extended to larger-scale heterogeneous
graphs with a particular sampling algorithm in HGT (Hu
et al., 2020b). EGT (Hussain et al., 2021) further employs
edge augmentation to assist global self-attention. In addi-
tion, LSPE (Dwivedi et al., 2022) leverages the learnable
structural and positional encoding to improve GNNs’ rep-
resentation power, and GRPE (Park et al., 2022) enhances
the design of encoding node relative position information in
Transformer.

3. BRAIN NETWORK TRANSFORMER

3.1. Problem Definition

In brain network analysis, given a brain network X ∈
RV×V , where V is the number of nodes (ROIs), the model
aims to make a prediction indicating gender, presence of a
disease or other properties of the brain subject. The overall
framework of our proposed BRAIN NETWORK TRANS-
FORMER is shown in Figure 2, which is mainly composed
of two components, an L-layer attention module MHSA
and a graph pooling operator OCREAD. Specifically, in
the first component of MHSA, the model learns attention-

enhanced node features ZL through a non-linear mapping
X → ZL ∈ RV×V . Then the second component of
OCREAD compresses the enhanced node embeddings ZL

to graph-level embeddings ZG ∈ RK×V , where K is a
hyperparameter representing the number of clusters. ZG

is then flattened and passed to a multi-layer perceptron for
graph-level predictions. The whole training process is su-
pervised with the cross-entropy loss.

3.2. Multi-Head Self-Attention Module (MHSA)

To develop a powerful Transformer-based model suitable
for brain networks, two fundamental designs, the positional
embedding and attention mechanism, need to be reconsid-
ered to fit the natural properties of brain network data. In
existing graph transformer models, the positional informa-
tion is usually encoded via eigendecomposition, while the
attention mechanism often combines node positions with
existing edges to calculate the attention scores. However, for
the dense (often fully connected) graphs of brain networks,
eigendecomposition is rather costly, and the existence of
edges is hardly informative.

ROI node features on brain networks naturally contain suffi-
cient positional information, making the positional embed-
dings based on eigendecomposition redundant. Previous
work on brain network analysis has shown that the connec-
tion profile Xi· for node i, defined as the corresponding row
for each node in the edge weight matrix X , always achieves
superior performance over others such as node identities,
degrees or eigenvector-based embeddings (Li et al., 2021;
Kan et al., 2022; Cui et al., 2022). With this node feature
initialization, the self-connection weight xii on the diagonal
is always equal to one, which encodes sufficient information
to determine the position of each node in a fully connected
graph based on the given brain atlas. To verify this insight,
we also empirically compare the performance of the original
Connection Profile with two variants concatenated with ad-
ditional positional information in Table 1, i.e., Connection
Profile w/ Identity Feature and Connection Profile w/ Eigen
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Figure 2: The overall framework of our proposed BRAIN NETWORK TRANSFORMER.

Feature. The results indeed show no benefit brought by the
additional computations.

Node Feature
Dataset

ABIDE ABCD

Connection Profile 76.4±1.2 94.3±0.7
Connection Profile w/ Identity Feature 75.4±1.9 94.5±0.6
Connection Profile w/ Eigen Feature 75.9±2.1 94.0±0.8

Table 1: The Performance (AUROC%) of Transformer with
Different Node Features. Connection profile represents the
corresponding row for each node in the adjacency matrix.
Identity feature initializes a unique one-hot vector for each
node. Eigen feature generates a k-dimensional feature
vector for each node from the k eigenvectors based on the
eigendecomposition on the adjacency matrix.

As for the attention mechanism, previous work (Cui et al.,
2022) has empirically demonstrated that integrating edge
weights into the attention score calculation can significantly
degrade the effectiveness of attention on complete graphs,
while the generation of edge-wise embedding can be unaf-
fordable given a large number of edges in brain networks.
On the other hand, the existence of edges provides no useful
information for the computation of attention scores as well
because all edges simply exist in complete graphs.

Based on the observations above, we design the basic
BRAIN NETWORK TRANSFORMER by (1) adopting the
Connection Profile as initial node features and eliminating
any extra positional embeddings and (2) adopting the vanilla
pair-wise attention mechanism without using edge weights
or relative position information to learn a singular attention
score for each edge in the complete graph.

Formally, we leverage a L-layer non-linear mapping module,
namely Multi-Head Self-Attention (MHSA), to generate
more expressive node features ZL = MHSA(X) ∈ RV×V .

For each layer l, the output Zl is obtained by

Zl = (∥Mm=1h
l,m)W l

O,

hl,m = Softmax

Ql,m(Kl,m)⊤√
dl,mK

V l,m,
(1)

where Ql,m = W l,m
Q Zl−1,Kl,m = W l,m

K Zl−1,V l,m =

W l,m
V Zl−1,Z0 = X , ∥ is the concatenation opera-

tor, M is the number of heads, l is the layer index,
W l

O,W
l,m
Q ,W l,m

K , W l,m
V are learnable model parameters,

and dl,mK is the first dimension of W l,m
K .

3.3. ORTHONORMAL CLUSTERING READOUT
(OCREAD)

The readout function is an essential component to learn
the graph-level representations for brain network analysis
(e.g., classification), which maps a set of learned node-level
embeddings to a graph-level embedding. Mean(·),Sum(·)
and Max(·) are the most commonly used readout functions
for GNNs. Xu et al. (Xu et al., 2019) show that GNNs
equipped with Sum(·) readout have the same discriminative
power as the Weisfeiler-Lehman Test. Zhang et al. (Zhang
et al., 2018) propose a sort pooling to generate the graph-
level representation by sorting the final node representations.
Ju et al. (Ju et al., 2022) present a layer-wise readout by
extending the node information aggregated from the last
layer of GNNs to all layers. However, none of the existing
readout functions leverages the properties of brain networks
that nodes in the same functional modules tend to have
similar behaviors and clustered representations, as shown
in Figure 1(a). To address this deficiency, we design a
novel readout function to take advantage of the modular-
level similarities between ROIs in brain networks, where
nodes are assigned softly to well-chosen clusters with an
unsupervised process.
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Formally, given K cluster centers, each center has V dimen-
sions, E ∈ RK×V , a Softmax projection operator is used
as the function to calculate the probability Pik of assigning
node i to cluster k,

Pik =
e⟨Z

L
i· ,Ek·⟩∑K

k′ e⟨Z
L
i· ,Ek′·⟩

, (2)

where ⟨·, ·⟩ denotes the inner product and ZL is the learned
set of node embeddings from the last layer of MHSA mod-
ule. With this computed soft assignment P ∈ RV×K , the
original learned node representation ZL can be aggregated
under the guidance of the soft cluster information, where the
graph-level embedding ZG is obtained by ZG = P⊤ZL.

However, jointly learning node embeddings and clusters
without ground-truth cluster labels is difficult. To obtain
representative soft assignment P , the initialization of K
cluster centers E is critical and should be designed deli-
cately. To this end, we leverage the observation illustrated
in Figure 1(b), where orthonormal embeddings can improve
the clustering of nodes in brain networks w.r.t. the functional
modules underlying brain regions.

Orthonormal Initialization. To initialize a group of or-
thonormal bases as cluster centers, we first adopt the Xavier
uniform (Glorot & Bengio, 2010) to initialize K random
centers and each center contains V dimensions C ∈ RK×V .
Then, we apply the Gram-Schmidt process to obtain the
orthonormal bases E, where

uk = Ck· −
k−1∑
j=1

⟨uj ,Ck·⟩
⟨uj ,uj⟩

uj , Ek· =
uk

∥uk∥
. (3)

3.4. Generalizing OCREAD to Other Graph Tasks and
Domains

In this work, we tested the proposed OCREAD on func-
tional connectivity (FC) based brain networks. Other popu-
lar modalities of brain networks include structural connec-
tivities (SC), which describe the anatomical organization
of the brain by measuring the fiber tracts between brain
regions (Babaeeghazvini et al., 2021). In SC-based brain
networks, ROIs that are positionally close to each other on
the structural connectivity networks tend to share similar
connection profiles. This means the idea of OCREAD is also
naturally applicable to SC networks, where the orthonormal
clustering is based on the physical distances instead of the
functional modules on FC.

4. Experiments
This section evaluates the effectiveness of our proposed
BRAIN NETWORK TRANSFORMER (BRAINNETTF) with
extensive experiments. We aim to address the following
research questions:

RQ1. How does BRAINNETTF perform compared with
state-of-the-art models of various types?

RQ2. How does our proposed OCREAD module perform
with different model choices?

RQ3. Does the learned model of BRAINNETTF exhibit con-
sistency with existing neuroscience knowledge and suggest
reasonable interpretability?

4.1. Experimental Settings

Datasets. We conduct experiments on two real-world fMRI
datasets. (a) Autism Brain Imaging Data Exchange (ABIDE):
This dataset collects resting-state functional magnetic reso-
nance imaging (Rs-fMRI) data from 17 international sites,
and all data are anonymous (Cameron et al., 2013). The
used dataset contains brain networks from 1009 subjects,
with 516 (51.14%) being Autism spectrum disorder (ASD)
patients (positives). The region definition is based on Crad-
dock 200 atlas (Craddock et al., 2012). As the most conve-
nient open-source large-scale dataset, it provides generated
brain networks and can be downloaded directly without
permission request. Despite the ease of acquisition, the
heterogeneity of the data collection process hinders its use.
Since multi-site data are collected from different scanners
with different acquisition parameters, non-neural inter-site
variability may mask inter-group differences. In practice,
we find the training unstable, and there is a significant gap
between validation and testing performances. However, we
discover that most models can achieve a stable performance
if we follow an appropriate stratified sampling strategy by
considering collection sites during the training-validation-
testing splitting process for ABIDE. Training curves in Fig-
ure 3 also show how different models achieve a stabler
performance on our designed new splitting settings than
the random splitting. Therefore, we use ABIDE as one
of the benchmark datasets in this work, and we share our
re-standardized data splitting to provide a fair evaluation
pipeline for various future methods. (b) Adolescent Brain
Cognitive Development Study (ABCD): This is one of the
largest publicly available fMRI datasets with restricted ac-
cess (a strict data requesting process needs to be followed
to obtain the data) (Casey et al., 2018). The data we use in
the experiments are fully anonymized brain networks with
only gender labels. After the quality control process, 7901
subjects are included in the analysis, with 3961 (50.1%)
among them being female. The region definition is based
on the HCP 360 ROI atlas (Glasser et al., 2013).

Metrics. The diagnosis of ASD is the prediction target on
ABIDE, while gender prediction is used as the evaluation
task for ABCD. Both prediction tasks are binary classifi-
cation problems, and both datasets are balanced between
classes. Hence, AUROC is the most proper performance
metric adopted for a fair comparison, and accuracy is ap-
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Figure 3: Training Curves of Different Models with or without StratifiedSampling. It is shown that (a) with stratified
sampling, the performance gap between validation and test on ABIDE is much smaller than the one without stratified
sampling; (b) stratified sampling can stabilize the training process on ABIDE, especially for VanillaTF and BRAINNETTF.

plied to reflect the prediction performance. All the reported
performances are the average of 5 random runs on the test
set with the standard deviation.

Implementation details. For experiments, we use a two-
layer Multi-Head Self-Attention Module and set the number
of heads M to 4 for each layer. We randomly split 70%
of the datasets for training, 10% for validation, and the
remaining are utilized as the test set. In the training process
of BRAINNETTF, we use an Adam optimizer with an initial
learning rate of 10−4 and a weight decay of 10−4. The batch
size is set as 64. All models are trained for 200 epochs, and
the epoch with the highest AUROC performance on the
validation set is used for performance comparison on the
test set. The model is trained on an NVIDIA Quadro RTX
8000. Please refer to the supplementary material for the full
implementation of BRAINNETTF.

Computation complexity. In BRAINNETTF, the computa-
tion complexity of Multi-Head Self-Attention Module and
OCREAD are O(LMV 2) and O(KV ) respectively, where
L is the layer number of Multi-Head Self-Attention Module,
V is the number of nodes, M is the number of heads, and K
is the number of clusters in OCREAD. The overall compu-
tation complexity of BRAINNETTF is thus O(V 2), which
is on the same scale as common GNNs on brain networks
such as BrainGNN (Li et al., 2021) and BrainGB (Cui et al.,
2022).

4.2. Performance Analysis (RQ1)

(a) BRAINNETTF vs. other graph transformers. We
compare BRAINNETTF with two popular graph Transform-
ers, SAN (Kreuzer et al., 2021) and Graphormer (Ying
et al., 2021). In addition, we also include a basic ver-

sion of BRAINNETTF without OCREAD, composed of
a Transformer with a 2-layer Multi-Head Self-Attention and
a CONCAT-based readout named VanillaTF. Our BRAIN-
NETTF outperforms SAN and Graphormer by significant
margins, with up to 6% absolute improvements on both
datasets. VanillaTF also performs better than SAN and
Graphormer. We believe this downgraded performance of
existing graph transformers results from their design flaws
facing the natures of brain networks. Specifically, both the
preprocessing and the training stages of the Graphormer
model accepts only discrete, categorical data. A bin opera-
tor has to be applied on the adjacency matrix, coarsening the
node feature from connection profiles and dramatically hurt-
ing the performance. Furthermore, since brain networks are
complete graphs, key designs like centrality encoding and
spatial encoding of Graphormer cannot be appropriately ap-
plied. Similarly, for SAN, experiments in Appendix 1 show
that adding eigen node features to connection profiles cannot
improve the model’s performance. Besides, the benchmark
paper (Cui et al., 2022) reveals that injecting edge weights
into the attention mechanism can significantly reduce the
prediction power. (b) BRAINNETTF vs. neural network
models on fixed brain networks. We further introduce an-
other two neural network baselines on fixed brain networks.
BrainGB (Cui et al., 2022) is a systematic study of how to
design effective GNNs for brain network analysis. We adopt
their best design as the BrainGB baseline. BrainnetCNN
(Kawahara et al., 2017) represents state-of-the-art of special-
ized GNNs for brain network analysis, which models the
adjacency matrix of a brain network similarly as a 2D image.
As is shown in Table 2, BRAINNETTF consistently outper-
forms both BrainGB and BrainnetCNN. (c) BRAINNETTF
vs. neural network models on learnable brain networks.
Unlike classical GNNs, FBNETGEN (Kan et al., 2022) is
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Table 2: Performance comparison with different baselines. The performance gains of BRAINNETTF over the baselines have
passed the t-test with p-value<0.03.

Type Method
Dataset: ABIDE Dataset: ABCD

AUROC (%) Accuracy (%) AUROC (%) Accuracy (%)

Graph Transformer
SAN 71.3±2.1 65.3±2.9 90.1±1.2 81.0±1.3

Graphormer 63.5±3.7 60.8±2.7 89.0±1.4 80.2±1.3
VanillaTF 76.4±1.2 65.2±1.2 94.3±0.7 85.9±1.4

Fixed Brain Network BrainGB 69.7±3.3 63.6±1.9 91.9±0.3 83.1±0.5
BrainnetCNN 77.4±2.4 70.4±2.7 93.5±0.3 85.7±0.8

Learnable Brain Network FBNETGNN 77.6±1.2 70.0±1.4 94.5±0.7 87.2±1.2

Ours BRAINNETTF 80.2±1.0 71.0±1.2 96.2±0.3 88.4±0.4

Table 3: Performance comparison AUROC (%) with different readout functions.

Readout
Dataset: ABIDE Dataset: ABCD

SAN Graphormer VanillaTF SAN Graphormer VanillaTF

MEAN 63.7±2.4 50.1±1.1 73.4±1.4 88.5±0.9 87.6±1.3 91.3±0.7
MAX 61.9±2.5 54.5±3.6 75.6±1.4 87.4±1.1 81.6±0.8 94.4±0.6
SUM 62.0±2.3 54.1±1.3 70.3±1.6 84.2±0.8 71.5±0.9 91.6±0.6

SortPooling 68.7±2.3 51.3±2.2 72.4±1.3 84.6±1.1 86.7±1.0 89.9±0.6
CONCAT 71.3±2.1 63.5±3.7 76.4±1.2 90.1±1.2 89.0±1.4 94.3±0.7

OCREAD 70.6±2.4 64.9±2.7 80.2±1.0 91.2±0.7 90.2±0.7 96.2±0.4

a GNN that aggerates node features on graphs with learn-
able weights based on learnable projections of the original
BOLD signals, which achieves SOTA performance on the
ABCD dataset for gender prediction. The learnable graphs
can be seen as a type of attention score. Experiment results
show that our proposed BRAINNETTF beats FBNETGEN
on both datasets.

4.3. Ablation Studies on the OCREAD Module (RQ2)

4.3.1. OCREAD WITH VARYING READOUT FUNCTIONS

We vary the readout function for various Transformer ar-
chitectures, including SAN, Graphormer and VanillaTF, to
observe the performance of each ablated model variant. The
results shown in Table 3 demonstrate that our OCREAD is
the most effective readout function for brain networks and
improves the prediction power across various Transformer
architectures.

4.3.2. OCREAD WITH VARYING CLUSTER
INITIALIZATIONS

To further demonstrate how the design of OCREAD influ-
ences the performance of BRAINNETTF, we investigate two
key model selections, the initialization method for cluster
centers and the cluster number K. For the initialization,
three different kinds of initialization procedures are com-
pared, namely (a) Random: the Xavier uniform (Glorot &
Bengio, 2010) is leveraged to randomly generate a group

of centers, which are then normalized into unit vectors; (b)
Learnable: the same initial process as Random, but the
generated centers are further updated with gradient descent;
(c) Orthonormal: our proposed process as described in
Eq. (3).

Specifically, we test each initialization method with the
cluster number K equals to 2, 3, 4, 5, 10, 50, 100. The
results of adjusting these two hyper-parameters on ABIDE
and ABCD datasets are shown in Figure 4(a). We observe
that: (1) When cluster centers are orthonormal, the model’s
performance increases with the number of clusters ranging
from 2 to 10, and then drops with the cluster number rising
from 10 to 100, suggesting the optimal cluster number to
be relatively small, which leads to less computation and is
consistent with the fact that the typical number of functional
modules are smaller than 25; (2) With a sufficiently large
cluster number, all three initialization methods, Random,
Learnable and Orthonormal, tend to reach similar perfor-
mance, but orthonormal performs stably better when the
number of clusters is smaller; (3) It is also notable that
our OCREAD consistently achieves the best performance
over other initialization methods regarding smaller standard
deviations.
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(a) Influence of two key  hyper-parameters for model performance. (b) Attention heatmap on ABCD.

Figure 4: The hyper-parameter influence and the heatmap from self-attention.

ABCDABIDE

Orthonormal

Random

Figure 5: Visualization of cluster (module-level) embeddings learned with Orthonormal vs. Random cluster center initializa-
tions on two datasets. Each group in the dotted box contains two heatmaps (one for each prediction class) with the same
node ordering on the x-axis.

4.4. In-depth Analysis of Attention Scores and Cluster
Assignments (RQ4)

Figure 4(b) displays the self-attention score from the first
layer of Multi-Head Self-Attention. The attention scores are
the average across all subjects in the ABCD test set. This
figure shows that the learned attention scores well match the
divisions of functional modules based on available labels,
demonstrating the effectiveness and interpretability of our
Transformer model. Note that since there exists no avail-
able functional module labels for the atlas of the ABIDE
dataset, we cannot visualize the correlations between atten-
tion scores and functional modules.

Figure 5 shows the cluster soft assignment results P on
nodes in OCREAD with two initialization methods. The
cluster number K is set to 4. The visualized numerical val-
ues are the average P of all subjects in each dataset’s test
set. From the visualization, we observe that (a) Orthonor-
mal initialization produces more discriminative P between
classes than random initialization; (b) Within each class,
orthonormal initialization encourages the nodes to form
groups. These observations demonstrate that our OCREAD
with orthonormal initialization can leverage potential clus-

ters underlying node embeddings, thus automatically group-
ing brain regions into potential functional modules.

5. Conclusion
This paper presents BRAIN NETWORK TRANSFORMER,
a specialized graph Transformer model with ORTHONOR-
MAL CLUSTERING READOUT for brain network analysis.
Extensive experiments on two large-scale brain network
datasets demonstrate that our BRAINNETTF achieves su-
perior performance over SOTA baselines of various types.
Specifically, to model the potential node feature similarity
in brain networks, we design OCREAD and demonstrate its
effectiveness empirically. Lastly, the re-standardized dataset
split for ABIDE can provide a fair evaluation for new meth-
ods in the community. For future work, BRAINNETTF can
be improved with explicit explanation modules and used
as the backbone for further brain network analysis, such as
digging essential neural circuits for mental disorders and
understanding cognitive development in adolescents.
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