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Abstract

Human brains are commonly modeled as networks of Regions of Interest (ROIs)
and their connections for the understanding of brain functions and mental dis-
orders. Recently, Transformer-based models have been studied over different
types of data, including graphs, shown to bring performance gains widely. In this
work, we study Transformer-based models for brain network analysis. Driven
by the unique properties of data, we model brain networks as graphs with nodes
of fixed size and order, which allows us to (1) use connection profiles as node
features to provide natural and low-cost positional information and (2) learn pair-
wise connection strengths among ROIs with efficient attention weights across
individuals that are predictive towards downstream analysis tasks. Moreover, we
propose an ORTHONORMAL CLUSTERING READOUT operation based on self-
supervised soft clustering and orthonormal projection. This design accounts for
the underlying functional modules that determine similar behaviors among groups
of ROIs, leading to distinguishable cluster-aware node embeddings and informa-
tive graph embeddings. Finally, we re-standardize the evaluation pipeline on the
only one publicly available large-scale brain network dataset of ABIDE, to en-
able meaningful comparison of different models. Experiment results show clear
improvements of our proposed BRAIN NETWORK TRANSFORMER on both the
public ABIDE and our restricted ABCD datasets. The implementation is available
at https://github.com/Wayfear/BrainNetworkTransformer.

1 Introduction

Brain network analysis has been an intriguing pursuit for neuroscientists to understand human brain
organizations and predict clinical outcomes [50, 59, 58, 5, 18, 27, 52, 29, 58, 28, 41, 44, 31]. Among
various neuroimaging modalities, functional Magnetic Resonance Imaging (fMRI) is one of the most
commonly used for brain network construction, where the nodes are defined as Regions of Interest
(ROIs) given an atlas, and the edges are calculated as pairwise correlations between the blood-oxygen-
level-dependent (BOLD) signal series extracted from each region [54, 53, 59, 16]. Researchers
observe that some regions can co-activate or co-deactivate simultaneously when performing cognitive-
related tasks such as action, language, and vision. Based on this pattern, brain regions can be classified
into diverse functional modules to analyze diseases towards their diagnosis, progress understanding
and treatment.

Nowadays Transformer-based models have led a tremendous success in various downstream tasks
across fields including natural language processing [56, 17] and computer vision [20, 10, 55]. Recent
efforts have also emerged to apply Transformer-based designs to graph representation learning.
GAT [57] firstly adapts the attention mechanism to graph neural networks (GNNs) but only considers
the local structures of neighboring nodes. Graph Transformer [21] injects edge information into
the attention mechanism and leverages the eigenvectors of each node as positional embeddings.
SAN [40] further enhances the positional embeddings by considering both eigenvalues and eigenvec-
tors and improves the attention mechanism by extending the attention from local to global structures.
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Graphomer [64], which achieves the first place on the quantum prediction track of OGB Large-Scale
Challenge [30], designs unique mechanisms for molecule graphs such as centrality encoding to
enhance node features and spatial/edge encoding to adapt attention scores.

However, brain networks have several unique traits that make directly applying existing graph
Transformer models impractical. First, one of the simplest and most frequently used methods to
construct a brain network in the neuroimaging community is via pairwise correlations between
BOLD time courses from two ROIs [43, 35, 13, 63, 69]. This impedes the designs like centrality,
spatial, and edge encoding because each node in the brain network has the same degree and connects
to every other node by a single hop. Second, in previous graph transformer models, eigenvalues
and eigenvectors are commonly used as positional embeddings because they can provide identity
and positional information for each node [15, 26]. Nevertheless, in brain networks, the connection
profile, which is defined as each node’s corresponding row in the brain network adjacency matrix,
is recognized as the most effective node feature [13]. This node feature naturally encodes both
structural and positional information, making the aforementioned positional embedding design based
on eigenvalues and eigenvectors redundant. The third challenge is scalability. Typically, the numbers
of nodes and edges in molecule graphs are less than 50 and 2500, respectively. However, for brain
networks, the node number is generally around 100 to 400, while the edge number can be up to
160,000. Therefore, operations like the generation of all edge features in existing graph transformer
models can be time-consuming, if not infeasible.

Orthonormal Bases Non-orthonormal Bases

(a) Node features projected to a 3D space 
with PCA. Colors indicate functional modules.

(b) Orthonormal bases can make indistinguishable nodes in non-
orthonormal bases easily distinguishable.

Figure 1: Illustration of the motivations behind ORTHONORMAL CLUSTERING READOUT.

In this work, we propose to develop BRAIN NETWORK TRANSFORMER (BRAINNETTF), which
leverages the unique properties of brain network data to fully unleash the power of Transformer-based
models for brain network analysis. Specifically, motivated by previous findings on effective GNN
designs for brain networks [13], we propose to use the effective initial node features of connection
profiles. Empirical analysis shows that connection profiles naturally provide positional features
for Transformer-based models and avoid the costly computations of eigenvalues or eigenvectors.
Moreover, recent work demonstrates that GNNs trained on learnable graph structures can achieve
superior effectiveness and explainability [35]. Inspired by this insight, we propose to learn fully
pairwise attention weights with Transformer-based models, which resembles the process of learning
predictive brain network structures towards downstream tasks.

One step further, when GNNs are used for brain network analysis, a graph-level embedding needs
to be generated through a readout function based on the learned node embeddings [37, 43, 13]. As
is shown in Figure 1(a), a property of brain networks is that brain regions (nodes) belonging to the
same functional modules often share similar behaviors regarding activations and deactivations in
response to various stimulations [7]. Unfortunately, the current labeling of functional modules is
rather empirical and far from accurate. For example, [3] provides more than 100 different functional
module organizations based on hierarchical clustering. In order to leverage the natural functions of
brain regions without the limitation of inaccurate functional module labels, we design a new global
pooling operator, ORTHONORMAL CLUSTERING READOUT, where the graph-level embeddings
are pooled from clusters of functionally similar nodes through soft clustering with orthonormal
projection. Specifically, we first devise a self-supervised mechanism based on [60] to jointly assign
soft clusters to brain regions while learning their individual embeddings. To further facilitate the
learning of clusters and embeddings, we design an orthonormal projection and theoretically prove
its effectiveness in distinguishing embeddings across clusters, thus obtaining expressive graph-level
embeddings after the global pooling, as illustrated in Figure 1(b).
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Finally, the lack of open-access datasets has been a non-negligible challenge for brain network
analysis. The strict access restrictions and complicated extraction/preprocessing of brain networks
from fMRI data limit the development of machine learning models for brain network analysis.
Specifically, among all the large-scale publicly available fMRI datasets in literature, ABIDE [6] is the
only one provided with extracted brain networks fully accessible without permission requirements.
However, ABIDE is aggregated from 17 international sites with different scanners and acquisition
parameters. This inter-site variability conceals inter-group differences that are really meaningful,
which is reflected in the unstable training performance and the significant gap between validation and
testing performance in practice. To address these limitations, we propose to apply a stratified sampling
method in the dataset splitting process and standardize a fair evaluation pipeline for meaningful
model comparison on the ABIDE dataset. Our extensive experiments on this public ABIDE dataset
and a restricted ABCD dataset [8] show significant improvements brought by our proposed BRAIN
NETWORK TRANSFORMER.

2 Background and Related Work

2.1 GNNs for Brain Network Analysis

Recently, emerging attention has been devoted to the generalization of GNN-based models to brain
network analysis [42, 2]. GroupINN [62] utilizes a grouping-based layer to provide explainability
and reduce the model size. BrainGNN [43] designs the ROI-aware GNNs to leverage the functional
information in brain networks and uses a special pooling operator to select these crucial nodes.
IBGNN [14] proposes an interpretable framework to analyze disorder-specific ROIs and prominent
connections. In addition, FBNetGen [35] considers the learnable generation of brain networks and
explores the explainability of the generated brain networks towards downstream tasks. Another
benchmark paper [13] systematically studies the effectiveness of various GNN designs over brain
network data. Different from other work focusing on static brain networks, STAGIN [39] utilizes
GNNs with spatio-temporal attention to model dynamic brain networks extracted from fMRI data.

2.2 Graph Transformer

Graph Transformer raises many researchers’ interest currently due to its outstanding performance
in graph representation learning. Graph Transformer [21] firstly injects edge information into the
attention mechanism and leverages the eigenvectors as positional embeddings. SAN [40] enhances
the positional embeddings and improves the attention mechanism by emphasizing neighbor nodes
while incorporating the global information. Graphomer [64] designs unique mechanisms for molecule
graphs and achieves the SOTA performance. Besides, a fine-grained attention mechanism is developed
for node classification [68]. Also, the Transformer is extended to larger-scale heterogeneous graphs
with a particular sampling algorithm in HGT [32]. EGT [33] further employs edge augmentation to
assist global self-attention. In addition, LSPE [22] leverages the learnable structural and positional
encoding to improve GNNs’ representation power, and GRPE [49] enhances the design of encoding
node relative position information in Transformer.

3 BRAIN NETWORK TRANSFORMER

3.1 Problem Definition

In brain network analysis, given a brain network X ∈ RV×V , where V is the number of nodes
(ROIs), the model aims to make a prediction indicating biological sex, presence of a disease or
other properties of the brain subject. The overall framework of our proposed BRAIN NETWORK
TRANSFORMER is shown in Figure 2, which is mainly composed of two components, an L-layer
attention module MHSA and a graph pooling operator OCREAD. Specifically, in the first component
of MHSA, the model learns attention-enhanced node features ZL through a non-linear mapping
X → ZL ∈ RV×V . Then the second component of OCREAD compresses the enhanced node
embeddings ZL to graph-level embeddings ZG ∈ RK×V , where K is a hyperparameter representing
the number of clusters. ZG is then flattened and passed to a multi-layer perceptron for graph-level
predictions. The whole training process is supervised with the cross-entropy loss.
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Figure 2: The overall framework of our proposed BRAIN NETWORK TRANSFORMER.

3.2 Multi-Head Self-Attention Module (MHSA)

To develop a powerful Transformer-based model suitable for brain networks, two fundamental
designs, the positional embedding and attention mechanism, need to be reconsidered to fit the natural
properties of brain network data. In existing graph transformer models, the positional information
is usually encoded via eigendecomposition, while the attention mechanism often combines node
positions with existing edges to calculate the attention scores. However, for the dense (often fully
connected) graphs of brain networks, eigendecomposition is rather costly, and the existence of edges
is hardly informative.

ROI node features on brain networks naturally contain sufficient positional information, making the
positional embeddings based on eigendecomposition redundant. Previous work on brain network
analysis has shown that the connection profile Xi· for node i, defined as the corresponding row for
each node in the edge weight matrix X , always achieves superior performance over others such
as node identities, degrees or eigenvector-based embeddings [43, 35, 13]. With this node feature
initialization, the self-connection weight xii on the diagonal is always equal to one, which encodes
sufficient information to determine the position of each node in a fully connected graph based on
the given brain atlas. To verify this insight, we also empirically compare the performance of the
original connection profile with two variants concatenated with additional positional information,
i.e., connection profile w/ identity feature and connection profile w/ eigen feature. The results indeed
show no benefit brought by the additional computations (c.f. Appendix B). As for the attention
mechanism, previous work [13] has empirically demonstrated that integrating edge weights into the
attention score calculation can significantly degrade the effectiveness of attention on complete graphs,
while the generation of edge-wise embedding can be unaffordable given a large number of edges in
brain networks. On the other hand, the existence of edges provides no useful information for the
computation of attention scores as well because all edges simply exist in complete graphs.

Based on the observations above, we design the basic BRAIN NETWORK TRANSFORMER by
(1) adopting the connection profile as initial node features and eliminating any extra positional
embeddings and (2) adopting the vanilla pair-wise attention mechanism without using edge weights
or relative position information to learn a singular attention score for each edge in the complete graph.

Formally, we leverage a L-layer non-linear mapping module, namely Multi-Head Self-Attention
(MHSA), to generate more expressive node features ZL = MHSA(X) ∈ RV×V . For each layer l,
the output Zl is obtained by

Zl = (∥Mm=1h
l,m)W l

O,h
l,m = Softmax

W l,m
Q Zl−1(W l,m

K Zl−1)⊤√
dl,mK

W l,m
V Zl−1, (1)

where Z0 = X , ∥ is the concatenation operator, M is the number of heads, l is the layer index,
W l

O,W
l,m
Q ,W l,m

K , W l,m
V are learnable model parameters, and dl,mK is the first dimension of W l,m

K .
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3.3 ORTHONORMAL CLUSTERING READOUT (OCREAD)

The readout function is an essential component to learn the graph-level representations for brain
network analysis (e.g., classification), which maps a set of learned node-level embeddings to a graph-
level embedding. Mean(·),Sum(·) and Max(·) are the most commonly used readout functions for
GNNs. Xu et al. [61] show that GNNs equipped with Sum(·) readout have the same discriminative
power as the Weisfeiler-Lehman Test. Zhang et al. [66] propose a sort pooling to generate the
graph-level representation by sorting the final node representations. Ju et al. [34] present a layer-wise
readout by extending the node information aggregated from the last layer of GNNs to all layers.
However, none of the existing readout functions leverages the properties of brain networks that nodes
in the same functional modules tend to have similar behaviors and clustered representations, as shown
in Figure 1(a). To address this deficiency, we design a novel readout function to take advantage of
the modular-level similarities between ROIs in brain networks, where nodes are assigned softly to
well-chosen clusters with an unsupervised process.

Formally, given K cluster centers, each center has V dimensions, E ∈ RK×V , a Softmax projection
operator is used as the function to calculate the probability Pik of assigning node i to cluster k,

Pik =
e⟨Z

L
i· ,Ek·⟩∑K

k′ e⟨Z
L
i· ,Ek′·⟩

, (2)

where ⟨·, ·⟩ denotes the inner product and ZL is the learned set of node embeddings from the last
layer of MHSA module. With this computed soft assignment P ∈ RV×K , the original learned node
representation ZL can be aggregated under the guidance of the soft cluster information, where the
graph-level embedding ZG is obtained by ZG = P⊤ZL.

However, jointly learning node embeddings and clusters without ground-truth cluster labels is difficult.
To obtain representative soft assignment P , the initialization of K cluster centers E is critical and
should be designed delicately. To this end, we leverage the observation illustrated in Figure 1(b),
where orthonormal embeddings can improve the clustering of nodes in brain networks w.r.t. the
functional modules underlying brain regions.

Orthonormal Initialization. To initialize a group of orthonormal bases as cluster centers, we first
adopt the Xavier uniform initialization [25] to initialize K random centers and each center contains
V dimensions C ∈ RK×V . Then, we apply the Gram-Schmidt process to obtain the orthonormal
bases E, where

uk = Ck· −
k−1∑
j=1

⟨uj ,Ck·⟩
⟨uj ,uj⟩

uj , Ek· =
uk

∥uk∥
. (3)

In the next section, we theoretically prove the advantage of this orthonormal initialization.

3.3.1 Theoretical Justifications

In OCREAD, proper cluster centers can generate higher-quality soft assignments and enlarge the
difference between P from different classes. [51, 46] showed the advantages of orthogonal initial-
ization in DNN model parameters. However, none of them proves whether it is an ideal strategy to
obtain the cluster centers. We propose two methods from the perspective of statistics as follows.

Firstly, to discern features of different nodes, we would expect a larger discrepancy among their
similarity probabilities indicated from the readout. One way to measure the discrepancy is using the
variance of P for each feature. Let P̄ ≡ 1/K denote the mean of any discrete probabilities with K
values. Variance of P measures the difference between P and P̄ . We average over the feature vector
space: if the result is small, then there is a large tendency that different P approaches P̄ and hence
cannot be discerned easily. Specifically, the following theorem holds for our function Eq. (2):
Theorem 3.1. For arbitrary r > 0, let Br = {Z ∈ RV ; ∥Z∥ ≤ r} denote the round ball centered
at origin of radius r with Z being fracture vectors. Let Vr be the volume of Br. The variance of
Softmax projection averaged over Br

1

Vr

∫
Br

K∑
k

( e⟨Z,Ek·⟩∑K
k′ e⟨Z,Ek′·⟩

− 1

K

)2

dZ, (4)

attains maximum when E is orthonormal.

5



Despite the concise form, it is unclear whether the above integral has an elementary antiderivative.
Even though, we can circumvent this problem and a rigorous proof is given in Appendix C.

The second statistical method shows that for general readout functions without a known analytical
form, initializing with orthonormal cluster centers has a larger probability of gaining better perfor-
mance. To set up the proper statistical scenario, we assume that the unknown readout is obtained
by a regression of some samples (Ẑ(s), Ê(t), P̂ (st)). This formally converts the exact functional
relationship between Zi·,Ek· and Pik to a statistical relationship:

PT (Zi·,Ek·) = P (Zi·,Ek·) + ϵi, ϵi ∼ N(0, σ2), E(ϵi) = 0, D(ϵi) = σ2, (5)

with PT being the probability truly reflecting similarities between nodes and clusters and ϵi denoting
the stochastic error. It is almost impossible to find PT , but by computing the so-called variation
inflation factor [47], we show that regression in orthonormal case has a higher accuracy than that in
non-orthonormal case. Combining with a hypothesis testing, we obtain the following

Theorem 3.2. The significance level αEk· which reveals the probability of rejecting a well-estimated
pooling is lower when sampling from orthonormal centers than that from non-orthonormal centers.

More details can be seen in Appendix C.

3.4 Generalizing OCREAD to Other Graph Tasks and Domains

In this work, we tested the proposed OCREAD on functional connectivity (FC) based brain networks.
Other popular modalities of brain networks include structural connectivities (SC), which describe
the anatomical organization of the brain by measuring the fiber tracts between brain regions [4]. In
SC-based brain networks, ROIs that are positionally close to each other on the structural connectivity
networks tend to share similar connection profiles. This means the idea of OCREAD is also naturally
applicable to SC networks, where the orthonormal clustering is based on the physical distances
instead of the functional modules on FC.

At a higher level, the idea of our proposed OCREAD is not confined to graph-level prediction tasks on
brain networks but can also be generalized to other graph learning tasks and domains. Precisely, there
is a growing tendency in node/edge level prediction tasks to enhance the node/edge representation
learning by utilizing the subgraph embeddings around each target node/edge [67, 65]. In this process,
substructure learning needs to be performed on the subgraphs, where our proposed OCREAD can be
adapted for compressing a set of node embeddings to subgraph embeddings. Besides, OCREAD is
also potentially useful for other types of graphs in the biomedical domains. For example, for protein-
protein interaction networks, proteins can be implicitly grouped by families that share common
evolutionary origins [48], whereas for gene expression networks, genes can be grouped based on
the latent pathway information [36]. Both of them are potential directions for the future application
of OCREAD, among many others driven by biological or other types of prior knowledge regarding
underlying node/edge groups.

4 Experiments

This section evaluates the effectiveness of our proposed BRAIN NETWORK TRANSFORMER
(BRAINNETTF) with extensive experiments. We aim to address the following research questions:

RQ1. How does BRAINNETTF perform compared with state-of-the-art models of various types?

RQ2. How does our proposed OCREAD module perform with different model choices?

RQ3. Does the learned model of BRAINNETTF exhibit consistency with existing neuroscience
knowledge and suggest reasonable explainability?

4.1 Experimental Settings

Datasets. We conduct experiments on two real-world fMRI datasets. (a) Autism Brain Imaging
Data Exchange (ABIDE): This dataset collects resting-state functional magnetic resonance imaging
(rs-fMRI) data from 17 international sites, and all data are anonymous [6]. The used dataset
contains brain networks from 1009 subjects, with 516 (51.14%) being Autism spectrum disorder
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(ASD) patients (positives). The region definition is based on Craddock 200 atlas [12]. As the
most convenient open-source large-scale dataset, it provides generated brain networks and can be
downloaded directly without permission request. Despite the ease of acquisition, the heterogeneity
of the data collection process hinders its use. Since multi-site data are collected from different
scanners with different acquisition parameters, non-neural inter-site variability may mask inter-group
differences. In practice, we find the training unstable, and there is a significant gap between validation
and testing performances. However, we discover that most models can achieve a stable performance
if we follow an appropriate stratified sampling strategy by considering collection sites during the
training-validation-testing splitting process for ABIDE. Training curves in Appendix A also show
how different models achieve a stabler performance on our designed new splitting settings than the
random splitting. Therefore, we use ABIDE as one of the benchmark datasets in this work, and
we share our re-standardized data splitting to provide a fair evaluation pipeline for various future
methods. (b) Adolescent Brain Cognitive Development Study (ABCD): This is one of the largest
publicly available fMRI datasets with restricted access (a strict data requesting process needs to be
followed to obtain the data) [8]. The data we use in the experiments are fully anonymized brain
networks with only biological sex labels. After the quality control process, 7901 subjects are included
in the analysis, with 3961 (50.1%) among them being female. The region definition is based on the
HCP 360 ROI atlas [24].

Metrics. The diagnosis of ASD is the prediction target on ABIDE, while biological sex prediction is
used as the evaluation task for ABCD. Both prediction tasks are binary classification problems, and
both datasets are balanced between classes. Hence, AUROC is a proper performance metric adopted
for fair comparison at various threshold settings, and accuracy is applied to reflect the prediction
performance when the threshold is 0.5. Besides, since the model is mainly for medical applications,
we add two critical metrics for diagnostic tests, Sensitivity and Specificity, which respectively refer
to true positive rate and true negative rate. All reported performances are the average of 5 random
runs on the test set with the standard deviation.

Implementation details. For experiments, we use a two-layer Multi-Head Self-Attention Module
and set the number of heads M to 4 for each layer. We randomly split 70% of the datasets for
training, 10% for validation, and the remaining are utilized as the test set. In the training process of
BRAINNETTF, we use an Adam optimizer with an initial learning rate of 10−4 and a weight decay
of 10−4. The batch size is set as 64. All models are trained for 200 epochs, and the epoch with
the highest AUROC performance on the validation set is used for performance comparison on the
test set. The model is trained on an NVIDIA Quadro RTX 8000. Please refer to the repository and
Appendix G for the full implementation of BRAINNETTF.

Computation complexity. In BRAINNETTF, the computation complexity of Multi-Head Self-
Attention Module and OCREAD are O(LMV 2) and O(KV ) respectively, where L is the layer
number of Multi-Head Self-Attention Module, V is the number of nodes, M is the number of heads,
and K is the number of clusters in OCREAD. The overall computation complexity of BRAINNETTF
is thus O(V 2), which is on the same scale as common GNNs on brain networks such as BrainGNN
[43] and BrainGB [13].

4.2 Performance Analysis (RQ1)

We compare BRAINNETTF with baselines of three types. The details about how to tune hyperparam-
eters of various baselines can be found in Appendix F. Besides, Appendix E shows the comparison
of the number of parameters between our model and other baseline models, which shows that the
parameter size of BRAINNETTF is larger than GNN and CNN models but smaller than other trans-
former models. (a) BRAINNETTF vs. other graph transformers. We compare BRAINNETTF
with two popular graph Transformers, SAN [40] and Graphormer [64]. In addition, we also include
a basic version of BRAINNETTF without OCREAD, composed of a Transformer with a 2-layer
Multi-Head Self-Attention and a CONCAT-based readout named VanillaTF. Our BRAINNETTF
outperforms SAN and Graphormer by significant margins, with up to 6% absolute improvements
on both datasets. VanillaTF also surpasses SAN and Graphormer. We believe this downgraded
performance of existing graph transformers results from their design flaws facing the natures of brain
networks. Specifically, both the preprocessing and the training stages of the Graphormer model
accepts only discrete, categorical data. A bin operator has to be applied on the adjacency matrix,
coarsening the node feature from connection profiles and dramatically hurting the performance.
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Furthermore, since brain networks are complete graphs, key designs like centrality encoding and
spatial encoding of Graphormer cannot be appropriately applied. Similarly, for SAN, experiments in
Appendix B show that adding eigen node features to connection profiles cannot improve the model’s
performance. Besides, the benchmark paper [13] reveals that injecting edge weights into the attention
mechanism can significantly reduce the prediction power. Furthermore, Appendix D shows our
BRAINNETTF is much faster than other graph transformers due to special optimizations towards
brain networks. (b) BRAINNETTF vs. neural network models on fixed brain networks. We
further introduce another three neural network baselines on fixed brain networks. BrainGNN [43]
designs ROI-aware GNNs for brain network analysis. BrainGB [13] is a systematic study of how to
design effective GNNs for brain network analysis. We adopt their best design as the BrainGB baseline.
BrainnetCNN [37] represents state-of-the-art of specialized GNNs for brain network analysis, which
models the adjacency matrix of a brain network similarly as a 2D image. As is shown in Table 1,
BRAINNETTF consistently outperforms BrainGNN, BrainGB and BrainnetCNN. (c) BRAINNETTF
vs. neural network models on learnable brain networks. Unlike classical GNNs, FBNETGEN [35],
DGM [38] and BrainNetGNN [45] hold a similar idea, which is to apply GNNs based on a learnable
graph. FBNETGEN achieves SOTA performance on the ABCD dataset for biological sex prediction,
and the learnable graphs can be seen as a type of attention score. Experiment results show that our
proposed BRAINNETTF beats all three of them on both datasets.

Table 1: Performance comparison with different baselines (%). The performance gains of BRAIN-
NETTF over the baselines have passed the t-test with p-value<0.03.

Type Method
Dataset: ABIDE Dataset: ABCD

AUROC Accuracy Sensitivity Specificity AUROC Accuracy Sensitivity Specificity

Graph
Transformer

SAN 71.3±2.1 65.3±2.9 55.4±9.2 68.3±7.5 90.1±1.2 81.0±1.3 84.9±3.5 77.5±4.1
Graphormer 63.5±3.7 60.8±2.7 78.7±22.3 36.7±23.5 89.0±1.4 80.2±1.3 81.8±11.6 82.4±7.4
VanillaTF 76.4±1.2 65.2±1.2 66.4±11.4 71.1±12.0 94.3±0.7 85.9±1.4 87.7±2.4 82.6±3.9

Fixed
Network

BrainGNN 62.4±3.5 59.4±2.3 36.7±24.0 70.7±19.3 OOM OOM OOM OOM
BrainGB 69.7±3.3 63.6±1.9 63.7±8.3 60.4±10.1 91.9±0.3 83.1±0.5 84.6±4.3 81.5±3.9

BrainNetCNN 74.9±2.4 67.8±2.7 63.8±9.7 71.0±10.2 93.5±0.3 85.7±0.8 87.9±3.4 83.0±4.4

Learnable
Network

FBNETGNN 75.6±1.2 68.0±1.4 64.7±8.7 62.4±9.2 94.5±0.7 87.2±1.2 87.0±2.5 86.7±2.8
BrainNetGNN 55.3±1.9 51.2±5.4 67.7±37.5 33.9±34.2 75.3±5.2 67.5±4.7 67.7±5.7 68.0±6.5

DGM 52.7±3.8 60.7±12.6 53.8±41.2 51.1±40.9 76.8±19.0 68.6±8.1 40.5±29.7 95.6±4.2

Ours BRAINNETTF 80.2±1.0 71.0±1.2 72.5±5.2 69.3±6.5 96.2±0.3 88.4±0.4 89.4±2.6 88.4±1.5

4.3 Ablation Studies on the OCREAD Module (RQ2)

4.3.1 OCREAD with varying readout functions

We vary the readout function for various Transformer architectures, including SAN, Graphormer and
VanillaTF, to observe the performance of each ablated model variant. The results shown in Table 2
demonstrate that our OCREAD is the most effective readout function for brain networks and improves
the prediction power across various Transformer architectures.

Table 2: Performance comparison AUROC (%) with different readout functions.

Readout
Dataset: ABIDE Dataset: ABCD

SAN Graphormer VanillaTF SAN Graphormer VanillaTF

MEAN 63.7±2.4 50.1±1.1 73.4±1.4 88.5±0.9 87.6±1.3 91.3±0.7
MAX 61.9±2.5 54.5±3.6 75.6±1.4 87.4±1.1 81.6±0.8 94.4±0.6
SUM 62.0±2.3 54.1±1.3 70.3±1.6 84.2±0.8 71.5±0.9 91.6±0.6

SortPooling 68.7±2.3 51.3±2.2 72.4±1.3 84.6±1.1 86.7±1.0 89.9±0.6
DiffPool 57.4±5.2 50.5±4.7 62.9±7.3 78.1±1.5 70.0±1.9 83.9±1.3

CONCAT 71.3±2.1 63.5±3.7 76.4±1.2 90.1±1.2 89.0±1.4 94.3±0.7

OCREAD 70.6±2.4 64.9±2.7 80.2±1.0 91.2±0.7 90.2±0.7 96.2±0.4

4.3.2 OCREAD with varying cluster initializations

To further demonstrate how the design of OCREAD influences the performance of BRAINNETTF,
we investigate two key model selections, the initialization method for cluster centers and the cluster
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number K. For the initialization, three different kinds of initialization procedures are compared,
namely (a) Random: the Xavier uniform [25] is leveraged to randomly generate a group of centers,
which are then normalized into unit vectors; (b) Learnable: the same initial process as Random, but
the generated centers are further updated with gradient descent; (c) Orthonormal: our proposed
process as described in Eq. (3).

Specifically, we test each initialization method with the cluster number K equals to 2, 3, 4, 5, 10, 50,
100. The results of adjusting these two hyper-parameters on ABIDE and ABCD datasets are shown
in Figure 3(a). We observe that: (1) When cluster centers are orthonormal, the model’s performance
increases with the number of clusters ranging from 2 to 10, and then drops with the cluster number
rising from 10 to 100, suggesting the optimal cluster number to be relatively small, which leads to
less computation and is consistent with the fact that the typical number of functional modules are
smaller than 25; (2) With a sufficiently large cluster number, all three initialization methods, Random,
Learnable and Orthonormal, tend to reach similar performance, but orthonormal performs stably
better when the number of clusters is smaller; (3) It is also notable that our OCREAD consistently
achieves the best performance over other initialization methods regarding smaller standard deviations.

(a) Influence of two key  hyper-parameters for model performance. (b) Attention heatmap on ABCD.

Figure 3: The hyper-parameter influence and the heatmap from self-attention.

4.4 In-depth Analysis of Attention Scores and Cluster Assignments (RQ3)

Figure 3(b) displays the self-attention score from the first layer of Multi-Head Self-Attention. The
attention scores are the average across all subjects in the ABCD test set. This figure shows that the
learned attention scores well match the divisions of functional modules based on available labels,
demonstrating the effectiveness and explainability of our Transformer model. Note that since there
exists no available functional module labels for the atlas of the ABIDE dataset, we cannot visualize
the correlations between attention scores and functional modules.

Figure 4 shows the cluster soft assignment results P on nodes in OCREAD with two initialization
methods. The cluster number K is set to 4. The visualized numerical values are the average
P of all subjects in each dataset’s test set. From the visualization, we observe that (a) Base on
Appendix H, orthonormal initialization produces more discriminative P between classes than random
initialization; (b) Within each class, orthonormal initialization encourages the nodes to form groups.
These observations demonstrate that our OCREAD with orthonormal initialization can leverage
potential clusters underlying node embeddings, thus automatically grouping brain regions into
potential functional modules.

5 Discussion and Conclusion

Neuroimaging technologies, including functional magnetic resonance imaging (fMRI) are powerful
noninvasive tools for examining the brain functioning. There is an emerging nation-wide interest in
conducting neuroimaging studies for investigating the connection between the biology of the brain,
and demographic variables and clinical outcomes such as mental disorders. Such studies provide
an unprecedented opportunity for cross-cutting investigations that may offer new insights to the
differences in brain function and organization across subpopulations in the society (such as biological
sex and age groups) as well as reveal neurophysiological mechanisms underlying brain disorders
(such as psychiatric illnesses and neurodegenerative diseases). These studies have a tremendous
impact in social studies and biomedical sciences. For example, mental disorders are the leading
cause of disability in the USA and roughly 1 in 17 have a seriously debilitating mental illness. To
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ABCDABIDE

Orthonormal

Random

Figure 4: Visualization of cluster (module-level) embeddings learned with Orthonormal vs. Random
cluster center initializations on two datasets. Each group in the dotted box contains two heatmaps
(one for each prediction class) with the same node ordering on the x-axis.

address this burden, national institutions such as NIH have included brain-behavior research as one of
their strategic objectives and stated that sound efforts must be made to redefine mental disorders into
dimensions or components of observable behaviors that are more closely aligned with the biology of
the brain. Using brain imaging data to predict diagnosis has great potential to result in mechanisms
that target for more effective preemption and treatment.

In this paper, we present BRAIN NETWORK TRANSFORMER, a specialized graph Transformer model
with ORTHONORMAL CLUSTERING READOUT for brain network analysis. Extensive experiments
on two large-scale brain network datasets demonstrate that our BRAINNETTF achieves superior
performance over SOTA baselines of various types. Specifically, to model the potential node feature
similarity in brain networks, we design OCREAD and prove its effectiveness both theoretically and
empirically. Lastly, the re-standardized dataset split for ABIDE can provide a fair evaluation for
new methods in the community. For future work, BRAINNETTF can be improved with explicit
explanation modules and used as the backbone for further brain network analysis, such as digging
essential neural circuits for mental disorders and understanding cognitive development in adolescents.
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A Training Curves of Different Models with or without StratifiedSampling

In Figure 5, we demonstrate the training curves of different models with or without stratified sampling
based on site information from ABIDE. The curves of different variants display similar patterns
across three model architectures in a single run. We remove Graphormer since its performance is
much worse than others. Specifically, it is shown that (a) with stratified sampling, the performance
gap between validation and test on ABIDE is much smaller than the one without stratified sampling;
(b) stratified sampling can stabilize the training process on ABIDE, especially for VanillaTF and
BRAINNETTF.

Figure 5: Training Curves of Different Models with or without StratifiedSampling.

B Transformer Performance with Different Node Features

We compare the performance of Transformer model equipped with different node features. The
results are shown in Table 3, where connection profile represents the corresponding row for each
node in the adjacency matrix, identity feature initializes a unique one-hot vector for each node, and
eigen feature generates a k-dimensional feature vector for each node from the k eigenvectors based
on the eigendecomposition on the adjacency matrix. Empirical observations demonstrate that adding
identity or eigen node features to connection profiles cannot improve the model’s performance.

Model Node Feature
Dataset

ABIDE ABCD

VanillaTF
Connection Profile 76.4±1.2 94.3±0.7

Connection Profile w/ Identity Feature 75.4±1.9 94.5±0.6
Connection Profile w/ Eigen Feature 75.9±2.1 94.0±0.8

Table 3: The Performance (AUROC%) of Transformer with Different Node Features.

C Statistical Proof of the Goodness with Orthonormal Cluster Centers

We propose two statistical methods to prove the goodness in orthonormal case since it is impractical
to directly compare the performance of the orthonormal and non-orthonormal initializations.
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C.1 Proof of Theorem 3.1

We state Theorem 3.1 here and show the proof details.

Theorem C.1. For arbitrary r > 0, let Br = {Z ∈ RV ; ∥Z∥ ≤ r} denote the round ball centered
at origin of radius r with Z being fracture vectors. Let Vr be the volume of Br. The variance of
Softmax projection averaged over Br

1

Vr

∫
Br

K∑
k

( e⟨Z,Ek·⟩∑K
k′ e⟨Z,Ek′·⟩

− 1

K

)2

dZ, (6)

attains maximum when E is orthonormal.

Proof. For simplicity, we first consider the two-dimensional case with two cluster centers E1,E2.
Since we integrate over the round ball Br, spherical symmetry allows us to set E1 = (1, 0) and
E1 = (cos(ϕ), sin(ϕ)) with ϕ ∈ [0, π

21 ] being the angle between E1 and E2 under polar coordinates.
Then the Softmax readout Eq. (2) can be rewritten as:

P1 =
eρ cos(θ)

eρ cos(θ) + eρ cos(θ−ϕ)
, P2 =

eρ cos(θ−ϕ)

eρ cos(θ) + eρ cos(θ−ϕ)
, (7)

where θ is the angle between Z and E1 and ρ is the norm of Z . Hence, the integral is

F (ϕ) :=
1

Vr

∫
Br

2∑
k=1

(Pk − 1

2
)2dZ =

1

πr2

∫ r

0

∫ 2π

0

( e2ρ cos(θ) + e2ρ cos(θ−ϕ)

(eρ cos(θ) + eρ cos(θ−ϕ))2
+

1

2

)
dθdρ. (8)

Our aim is to show that the integral F (ϕ) attains its maximum when E1,E2 are orthogonal. It is
unclear whether the above integral has an elementary antiderivative. Thus, instead of evaluating
the integral directly, we firstly prove two symmetric properties of the integrand f(ρ, θ, ϕ): (a) It is
straightforward to show that f(ρ, θ + kπ, ϕ) = f(ρ, θ, ϕ) for k ∈ N. That is, f is periodic for π on
the first argument θ. (b) We have

f(
ϕ

2
+

π

2
− θ) =

e2ρ sin(ϕ
2 +θ) + e−2ρ sin(ϕ

2 −θ)

(eρ sin(ϕ
2 +θ) + e−ρ sin(ϕ

2 −θ))2

=
e2ρ sin(ϕ

2 +θ) + e−2ρ sin(ϕ
2 −θ)

e2ρ sin(ϕ
2 +θ) + e−2ρ sin(ϕ

2 −θ) + 2eρ sin(ϕ
2 +θ)−ρ sin(ϕ

2 −θ)

=
e2ρ sin(ϕ

2 −θ) + e−2ρ sin(ϕ
2 +θ)

(eρ sin(ϕ
2 −θ) + e−ρ sin(ϕ

2 +θ))2
= f(

ϕ

2
+

π

2
+ θ),

(9)

which means f is symmetric with respect to θ = ϕ
2 + π

2 + kπ. As the integrand f(ρ, θ, ϕ) is periodic,
we are allowed to compare F (ϕ1), F (ϕ2) via∫ ϕ1

2 +2π

ϕ1
2

f(ρ, θ, ϕ1)dθ =

∫ 2π

0

f(ρ, θ, ϕ1)dθ,

∫ ϕ2
2 +2π

ϕ1
2

f(ρ, θ, ϕ2)dθ =

∫ 2π

0

f(ρ, θ, ϕ2)dθ.

(10)

The integral domain [ϕ2 ,
ϕ
2 + 2π] is taken according to the second symmetry property of f and can be

significant for the following trick: we take the directional derivative of f along v = (1, 2) tangent to
the straight line θ = ϕ

2 :

Df(v) =
∂f

∂θ
+ 2

∂f

∂ϕ

=
2ρeρ cos(θ−ϕ)+ρ cos(θ)(eρ cos(θ−ϕ) − eρ cos(θ))(sin(θ) + sin(θ − ϕ))

(eρ cos(θ−ϕ) + eρ cos(ϕ))3
.

(11)
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It is easy to check that in the above integral domain and for any ρ > 0, Df(v) is always non-negative.
Hence,

f(ρ, θ − ϕ1

2
, ϕ1) ≤ f(ρ, θ − ϕ2

2
, ϕ2) (12)

when ϕ1 ≤ ϕ2. After taking integral, F (ϕ1) ≤ F (ϕ2) and thus it attains maximum in the orthonormal
case (ϕ = π

2 ). Comparing F (ϕ1), F (ϕ2) without adjusting the integral domain as above cannot give
a clear result because the simple partial derivative ∂f/∂ϕ oscillates around zero. Higher dimensional
cases follow similarly by employing spherical and hyperspherical coordinates.

C.2 Proof of Theorem 3.2

Theorem 3.2 deals with a more general case: comparing the performance of an arbitrary readout P
defined by orthonormal cluster centers with non-orthonormal ones. We regard P as an estimated
similarity probability between nodes and clusters and solve this problem from the perspective of
statistics. The estimation is considered as a regression of samples (Ẑ(s), Ê(t), P̂ (st)) from node
features, cluster centers and similarity probabilities. We then judge the estimation relative to true
similarity probability PT . Although it is almost impossible to find an analytic formula for PT , we
can indirectly judge the quality of estimation. To clarify the idea, we introduce some basic concepts
from statistics and prove our results on a statistical basis.

C.2.1 Background Knowledge of Regression Analysis

We first consider process samples by logistic regression with cluster centers as categorical variables.
Intuitively, non-orthonormal centers correlate with each other, which means there is an overlap
among categorical variables and makes it hard to identify the decision boundary that leads to a
failed classification. However, as far as we know, it is unclear how to compare overlaps between
orthonormal and non-orthonormal variables rigorously. Thus, we simply process samples by a general
nonlinear regression. The regression process is linearized by the Gauss-Newton algorithm to facilitate
the analysis. We judge the goodness-of-fit describing the degree to which the regression function fits
its observed value, and then conduct a hypothesis test. The goodness-of-fit is measured by coefficient
of determinate R2 [47]:

Definition C.2. We consider a regression with r independent main variables:

Y = β0 + β1X1 + β2X2 + · · ·+ βrXr + ϵ. (13)

Let x̂p = (x̂p1, ..., x̂ps)
⊤ and ŷ = (ŷ1, ..., ŷs)

⊤ be data sets (samples) associated with fitted values
y̌ = (y̌1, ..., y̌s). Each difference eq = ŷq − y̌q is called a residue. We denote the mean of x̂p and ŷ
by x̄p, ȳ. The variability of data set can be measured by the total sum of squares (SST), the sum of
squares of residuals (SSR) and the explained sum of squares (SSE) defined as (where p = 1, 2, ..., r
q = 1, 2, ..., s):

SST =
∑
q

(ŷq − ȳ)2, SSR =
∑
q

e2q =
∑
q

(ŷq − y̌q)
2, SSE =

∑
q,p

(x̂qp − x̄p)
2. (14)

In linear regression, SSR + SSE = SST and the coefficient of determination R2 is defined as:

R2 =
SSE
SST

= 1− SSR
SST

. (15)

Conceptually, SSE is the error cost by regression of main variables. Thus by definition, R2 reveals
the percentage of errors that main variables can explain in the total error SST. The value of R2 is
bounded by 1. A large value of R2 indicates a better fitting. However, it should be noted that an
extremely-large R2 could indicate overfitting.

In our problem, since our regression is nonlinear, the sum of SSR and SSE is less than SST [1].
Therefore, measuring goodness-of-fit by R2 in nonlinear regression is inaccurate. A common strategy
to remedy this problem is approximating nonlinear functions by polynomials via Gauss-Newton
algorithm. We provide a brief introduction here, and more details can be found in [1]: for a nonlinear
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model fk with parameter δ, in a small neighborhood of δT -the true value of δ, we have the linear
expansion:

fk(δ) ≈ fk(δT ) +

M∑
m=1

∂fk
∂δm

∣∣∣
δT
(δm − δTm). (16)

Or briefly, we write it by vector notation:

f(δ) ≈ f(δT ) + F (δ − δT ), (17)

where F (δ−δT ) stands for the dot product of derivatives and differences of parameters from Eq. (16).
Suppose δ(γ) is an approximation to the least-squares estimation δ of our model, for δ close to δ(γ),
we rewrite the expansion as:

P̌ = f(δ) ≈ f(δ(γ)) + F (γ)(δ − δ(γ)), (18)

where P̌ denotes a fitted value of P and F (γ)(δ − δ(γ)) again means a dot product. Applying this to
the residual vector e(δ), we have:

e(δ) = P − f(δ) ≈ e(δ(γ))− F (γ)(δ − δ(γ)). (19)

Thus, the norm

S(δ) := ∥P − f(δ)∥2 = e⊤(δ)e(δ)

≈ e⊤(δ(γ))e(δ(γ))− 2e⊤(δ(γ))F (γ)(δ − δ(γ)) + (δ − δ(γ))⊤F (γ)⊤F (γ)(δ − δ(γ)). (20)

The right-hand side is minimized with respect to δ when

δ − δ(γ) = (F (γ)⊤F (γ))−1F (γ)⊤e(δ(γ)) = ζ(γ). (21)

This suggests that given a current approximation δ(γ), the next approximation should be:

δ(γ+1) = δ(γ) + ζ(γ). (22)

Expanding the nonlinear function f as polynomials and modifying the parameter δ as above, we can
use R2 to measure the goodness-of-fit. To acquire higher accuracy in a general nonlinear regression,
one can make a elaborated goodness-of-fit test for specific fitting functions e.g., [9, 11]. We do not
discuss this sophisticated method as it is out of the scope of this paper.

C.2.2 Comparing R2 by Variance Inflation Factor

The proof of Theorem 3.2 consists of two steps: (a) we first prove that the regression accuracy, the
accuracy when regressing P is higher when sampling from orthonormal cluster centers (Theorem
C.4), and consequently (b) higher regression accuracy increases appraisal accuracy, the accuracy
when appraising an estimated value in hypothesis testing (Theorem C.6).

In this subsection, we compare regression accuracy. we fix Zi when regressing P via the fitted
value P̌ (Ek). Statistically, the expectation E(P ) of all readouts is identified as the true similarly
probability PT . In regression analysis, the Ordinary Least Squares (OLS) guarantees asymptotically
unbiased estimations. That is, when the sample size s is large enough, it can be regarded as an
unbiased estimation [47]:

E(P̌ ) = PT = E(P ). (23)

Therefore, the better the goodness-of-fit reflected by R2, the smaller the variance of estimation. To
compare this, we use the concept of variance inflation factor which reflects the inflation of weights
of variables in regression:
Definition C.3. The variance inflation factor (VIF)p is defined as:

(VIF)p =
1

(1−R2
p)
, (24)

where R2
p is the coefficient of multiple determination when Xp is regressed by the r-1 other variables

in the model from Eq. (13).
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Remark. We discuss more details about VIF in the following context [47]. For simplicity, we denote
the following collection of samples and regression coefficients:

X̂ = (x̂1, ..., x̂r) = (x̂qp), ŷ = (ŷ1, ..., ŷs)
⊤, β = (β1, ..., βr).

In the regression model Eq. (13), the estimation β̌p of regression coefficients βp are obtained by
Ordinary Least Squares (OLS):

β̌ = (X̂⊤X̂)−1X̂⊤ŷ. (25)

We standardize the regression equation by covariance matrices σy of y̌ and the variance σq of x̂p as

y̌∗q =
y̌q − ȳ

σy
, x̂∗

qp = σ−1
q (x̂pq − x̄p), (26)

and

β̌∗
q = β̌q

σq

σy
, y̌∗ = β̌∗

0 + β̌∗
1X

∗
1 + β̌∗

2X
∗
2 + · · ·+ β̌∗

rX
∗
r . (27)

Similarly to Eq. (25), standardized estimation of regression coefficients are equal to

β̌∗ = (X̌∗⊤X̌∗)−1X̌∗⊤y̌∗. (28)

On the other hand, the covariance matrix of the estimated regression coefficients is

σ2
β̌
= σ2(X⊤X)−1, σ2 =

s∑
q=1

(y̌q − ȳ)2, (29)

where σ2 is the error term variance for X (cf. Definition C.2). After standardization, it is noted that
X∗⊤X∗ is just the correlation matrix rXX of X∗. Hence, by Eq. (29) we obtain:

σ2
β̌∗ = (σ∗)2r−1

XX . (30)

Let (VIF)p be the p-th diagonal element of the matrix r−1
XX . The variance of β∗

p is equal to:

σ2
β̌∗
p
= (σ∗)2(VIF)p. (31)

The diagonal element (VIF)p is just the variance inflation factor for β̌∗
p . The variance of β∗

p can also
be written as [47]

σ2
β̌∗
p
=

1

1−R2
p

[ σ2∑
q(xqp − x̄p)2

]
. (32)

With the previous discussion, we conclude that

(VIF)p =
1

(1−R2
p)
, (33)

where R2
p is defined in C.3.

Theorem C.4. Let

VIF =

∑r
p=1(VIF)p
r − 1

, (34)

where r denotes the number of variables in Eq. (13). Then VIF ≥ 1 with equality holds if and only if
the variables are orthogonal.

Proof. To prove this, we need to generalize the definition of R2. By definition,

R2 =
SSE
SST

=

∑s
q=1(y̌q − ȳ)2∑s
q=1(yq − ȳ)2

=

s∑
q=1

(y̌∗q )
2. (35)
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Substituting Eq. (27) into the above identity, we have
s∑

q=1

(y̌∗q )
2 =

s∑
q=1

(X̌∗
q β̌

∗)2 = (X∗
q β̌

∗)⊤X∗
q β̌

∗, (36)

and by Eq. (28), we conclude that

R2 = (rXY )
⊤(rXX)−1rXY . (37)

As the finial step, we compute R2
p from Definition C.3 by Eq. (37). It should be noted that according

to Definition C.3, R2
p is the goodness-of-fit when Xp is regressed by the r-1 other variables. These

variables are uncorrelated in orthonormal case. Hence rXY = 0, R2
p = 0 and VIF = 1.

Remark. In statistics, when a variable’s VIF is greater than 1, or equivalently R2
p ̸= 0, the influence of

this variable on the whole estimation is inflated. It breaks the so-called absence of multicollinearity, a
fundamental principle in multiple regression analysis, and hence causes more error. Since SSE is
a constant value, the error generated by the inflation would be counted into SSR, which leads to a
decrease in R2 by Definition C.2 (see [47, 1] for more details).

C.2.3 Statistical Hypothesis Testing

The previous discussion verifies that regressing with orthonormal samples attains a higher goodness-
of-fit. In other words, it achieves a higher regression accuracy. Tools from hypothesis testing are
borrowed here to determine the appraisal accuracy mentioned at the beginning of Section C.2.2. We
first introduce mean squared error (MSE) commonly used in statistics [19]:
Definition C.5. Recall that the residue eq = (ŷq − y̌q) from Definition C.2. Then,

MSE =
1

s

s∑
q=1

(ŷq − y̌q)
2 =

1

s

s∑
q=1

(eq)
2 =

1

s
e⊤e. (38)

As mentioned in C.2.1, a small coefficient of determination R2 indicates a large SSR and hence leads
to a large MSE. As a result of Theorem C.4, MSE is minimized in the orthonormal case.

We now assume a domain centered at the true value PT of radius d, and treat the outside space W
as the rejection region. Statistically, if the distance between P̌ and PT is less than a small enough
d, we can regard them as the same. Intuitively, if fitted values P̌ are largely scattered from the
true value PT , that is, when MSE is large, it can interfere with our judgment of whether P can be
identified with PT . Rigorously, we make a hypothesis testing and analyze the probability of rejecting
a well-estimated readout function. We prove in the following that when sampling from orthonormal
cluster centers, a higher regression accuracy (Theorem C.4) guarantees a lower MSE and therefore
increases the appraisal accuracy.
Theorem C.6. The significance level αEk· reveals that the probability of rejecting a well-estimated
readout is lower when sampling from orthonormal centers than sampling from non-orthonormal
centers.

Proof. Let P be a readout function such that ∥PT − P ∥ ≤ d for small enough d. Statistically, we
can treat them as the same and simply write P̌ = PT . In hypothesis testing, we define null hypothesis
H0 and alternative hypothesis H1 by

H0 : P̌ = PT , H1 : P̌ ̸= PT , (39)

in which H1 means that we reject a well-estimated readout with H0 having the opposite meaning.
The rejection region for this test is thus given as W = {P̌ ̸= PT }. As a conventional procedure in
hypothesis testing, we take a suitable test statistic TEk

(Zi) whose distribution f is known [19]. It
is used to compute the probability that P̌ is in the rejection region. The corresponding probability
distribution is called potential function g(θ) for W in this setting:

g(θ) = Pθ(P̌ ∈ W ) =

∫
W

f(TEk
(Zi))dZi ≤ αEk

, θ = H0 ∪H1, (40)
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where the significance level αEk
is the upper bound of the probability of making mistakes (formally

called type I error) [19].

By Theorem C.4 and Remark C.5, MSE is minimized in the orthonormal case. It can be treated as
a variance of distribution f . Then by Vysochanskij–Petunin inequality, a refinement of Chebyshev
inequality, the integration over W with orthonormal cluster centers Ek is smaller than that with
non-orthonormal cluster centers E′

k:∫
W

f(TEk
(Zi))dZi ≤

∫
W

f(TE′
k
(Zi))dZi. (41)

As the result holds true for any well-chosen TEk
(Zi), αEk

≤ αE′
K

, this finishes the proof.

D Running Time

Table 4 shows that state-of-the-art models of Graphormer and SAN are much slower than our
BRAINNETTF and VanillaTF, mainly because their implementations are not optimized toward the
unique properties of brain networks. Specifically, let e be the number of edges and v be the number
of nodes. The calculation of Graphormer and SAN optimizes the case where e ≪ v2. However, brain
networks usually have a small number of nodes but dense connections, i.e., e ≃ v2. Therefore the
optimized sparse graph operations in PyTorch Geometric [23] do not work properly. On the other
hand, since the number of nodes in brain networks is usually relatively small (less than 500), we can
directly speed up the calculation using matrix multiplication, which is what we did in BRAINNETTF
and VanillaTF. Besides, the edge feature generation operator in Graphormer further increases the
burden on its computing time.

Table 4: Running time with different graph transformer methods.

Method Running Time on ABIDE (min) Running Time on ABCD (min)

SAN 93.01±0.96 908.05±3.6
Graphormer 133.52±0.54 4089.86±5.7
VanillaTF 2.32±0.10 36.26±2.12

BRAINNETTF 1.98±0.04 30.31±1.16

E Number of Parameters

Table 5: The number of parameters in different models.

Method #Para on ABIDE #Para on ABCD

BrainNetCNN 0.93M 0.93M
BrainGB 1.08M 1.49M

FBNetGen 0.55M 1.18M
SAN 57.7M6 186.7M

Graphormer 1.23M 1.66M
VanillaTF 15.6M 32.7M

BRAINNETTF 4.0M 11.2M

F Parameter Tuning

For BrainGB, BrainGNN, FBNetGen, we use the authors’ open-source codes. For SAN and
Graphormer, we folk their repositories and modified them for the brain network dataset. For
BrainNetCNN and VanillaTF, we implement them by ourselves. We use the grid search for some
important hyper-parameters for these baselines based on the provided best setting. To be specific, for
BrainGB, we search different readout functions {mean, max, concat} with different message-passing
functions {Edge weighted, Node edge concat, Node concat}. For BrainGNN, we search different
learning rates {0.01, 0.005, 0.001} with different feature dimensions {100, 200}. For FBNetGen,
we search different encoders {1D-CNN, GRU} with different hidden dimensions {8, 12, 16}. For
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BrainNetCNN, we search different dropout rates {0.3, 0.5, 0.7}. For VanillaTF, we search the number
of transformer layers {1, 2, 3} with the number of headers {2, 4, 6}. For SAN, we test LPE hidden
dimensions {4, 8, 16}, the number of LPE and GT transformer layers {1, 2} and the number of
headers {2, 4} with 50 epochs training. For Graphormer, we test encoder layers {1, 2} and embed
dimensions {256, 512}. Furthermore, since the rebuttal time is pretty short, we do not have enough
time to dig two new baselines, BrainnetGNN and DGM, which may be why their performance is
worse than others.

G Software Version

Table 6: The dependency of BRAINNETTF.

Dependency Version

python 3.9
cudatoolkit 11.3
torchvision 0.13.1

pytorch 1.12.1
torchaudio 0.12.1

wandb 0.13.1
scikit-learn 1.1.1

pandas 1.4.3
hydra-core 1.2.0

H The Difference between Various Initialization Methods

To show orthonormal initialization can produce more discriminative P between classes than random
initialization, we calculate the difference score d based on the formula

d =

K∑
i

V∑
j

|P female
ij − Pmale

ij |
KV

, (42)

where V is the number of nodes and K is the number of clusters. After running the t-test, we found
the margins between random and orthonormal on both ABIDE and ABCD are significant, which is
consistent with our conclusion.

Table 7: The difference score between different initialization methods.

Method Difference score on ABIDE Difference score on ABCD

Random 0.067±0.016 0.125±0.010
Orthonormal 0.085±0.015 0.142±0.014
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