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Abstract— Brain networks, graphical models such as those
constructed from MRI, have been widely used in pathological
prediction and analysis of brain functions. Within the com-
plex brain system, differences in neuronal connection strengths
parcellate the brain into various functional modules (network
communities), which are critical for brain analysis. However,
identifying such communities within the brain has been a
nontrivial issue due to the complexity of neuronal interactions.
In this work, we propose a novel interpretable transformer-
based model for joint hierarchical cluster identification and
brain network classification with three main contributions. First,
we offer an end-to-end transformer-based approach to learning
clustering assignments. Through pairwise attention, a clustering
layer, BCluster, and a transformer encoder collaboratively learn a
globally shared clustering assignment that is continuously tuned
to downstream tasks. BCluster enhances the model’s performance
and reduces run time complexity while also providing clinical
insights. Second, we propose a hierarchical structure for the
clustering model, enabling the model to learn more abstract,
higher-level cluster representations by combining lower-level
modules. Each clustering layer is attached to a distinct readout
module, which allows the model to utilize the cluster embeddings
of every layer effectively. Last but not least, we redesign the
attention mechanism of the transformer with stochastic noise,
which enhances its cluster learning capability. We compare our
model’s performance with SOTA models and perform clustering
analysis with the ground truth community labels. Extensive
experimental results show that with the help of hierarchical
clustering, the model achieves increased accuracy and reduced
runtime complexity while providing plausible insight into the
functional organization of brain regions.

Index Terms—Brain Networks, Neural Imaging Analysis,
Graph Neural Networks, Clustering, Machine Learning

I. INTRODUCTION

Graph is a ubiquitous form of data as it captures multiple
objects and their interactions simultaneously. It is widely
used for representing complex systems of related entities
[1]. Brain network is a special kind of graph constructed
from MRI images. In brain networks, the anatomical areas
named “Region of Interests” (ROIs) are represented as nodes,

while connectivities between ROIs are represented as links.
Partition atlas defines the set of ROIs in a particular brain
network. In recent decades, abundant works have shown strong
connections between linking imaging-based brain connectivity
and demographic characteristics or mental disorders [2].

Both shallow models and deep models like graph neural
networks (GNNs) [3] are researched in the area of brain
network analysis. Shallow models exhibits inferior perfor-
mance as compared to deep models [2], but GNNs also
suffer from over-smoothing [4], which limits their ability to
model long-distance interactions. Transformers, on the other
hand, have recently emerged as a promising approach for
various tasks [5], including predictions on graph data [6].
Graph based transformers utilizes pairwise attention across full
graphs, unlike GNNs, which only propagate node embeddings
locally. BrainTransformer [7] employs transformer on brain
networks and demonstrates state-of-the-art performance for
brain network analysis.

ROIs in Brain networks are inherently hierarchically clus-
tered [8]. In typical brain network analysis [9], clustered
ROIs form communities, with each representing a particular
functional module. These functional modules are then further
organized into larger functional modules, with each respon-
sible for a more general function. This arrangement creates
a hierarchical “module-in-module” structure [10]. Functional
modules provide critical information with regard to down-
stream tasks, and alterations in community patterns sometimes
signal pathological lesions [11]. Therefore, learning a globally
shared cluster assignment with the awareness of downstream
tasks is beneficial for both model optimization and clinical
examinations. However, learning such hierarchical cluster rep-
resentations is difficult. Shallow methods proposed to detect
brain communities are mostly based on the Louvain algorithm
[12], and Lloyd algorithm [13]. These correlation-based meth-
ods fail to capture higher-order connectivity patterns between
brain regions [14]. Some GNN models are proposed to detect
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Fig. 1: The overall framework of our proposed model THC.

communities within the brain [3], but these models suffer from
the over-smoothing problem of GNN, limiting their ability to
aggregate and identify multi-hop connectivity patterns.

To solve the aforementioned challenges, we propose a
Transformer-based Hierarchical Clustering model, abbreviated
as THC, that is tailored for brain network analysis. An
overview of our model is included in Figure 1. We highlight
three main contributions of our clustering model.

First, we provide a novel clustering learning approach based
on an end-to-end transformer-based clustering model. Partic-
ularly, a clustering layer takes an attention matrix from the
previous transformer encoder. It multiplies the attention with
a learned weighted assignment matrix. A Softmax function is
applied so that the model outputs a probabilistic assignment
from input embedding to clusters. This soft assignment is
differentiable, which allows the model to optimize the assign-
ment directly through gradient descent. The main objective
of the clustering layer is maximizing the mutual information
of the embedding before and after the cluster operation. This
objective encourages the model to cluster similar nodes as
the information loss of combining nodes with similar repre-
sentations is also minimal. The clustering layer enhances the
model’s performance and reduces run time complexity while
also providing clinical insights. During the training process,
the assignment is shared batch-wise and optimized jointly with
the model. After training is complete, a final globally shared
assignment is obtained by averaging across the assignments of
all samples.

Second, our model clusters the cluster embedding from
the previous layer into new, larger clusters, generating a
hierarchical structure. A readout layer is attached to each
clustering layer. This allows the model to utilize cluster
embeddings from different layers effectively. Moreover, cluster
assignments from different layers can be combined to form
a tree-like cluster structure, which provides more insights
into how different brain regions interact with each other.
In addition, the hierarchical assignment is squashable. A
hierarchical clustering assignment produced by our model can
be flattened into one-layer clustering with a linear number of
matrix multiplications.

Last but not least, we redesign the attention mechanism
of the transformer with stochastic noise. This allows the
clustering layer to effectively learn the clustering assignment
without falling into the trivial situation of replicating the
results from the attention matrix. We compare our model’s

performance with SOTA models and perform clustering anal-
ysis with the ground truth community labels [15]. Empirical
analysis demonstrates the superior prediction power of our
model, and the assignment produced by THC aligns well with
the ground-truth functional module labels.

To investigate the quality of the model’s clustering as-
signment, we compare the clustering results of our model
with ground truth labels. The results reveal that the proposed
clustering method is able to produce clustering assignments
similar to the existent labels for all functional modules. To
quantitatively analyze the result, we further compare our
method with other popular clustering methods. We observe
that the proposed model produces clusters with the highest
quality among both deep and shallow methods. These results
further support that the proposed clustering THC can capture
the complex structure of brain networks.

REFERENCES

[1] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” NeurIPS, vol. 33, pp. 22 118–22 133, 2020.

[2] H. Cui, W. Dai, Y. Zhu, X. Kan, A. A. Chen Gu, J. Lukemire, L. Zhan,
L. He, Y. Guo, and C. Yang, “BrainGB: A Benchmark for Brain Network
Analysis with Graph Neural Networks,” IEEE TMI, 2022.

[3] X. Li, Y. Zhou, N. Dvornek, M. Zhang, S. Gao, J. Zhuang, D. Scheinost,
L. H. Staib, P. Ventola, and J. S. Duncan, “Braingnn: Interpretable
brain graph neural network for fmri analysis,” Medical Image Analysis,
vol. 74, p. 102233, 2021.

[4] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol. 14, pp. 1–159, 2020.

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT 2019, 2019, pp. 4171–4186.

[6] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y.
Liu, “Do transformers really perform badly for graph representation?”
NeurIPS, 2021.

[7] X. Kan, W. Dai, H. Cui, Z. Zhang, Y. Guo, and C. Yang, “Brain network
transformer,” in NeurIPS, 2022.

[8] T. J. Akiki and C. G. Abdallah, “Determining the hierarchical archi-
tecture of the human brain using subject-level clustering of functional
networks,” Scientific Reports, vol. 9, pp. 1–15, 2019.

[9] T. D. Satterthwaite, D. H. Wolf, D. R. Roalf, K. Ruparel, G. Erus,
S. Vandekar, E. D. Gennatas, M. A. Elliott, A. Smith, H. Hakonarson,
R. Verma, C. Davatzikos, R. E. Gur, and R. C. Gur, “Linked Sex Dif-
ferences in Cognition and Functional Connectivity in Youth,” Cerebral
Cortex, vol. 25, pp. 2383–2394, 2015.

[10] D. Meunier, R. Lambiotte, A. Fornito, K. Ersche, and E. T. Bullmore,
“Hierarchical modularity in human brain functional networks,” Frontiers
in neuroinformatics, vol. 3, p. 37, 2009.

[11] A. Alexander-Bloch, R. Lambiotte, B. Roberts, J. Giedd, N. Gogtay,
and E. Bullmore, “The discovery of population differences in network
community structure: new methods and applications to brain functional
networks in schizophrenia,” Neuroimage, vol. 59, 2012.

[12] O. Sporns and R. F. Betzel, “Modular brain networks,” Annual review
of psychology, vol. 67, p. 613, 2016.

[13] L. Nanetti, L. Cerliani, V. Gazzola, R. Renken, and C. Keysers, “Group
analyses of connectivity-based cortical parcellation using repeated k-
means clustering,” Neuroimage, vol. 47, pp. 1666–1677, 2009.

[14] V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain to leiden:
guaranteeing well-connected communities,” Nature, vol. 9, 2019.

[15] T. J. Akiki and C. G. Abdallah, “Determining the hierarchical archi-
tecture of the human brain using subject-level clustering of functional
networks,” Nature, vol. 9, p. 19290, 2019.


