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ABSTRACT
Brain networks, graphical models such as those constructed
from MRI, have been widely used in pathological predic-
tion and analysis of brain functions. Within the complex
brain system, differences in neuronal connection strengths
parcellate the brain into various functional modules (net-
work communities), which are critical for brain analysis.
However, identifying such communities within the brain has
been a nontrivial issue due to the complexity of neuronal
interactions. In this work, we propose a novel interpretable
transformer-based model for joint hierarchical cluster iden-
tification and brain network classification. Extensive experi-
mental results on real-world brain network datasets show that
with the help of hierarchical clustering, the model achieves
increased accuracy and reduced runtime complexity while
providing plausible insight into the functional organiza-
tion of brain regions. The implementation is available at
https://github.com/DDVD233/THC.

Index Terms— Brain Networks, Neural Imaging Analy-
sis, Graph Neural Networks, Clustering, Machine Learning

1. INTRODUCTION

Graph is a ubiquitous form of data as it captures multiple ob-
jects and their interactions simultaneously. It is widely used
for representing complex systems of related entities [1, 2].
Brain network is a special kind of graph constructed from
MRI images. In brain networks, the anatomical areas named
“Region of Interests” (ROIs) are represented as nodes, while
connectivities between ROIs are represented as links. Parti-
tion atlas defines the set of ROIs in a particular brain network.
In recent decades, abundant works have shown strong associ-
ations between linking imaging-based brain connectivity and
demographic characteristics or mental disorders [3–7].

Both shallow machine learning models like M2E [8]
and deep models like graph neural networks (GNNs) [9] are
researched in the area of brain network analysis. Shallow
models exhibits inferior performance as compared to deep
models [3], but GNNs also suffer from over-smoothing [10],
which limits their ability to model long-distance interactions.
Transformers, on the other hand, have recently emerged as
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a promising approach for various tasks [11, 12], including
predictions on graph data [13]. Graph based transformers
utilizes pairwise attention across full graphs, unlike GNNs,
which only propagate node embeddings locally. BrainTrans-
former [14] employs transformer on brain networks and
demonstrates state-of-the-art performance for brain network
analysis.

ROIs in Brain networks are inherently hierarchically clus-
tered [15]. In typical brain network analysis [16], clustered
ROIs form communities, with each representing a particular
functional module. These functional modules are then further
organized into larger functional modules, with each responsi-
ble for a more general function. This arrangement creates a
hierarchical “module-in-module” structure [17]. Functional
modules provide critical information with regard to down-
stream tasks, and alterations in community patterns some-
times signal pathological lesions [18]. Therefore, learning
a globally shared cluster assignment with the awareness of
downstream tasks is beneficial for both model optimization
and clinical examinations. However, learning such hierar-
chical cluster representations is difficult. Shallow methods
proposed to detect brain communities are mostly based on
the Louvain algorithm [19] and Lloyd algorithm [20]. These
correlation-based methods fail to capture higher-order con-
nectivity patterns between brain regions [21]. Some GNN
models are proposed to detect communities within the brain
[9], but these models suffer from the over-smoothing prob-
lem of GNN, limiting their ability to aggregate and identify
multi-hop connectivity patterns.

To solve the aforementioned challenges, we propose a
Transformer-based Hierarchical Clustering model, abbrevi-
ated as THC, that is tailored for brain network analysis. We
highlight three main contributions of our clustering model.
First, we offer an end-to-end transformer based approach to
learn clustering assignments. Through pairwise attention, a
clustering layer, BCluster, and a transformer encoder collab-
oratively learn a globally shared clustering assignment that is
continuously tuned to downstream tasks. BCluster enhances
the model’s performance, reduces run time complexity, while
also providing clinical insights. Second, we propose a hierar-
chical structure for the clustering model, enabling the model
to learn more abstract, higher-level cluster representations
by combining lower-level modules. Each clustering layer



is attached to a distinct readout module, which allows the
model to effectively utilize the cluster embeddings of every
layer. Last but not least, we redesign the attention mechanism
of the transformer with stochastic noise, which enhances its
cluster learning capability. We compare our model’s perfor-
mance with SOTA models and perform clustering analysis
with the ground truth community labels [22]. Empirical anal-
ysis demonstrates the superior prediction power of our model,
and the assignment produced by THC aligns well with the
ground-truth functional module labels.

2. RELATED WORKS

Deep Learning for Brain Network Analysis. Deep learn-
ing models have gained widespread application in brain net-
work analysis due to their ability to discover shared patterns
across samples with diverse characteristics [23]. To this end,
IBGNN [24] has emerged as one of the first interpretable
graph neural networks (GNNs) for brain networks. Graph-
based transformers such as SAN [13] and Graphormer [25]
have been recently introduced as promising alternatives to
GNN. Brain Network Transformer [14] presents a novel ap-
proach that includes unique readout functions and optimal po-
sitional embeddings and attention mechanisms for brain net-
works. BrainNN [26] and CroGen [27] explore the integration
of multiview brain networks. However, despite the promise of
the existing models, they lack the ability to provide the clus-
tering information that is essential for brain network analysis.
Cluster-aware GNNs. Brain networks have overlapping
communities [28]. To cluster nodes, DiffPool [29] uses an
auxiliary GNN, GRACE [30] utilizes stable states of repeated
propagation, whereas HoscPool [31] uses probabilistic motif
spectral clustering. GNN models like BrainGNN [9] de-
tect communities, but over-smoothing limits their ability to
identify complex cluster structures [32].

3. TRANSFORMER-BASED HIERARCHICAL
CLUSTERING (THC)

Problem Definition Our model’s input is a weighted adja-
cency matrix X ∈ RV×V of a brain network, where V is
the number of nodes (ROIs) as defined in the network. The
objective of the model is to predict the sample class y and
a k-layer hierarchical cluster assignment (A1, · · · ,Ak). As
shown in Figure 1, the overall model can be broken down into
three modules: a Stochastic Transformer (StoTrans) encoder,
a Brain Clustering (BCluster) module and a Readout.
Transformer Based Clustering. The stacked BCluster layer
learns globally shared cluster assignments (A1, . . . ,Ak),
where k is the number of model layers. Each assignment
Ai ∈ (Ci, Ci+1) reduces Xi ∈ (Ci, Ci) into Xi+1 ∈
(Ci+1, Ci+1), where Ci+1 ∈ (C1, · · · , Ck) are the hyper-
parameters denoting the cluster sizes of the ith layer. Specif-
ically, at layer i, the adjacency matrix Xi is first fed into the

transformer encoder, which learns attention matrix S(i,m)

S(i,m) =
Wi,m

Q Xi(Wi,m
K Xi)⊤√

di,mK

(1)

where Wi,m
Q and Wi,m

K are learnable parameters. A node em-
bedding Xi′ is also learned through vanilla transformer prop-
agation using the attention matrix [33].

Xi′ =
1

M

M∑
m=1

Softmax(S(i,m))XiWi
V (2)

where Wi
V is a learnable parameter. Then, a batch-wise

shared clustering assignment is obtained by

Ai = Softmax

(
1

M

M∑
m=1

S(i,m)Wi
A

)
(3)

where Wi
A is a learnable parameter and the Softmax is ap-

plied row-wise. The learned node embedding Xi′ is fed into
an encoder MLP layer, followed by the multiplication of the
globally shared clustering assignment Ai:

Xi+1 = MLP(Xi′) ·Ai. (4)

The main objective of BCluster is maximizing the mu-
tual information between the pre-clustered embedding Xi′

and cluster embedding Xi+1. This objective encourages the
model to cluster similar nodes as the information loss of com-
bining nodes with similar representations is also minimal. In-
spired by [24], we supervise the parameter WA jointly with
the full model through cross-entropy loss. Two losses, spar-
sity loss and element-wise entropy loss are added to regularize
the number of clusters each node is assigned to

LSPS =
∑

i,j
Ai,j , (5)

LENT = −(S log(A) + (1−A) log(1−A)). (6)

The final objective is the sum of all three losses. The
BCluster layer has the following favorable properties:
1. The Assignment is Globally Shared. During the training

process, the assignment is shared batch-wise and opti-
mized jointly with the model. After training is complete,
a final globally shared assignment is obtained by averag-
ing across the assignments of all samples.

2. The Assignment is Differentiable. Each node/cluster
Vi,j ∈ Xi at layer i is assigned a vector of probabilities
(pVi,j ,1, · · · , pVi,j,k), with pVi,j,k denoting the probabil-
ity of assigning Vi,j to kth cluster. This soft assignment
is differentiable, allowing the model to optimize the as-
signment directly through gradient descent.

3. Clustering Reduces Computational Complexity. At ith

layer, the computational complexity of each transformer
encoder is O(n2d + nd2), where n represents the num-
ber of nodes and d represents the number of features. The
clustering reduces the complexity to O(k2d+kd2), where
k is the cluster count and k << n.
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Fig. 1: The overall framework of our proposed model THC.

4. The Assignment is Squashable. A hierarchical cluster-
ing assignment produced by BCluster can be flattened
into one-layer clustering with a linear number of matrix
multiplications. The k-layer hierarchical assignments
(A1, . . . ,Ak) are reduced into one assignment Aflat by
multiplication, Aflat =

∏k
i=1 A

i.
Hierarchical Structure. The model further groups the clus-
ter embeddings from the previous layer into new, larger clus-
ters, generating a hierarchical structure. A readout layer is
attached to each BCluster layer. At layer i, an MLP Readout
is attached to the BCluster layer of that layer Xi and outputs
a prediction yi. This allows the model to effectively ensemble
cluster embeddings from different layers. The final prediction
y is the average of all outputs of each Readout layer, where
y = 1

k

∑k
i=1 yi.

Stochastic Noise. To allow BCluster to effectively learn the
clustering assignment without falling into the trivial situation
of replicating the results from the attention matrix, we re-
design attention matrix S(i,m) with stochastic noise

S(i,m)′ = S(i,m) + log(
Bi,m

I−Bi,m
) (7)

where B ∼ Si,m is a random variable chosen uniformly from
range (0, 1) and I ∼ Si,m is a diagonal matrix of ones.

4. EXPERIMENTS

Datasets. The method is tested on two fMRI datasets.
1. Adolescent Brain Cognitive Development Study (ABCD):

This research enrolls children aged 9 to 10 years old. Re-
peated MRI scans are used to track each child until early
adulthood [34]. Each sample is labeled with its biological
sex. 7,901 children are involved in the study, with 3,961
(50.1%) of them being female. The parcellation is based
on HCP 360 atlas [35].

2. Autism Brain Imaging Data Exchange (ABIDE): This
dataset collects resting-state functional magnetic reso-
nance imaging (rs-fMRI) [36]. It contains brain networks
from 1009 subjects, with 516 (51.14%) being labeled as
Autism spectrum disorder (ASD) patients (positives). The
region is defined based on Craddock 200 atlas [37].

Table 1: Performance comparison of our model with different
baselines in terms of AUROC and accuracy.

Type Method
Dataset: ABIDE Dataset: ABCD

AUROC Accuracy AUROC Accuracy

Graph
Transformer

SAN 71.3±2.1 65.3±2.9 90.1±1.2 81.0±1.3
VanillaTF 76.4±1.2 65.2±1.2 94.3±0.7 85.9±1.4

Graphormer 63.5±3.7 60.8±2.7 89.0±1.4 80.2±1.3

Fixed
Network

BrainGNN 62.4±3.5 59.4±2.3 OOM OOM
BrainGB 69.7±3.3 63.6±1.9 91.9±0.3 83.1±0.5

BrainNetCNN 74.9±2.4 67.8±2.7 93.5±0.3 85.7±0.8

Pooling &
Clustering

DiffPool 68.3±0.9 61.3±1.7 83.2±1.2 75.5±1.4
THC + Lin. Cluster 71.8±1.1 64.8±1.3 91.7±0.5 82.6±1.8
THC + No Cluster 75.6±1.2 68.0±1.4 94.5±0.7 86.4±1.1

Ours THC Full 79.76±1.1 70.6±2.2 96.2±0.5 89.4±0.4

Baselines and Experiment Setup. We compare the THC
model with two kinds of baselines, as demonstrated in Ta-
ble 1. Specifically, SAN [13], Graphormer [25] and Vanilla
Transformer are transformer-based baselines, with the first
two designed for graph prediction, and the vanilla transformer
is a two-layer transformer based on the original implemen-
tation [33]. Three methods optimized for brain networks,
BrainGNN [9], BrainGB [3], and BrainNetCNN [38], are also
included. Our model is experimented with two layers and
clustering sizes 90, 4 and 20, 4 for ABCD and ABIDE dataset
respectively. We split the dataset randomly into a training set,
a test set and a validation set on a 7:2:1 ratio. AUROC and ac-
curacy are used over a 5-fold run as metrics. For all methods,
the test performance on the epoch with the highest average
AUROC on the validation set is recorded.
Performance Analysis. Performance results are recorded in
Table 1. Compared with the baseline methods, it is shown that
our model achieves the best performance on both datasets,
with up to 3.2% and 1.7% higher AUROC on ABIDE and
ABCD datasets over all transformer and GNN-powered mod-
els. Out of the 7 baselines, BrainGNN is the only model that
generates community clustering. Nevertheless, its need of
memory prevents its application on large graphs like ABCD.

To understand how our clustering method affects the
model performance, we designed two ablative variants of
our model: one with the clustering layer removed (THC +
No Cluster), and one with BCluster swapped with a simple
linear layer (THC + Lin. Cluster). We further compare the
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Fig. 2: Hierarchical 2-layer cluster assignments with 20 and 8 clusters produced by THC and Louvain. In each cluster, nodes
are colored in accordance with their ground-truth cluster labels. The legend for 20-cluster plots are omitted for simplicity.

performance of our model with a popular pooling model,
DiffPool [29]. The results are shown in the Pooling & Clus-
tering section of Table 1. Compared with the no clustering
model, we observe that our full model gives a significant
performance boost of up to 1.7% in AUROC and 3.0% in
accuracy. Furthermore, we discover that a naive linear clus-
tering negatively affects performance, proving that clustering
assignments cannot be modeled in a simple way.

Table 2: Runtime comparison of our model with different
baselines (in minutes) averaged over 5 runs.

Dataset SAN Graphormer Vanilla TF THC

ABCD 908.05±3.6 4089.86±5.7 36.26±2.12 27.31±0.47
ABIDE 93.01±0.96 133.52±0.54 2.32±0.10 1.81±0.03

Runtime Analysis. We compare the run time of our model
with transformer baselines on an RTX 8000 GPU and record
the results in Table 2. Our model runs faster than all base-
lines with a margin of at least 24.7% on ABCD and 22.0% on
ABIDE, which demonstrate that our model can effectively re-
duce runtime complexity through the efficient aggregation of
node embeddings into cluster embeddings of smaller sizes.

5. CLUSTERING ANALYSIS

To investigate the quality of the model’s clustering assign-
ment, we run our model with 2 layers of cluster size 20 and
8, and create a bar plot of each cluster, as shown in Figure
2. The nodes within the 20 clusters assignment and 8 clus-
ters assignments, represented by blocks in the cluster bar, are
colored with respect to the AAc architecture at 20 modules
and 6 modules definition by [22] respectively. In these bar
plots, cluster purity is represented by the percentage of the
majority color of that cluster. The results reveal that the pro-
posed clustering method is able to produce clustering assign-
ments similar to the existent labels for all functional modules.
Among all the plotted clusters, cluster 2, 3, 4, 6 and 8 have pu-
rities of over 90 percent. Similar patterns are observed in the
20 clusters plot. Misclassified samples also provide interest-
ing insights. In the 8 clusters sample, some Ventral Salience
Network nodes are misclassified as Default Mode Network

(DMN). This is supported by studies showing some areas of
these two communities share similar functions [39].

Table 3: Cluster quality comparison of our model with base-
lines. Clustering results are compared with the labels by [22].

Method Purity NMI Homogeneity

Lloyd 0.842±0.003 0.738±0.001 0.711±0.002
Louvain 0.671±0.099 0.647±0.052 0.648±0.087
GRACE 0.717±0.067 0.685±0.022 0.722±0.053

THC 0.889±0.008 0.742±0.004 0.783±0.017

To quantitatively analyze the result, we further compare
our method with three clustering methods, Lloyd’s algorithm
[40], Louvain method [41], and GRACE [30], in terms of pu-
rity, normalized mutual information (NMI) and homogeneity,
as shown in Table 3. Specifically, for a cluster assignment C
and a ground truth definition T partitioning N nodes, purity
ppurity is defined as the percentage of the majority truth cluster
within C: ppurity =

∑
c∈C

1
N max

t∈T
|c ∩ t|. The NMI score pnmi

and homogeneity score phomo are given as pnmi = H(C) −
H(C|T ) − E(H(C) − H(C|T )) and phomo = 1 − H(C|T )

H(C)

respectively, where H denotes the entropy and E denotes ex-
pected value. We can observe that the proposed THC pro-
duces clusters with the highest quality among both deep and
shallow baselines. The purity of THC averaged over 5 k-fold
runs is 88.9%, which is 4.7% higher than the highest baseline.
Similarly, the homogeneity score of THC surpasses the high-
est baseline by a margin of 7.2%. These results further sup-
port that the proposed clustering THC can capture the com-
plex structure of brain networks.

6. CONCLUSION

In this work, we present THC, an interpretable transformer
model for brain network analysis. Hierarchical clustering lay-
ers are designed based on the attention mechanism of the
transformer encoder to learn a global clustering assignment
in an end-to-end manner. A future direction of our work is
to investigate the effect of overlapping communities on the
clustering result as well as the lesion predictions.



7. COMPLIANCE WITH ETHICAL STANDARDS

The ABCD and ABIDE datasets employed in this study are
owned by a third-party organization, where informed consent
was obtained for all subjects. The data processed is anony-
mous with no personally identifiable information. All studies
are conducted according to the Good Clinical Practice guide-
lines and U.S. 21 CFR Part 50 (Protection of Human Sub-
jects), and under the approval of Institutional Review Boards.
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