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ABSTRACT
As online platforms are striving to get more users, a critical chal-
lenge is user churn, which is especially concerning for new users.
In this paper, by taking the anonymous large-scale real-world data
from Snapchat as an example, we develop ClusChurn, a system-
atic two-step framework for interpretable new user clustering and
churn prediction, based on the intuition that proper user clustering
can help understand and predict user churn. Therefore, ClusChurn
firstly groups new users into interpretable typical clusters, based on
their activities on the platform and ego-network structures. Then
we design a novel deep learning pipeline based on LSTM and at-
tention to accurately predict user churn with very limited initial
behavior data, by leveraging the correlations among users’ multi-
dimensional activities and the underlying user types. ClusChurn is
also able to predict user types, which enables rapid reactions to dif-
ferent types of user churn. Extensive data analysis and experiments
show that ClusChurn provides valuable insight into user behaviors,
and achieves state-of-the-art churn prediction performance. The
whole framework is deployed as a data analysis pipeline, delivering
real-time data analysis and prediction results to multiple relevant
teams for business intelligence uses. It is also general enough to be
readily adopted by any online systems with user behavior data.
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1 INTRODUCTION
Promoted by the widespread usage of internet and mobile devices,
hundreds of online systems are being developed every year, ranging
from general platforms like social media and e-commerce websites
to vertical services including news, movie and place recommenders.
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As the market is overgrowing, the competition is severe too, with
every platform striving to attract and keep more users.

While many of the world’s best researchers and engineers are
working on smarter advertisements to expand businesses by acqui-
sition [20, 34], retention has received less attention, especially from
the research community. The fact is, however, acquiring new users
is often much more costly than retaining existing ones1. With the
rapid evolution of mobile industry, the business need for better user
retention is larger than ever before2, for which, accurate, scalable
and interpretable churn prediction plays a pivotal role3.

Churn is defined as a user quitting the usage of a service. Exist-
ing studies around user churn generally take one of the two ways:
data analysis and data-driven models. The former is usually done
through user surveys, which can provide valuable insights into
users’ behaviors and mindsets. But the approaches require signifi-
cant human efforts and are hard to scale, thus are not suitable for
nowadays ubiquitous mobile apps. The development of large-scale
data-driven models has largely improved the situation, but no exist-
ing work has looked into user behavior patterns to find the reasons
behind user churn. As a consequence, the prediction results are less
interpretable, and thus cannot fundamentally solve the problem of
user churn.

In this work, we take the anonymous data from Snapchat as an
example to systematically study the problem of interpretable churn
prediction. We notice that online platform users can be highly het-
erogeneous. For example, they may use (and leave) a social app for
different reasons4. Through extensive data analysis on users’ multi-
dimensional temporal behaviors, we find it intuitive to capture this
heterogeneity and assign users into different clusters, which can
also indicate the various reasons behind their churn. Motivated by
such observations, we develop ClusChurn, a framework that jointly
models the types and churn of new users (Section 2).

To understand user types, we encounter the challenges of auto-
matically discovering interpretable user clusters, addressing noises
and outliers, and leveraging correlations among features. As a se-
ries of treatments, we apply careful feature engineering and adopt
k-means with Silhouette analysis [38] into a three-step clustering
mechanism. The results we get include six intuitive user types, each
having typical patterns on both daily activities and ego-network
structures. In addition, we also find these clustering results highly
indicative of user churn and can be directly leveraged to generate
type labels for users in an unsupervised manner (Section 3).

1https://www.invespcro.com/blog/customer-acquisition-retention
2http://info.localytics.com/blog/mobile-apps-whats-a-good-retention-rate
3https://wsdm-cup-2018.kkbox.events
4http://www.businessofapps.com/data/snapchat-statistics
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To enable interpretable churn prediction, we propose to jointly
learn user types and user churn. Specifically, we design a novel deep
learning framework based on LSTM [21] and attention [13]. Each
LSTM is used to model users’ temporal activities, and we parallelize
multiple LSTMs through attention to focus on particular user types.
Extensive experiments show that our joint learning framework
delivers supreme performances compared with baselines on churn
prediction with limited user activity data, while it also provides
valuable insights into the reasons behind user churn, which can be
leveraged to fundamentally improve retention (Section 4).

Note that, although we focus on the example of Snapchat data,
our ClusChurn framework is general and able to be easily applied
to any online platform with user behavior data. A prototype imple-
mentation of ClusChurn based on PyTorch is released on Github5.

The main contributions of this work are summarized as follows:
(1) Through real-world large-scale data analysis, we draw at-

tention to the problem of interpretable churn prediction and
propose to jointly model user types and churn.

(2) We develop a general automatic new user clustering pipeline,
which provides valuable insights into different user types.

(3) Enabled by our clustering pipeline, we further develop a
prediction pipeline to jointly predict user types and user
churn and demonstrate its interpretability and supreme per-
formance through extensive experiments.

(4) We deploy ClusChurn as an analytical pipeline to deliver
real-time data analysis and prediction to multiple relevant
teams within Snap Inc. It is also general enough to be easily
adopted by any online systems with user behavior data.

2 LARGE-SCALE DATA ANALYSIS
To motivate our study on user clustering and churn prediction,
and gain insight into proper model design choices, we conduct an
in-depth data analysis on a large real-world dataset from Snapchat.
Sensitive numbers are masked for all data analysis within this paper.

2.1 Dataset
We collect the anonymous behavior data of all new users who reg-
istered their accounts during the two weeks from August 1, 2017,
to August 14, 2017, in a particular country. We choose this dataset
because it is a relatively small and complete network, which facili-
tates our in-depth study on users’ daily activities and interactions
with the whole network. There are a total of 0.5M new users regis-
tered in the specific period, and we also collect the remaining about
40M existing users with a total of approximately 700M links in this
country to form the whole network.

We leverage two types of features associated with users, i.e.,
their daily activities and ego-network structures. Both types of
data are collected during the two-week time window since each
user’s account registration. Table 1 provides the details of the daily
activities data we collect, which are from users’ interactions with
some of the core functions of Snapchat: chat, snap, story, lens. We
also collect each user’s complete ego-network, which are formed
by her and her direct friends. The links in the networks are bi-
directional friendships on the social app. For each user, we compute

5https://github.com/yangji9181/ClusChurn

ID Feat. Name Feat. Description
0 chat_received # textual messages received by the user
1 chat_sent # textual messages sent by the user
2 snap_received # snap messages received by the user
3 snap_sent # snap messages sent by the user
4 story_viewed # stories viewed by the user
5 discover_viewed # discovers viewed by the user
6 lens_posted # lenses posted to stories by the user
7 lens_sent # lenses sent to others by the user
8 lens_saved # lenses saved to devices by the user
9 lens_swiped # lenses swiped in the app by the user

Table 1: Daily activities we collect for users on Snapchat.

the following two network properties and use them as a description
of her ego-network structures.
• Size: the number of nodes, which describes howmany friends
a user has.
• Density: the number of actual links divided by the number
of all possible links in the network. It describes how densely
a user’s friends are connected.

As a summary, given a set of N usersU , for each user ui ∈ U ,
we collect her 10-dimensional daily activities plus 2-dimensional
network properties, to form a total of 12-dimensional time series
Ai . The length of Ai is 14 since we collect each new user’s behav-
ioral data during the first two weeks after her account registration.
Therefore, Ai is a matrix of 12 × 14.

2.2 Daily Activity Analysis
Figure 1 (a) shows an example of dailymeasures on users’ chat_received
activities. Each curve corresponds to the number of chats received
by one user every day during the first two weeks after her account
registration. The curves are very noisy and bursty, which poses
challenges to most time series models like HMM (Hidden Markov
Models), as the critical information is hard to be automatically cap-
tured. Therefore we compute two parameters, i.e., µ, the mean of
daily measures to capture the activity volume, and l , the laд(1) of
daily measures to capture the activity burstiness. Both metrics are
commonly used in time series analysis [6].

(a) Daily Measures (b) Aggregated Measures

Figure 1: Activities on chat_received in the first two weeks.
Y-axis is masked in order not to show the absolute values.

Figure 1 (b) shows the aggregatedmeasures on users’ chat_received
activities. Every curve corresponds to the total number of chats
received by one user until each day after her account registration.
The curves have different steepness and inflection points. Motivated
by a previous study on social network user behavior modeling [8],
we fit a sigmoid function y (t ) = 1

1+e−q (t−ϕ ) to each curve, and use
the two parameters q and ϕ to capture the shapes of the curves.



a weak positive correlation 0.02 (with p-value < 0.001). This
means lenders slightly benefit from the strategy of decentralizing
their bids.

5. PREDICTING THE LOAN SUCCESS
In Prosper, listings for which at least 100% of the requested

amount is collected, are considered “fundable” (successful) and
they translate into an active loan. However, listings which do not
reach full funding are considered unsuccessful (“not fundable") and
no loan is created. Out of the loans that are funded, some are repaid
on time and others are cancelled or their borrowers default on them.

In this section, we examine a simple model that predicts whether
a listing is going to be funded or not, and whether it will be paid
back or not. A similar study is conducted at [11] and [20], where
the authors focus on borrower and listing attributes. Their goal is to
provide a ranking of the relative importance of various fundability
determinants, rather than providing a predictive model. However,
our goal here is different as we do not just want to make our pre-
dictions based on some large number of features but are instead
interested in modeling how the temporal dynamics of bidding be-
havior predicts the loan outcome (funded vs. not funded and paid
vs. not paid). Thus we are interested in how much signal is in "how
the market feels" as opposed to traditional features such as credit
grade or debt-to-income ratio.

We started our analysis by looking at the time series history of
loan listings. In other words, we examine the progression of the
total amount bid on a given loan as a function of time. We used a
time scale from 0 to 1, in which time 0 is when the listing receives
the first bid and time 1 is when it gets the last bid. Let Ai be the
total amount bid for listing i and

P
jk aj = Ak, where aj is the

amount of money bid at the j-th bid, so Ak is the total amount of
money bid till the k-th bid. For each listing, we looked at YR = Ak

Ai
as a function of time. Figure 9 shows the four main types of curves
we observed. This observation led us to the hypothesis that the total
amount bid on a given listing follows a sigmoid curve as a function
of time. As a result, we fit a sigmoid (logistic) curve to each listing
time series, defined by

y(t) =
1

1 � e�q(t��)
,

and we used least squares to find the optimal q and �. Parameter
q controls how quickly the function rises while � controls the time
(x-value) at which the rise occurs.

For each listing’s fit, we calculated the R-squared error. The
average R-squared error is 0.9, which shows that overall we do a
good job of fitting the data. This is not our main goal, however. We
wish instead to use the shape parameters, q and � of a listing’s bid
history to predict whether or not this listing will be funded and paid
back.

Some examples of our fitting can be seen in Figure 10. ith dot
depicts the total fraction of collected money at the time of ith bid
of that particular listing and the smooth curves are the fitted logistic
curves. While q is a measure of the steepness of the curve, � tells us
where the inflection point of the sigmoid curve is located. Mainly,
all the listings fall into one of the four curve types as shown in
Figure 9. For low q and high �, the curve has a less steep sigmoidal
shape. For high q and high �,the curve has an exponential shape.
For low q and low �, the curve has diminishing returns shape and
for high q and low �, the curve has a steep sigmoidal shape.

Figure 11 shows a plot of q versus � both for funded (purple
triangles) and non-funded (blue circles) listings. The two classes
are mostly distinguishable, especially in the middle range of values
for both q and �. This is similar for loans that have been paid back

Figure 9: Main curve types that were observed when we plot
total fraction of collected money as a function of time for each
listing.

Figure 10: Real instances of what Figure 9 illustrates. Each dot
is a bid of that particular listing, smooth curves are the fitted
logistic curves.

(green triangles) and those that have not (red circles) as shown in
Figure 12.

In order to verify the importance of q and � in predicting the
success of a listing, we constructed a logistic regression prediction
model that uses these two quantities as features. As discussed in
Section 3, funded listings have significantly larger number of bids
than the non-funded ones. So, we also included the total number
of bids, Nb as a parameter which helps the model. Table 5 shows
the summary of the regression model that predicts the success of
a listing. According to the table of coefficients, both q and � are
significant predictors of success of a listing. For every one unit
change in q, the log odds of success (versus non-success) increases
by 0.063. For a one unit increase in � the log odds of a listing
being successful decreases by 0.7162. In other words, the higher
the steepness of the curve, the more likely a listing will be funded
and the sooner the curve spikes (negative � coefficient) the better.
So, observing a steep sigmoidal curve for the progression of the
total amount bid for a listing is a good sign of its success.

We used cross validation to understand how well the regression
model works, i.e., we split the available data into five buckets,
trained our regression model on four of them, tested the accuracy on
the remaining one and repeated this procedure for each test bucket.
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Figure 2: Main curve shapes captured by sigmoid functions
with different parameter configurations.

Figure 2 shows 4 example shapes of curves captured by the
sigmoid function with different q and ϕ values.After such feature
engineering on the time series data, each of the 12 features is de-
scribed by a vector of 4 parameters f = {µ, l ,q,ϕ}. We use Fi to
denote the feature matrix of ui and Fi is of size 12 × 4.

2.3 Network Structure Analysis
In addition to daily activities, we also study how new users connect
with other users. The 0.5M new users in our dataset directly make
friends with a subset of a few million users in the whole network
during the first two weeks since their account registration. Wemask
the absolute number of this group of users and use κ to denote it.

We find these κ users very interesting since there are about 114M
links formed among them and 478M links to them. However, there
are fewer than 700M links created in the whole network of the total
about 40M users in the country. It leads us to believe that there must
be a small group of well-connected popular users in the network,
which we call the core of a network, and in fact, this core overlaps
with a lot of the κ direct friends of new users.

(a) Overlapping of core and the κ users (b) Degree distribution of the κ users

Figure 3: Most of the κ users are within the core.

To validate this assumption, we define the core of social networks
as the set of users with the most friends, i.e., nodes with highest
degrees, motivated by earlier works on social network analysis [40].
Figure 3 (a) shows the percentage of the κ users within the core as
we increase the size of the core from the top 1% nodes with highest
degrees to the top 10%. Figure 3 (b) shows the particular degrees
of the κ users drawn together with all other nodes, ordered by
degrees on the x-axis. As we can see, 44% of the κ users are among
the top 5% nodes with highest degrees, and 67% of them have 10%
highest degrees. This result confirms our hypothesis that most links
created by new users at the beginning of their journeys are around

the network core. Since the κ direct friends do not entirely overlap
with the core, it also motivates us to study how differently new
users connect to the core, and what implications such differences
can have on user clustering and churn prediction.

3 INTERPRETABLE USER CLUSTERING
In this section, we study what the typical new users are like on
Snapchat and how they connect to the social network. We aim
to find an interpretable clustering of new users based on their
initial behaviors and evolution patterns when they interact with
the various functions of a social app and other users. Moreover, we
want to study the correlations between user types and user churn,
so as to enable better churn prediction and personalized retention.

We also note that, besides churn prediction, interpretable user
clustering is crucial for the understanding of user behaviors so as
to enable various product designs, which can ultimately lead to
different actions towards the essentially different types of users.
Therefore, while we focus on the end task of churn prediction,
the framework proposed in this work is generally useful for any
downstream applications that can potentially benefit from the un-
derstanding of user types, such as user engagement promotion.

3.1 Challenges
Automatically finding interpretable clustering of users w.r.t. multi-
dimensional time series data poses quite a few challenges, which
makes the canonical algorithms for clustering or feature selection
such as k-means and principal component analysis impractical [19].

Challenge 1: Zero-shot discovery of typical user types. As we
discuss in Section 1, users are often heterogeneous. For example,
some users might actively share contents, whereas others only
passively consume [22]; some users are social hubs that connect to
many friends, while others tend to keep their networks neat and
small [25]. However, for any arbitrary social app, is there a general
and systematic framework, through which we can automatically
discover the user types, without any prior knowledge about possible
user types or even the proper number of clusters?

Challenge 2: Handling correlated multi-dimensional behav-
ior data. Users interact with a social app in multiple ways, usually
by accessing different functions of the app as well as interacting
with other users. Some activities are intuitively highly correlated,
such as chat_sent and chat_received, whereas some correlations are
less obvious, such as story_viewed and lens_sent. Moreover, even
highly correlated activities cannot be simply regarded as the same.
For example, users with more chats sent than received are quite dif-
ferent from users in the opposite. Therefore, what is a good way to
identify and leverage the correlations among multiple dimensions
of behavior data, including both functional and social activities?

Challenge 3: Addressing noises and outliers. User behavior
data are always noisy with random activities. An active user might
pause accessing the app for various hidden reasons, and a random
event might cause a dormant user to be active for a period of
time as well. Moreover, there are always outliers, with extremely
high activities or random behavior patterns. A good clustering
framework needs to be robust to various kinds of noises and outliers.



Challenge 4: Producing interpretable clustering results. A
good clustering result is useless unless the clusters are easily in-
terpretable. In our scenario, we want the clustering framework
to provide insight into user types, which can be readily turned
into actionable items to facilitate downstream applications such as
fast-response and targeted user retention.

3.2 Methods
To deal with those challenges, we design a robust three-step clus-
tering framework. Consider a total of two features, namely, f1
(chat_received) and f2 (chat_sent), for four users, u1, u2, u3 and u4.
Figure 4 illustrates a toy example of our clustering process with the
details described in the following.

Step 1: Single-feature clustering. For each feature, we apply k-
means with Silhouette analysis [38] to automatically decide the
proper number of clusters K and assign data into different clusters.
For example, as illustrated in Figure 4, for chat_received, we have the
feature of four users {f11 , f

1
2 , f

1
3 , f

1
4 }, each of which is a 4-dimensional

vector (i.e., f = {u, l ,q,ϕ}). Assume K chosen by the algorithm is 3.
Then we record the cluster belongingness, e.g., {l11 = 1, l12 = 1, l13 =
2, l14 = 3}, and cluster centers {c11, c

1
2, c

1
3}. Let’s also assume that

for chat_sent, we have K = 2, (l21 = 1, l22 = 1, l23 = 1, l24 = 2) and
{c21, c

2
2}. This process helps us to find meaningful types of users

w.r.t. every single feature, such as users having high volumes of
chat_received all the time versus users having growing volumes of
this same activity day by day.

Figure 4: A toy example of our 3-step clustering framework.

Step 2: Feature combination. We convert the features of each
user into a combination of the features of her nearest cluster center
in each feature. Continue our toy example in Figure 4. Since user u1
belongs to the first cluster in feature chat_received and first cluster
in feature chat_sent, it is replaced by x1, which is a concatenation
of c11 and c21. u2, u3 and u4 are treated in the same way. This pro-
cess helps us to largely reduce the influence of noises and outliers
because every single feature is replaced by that of a cluster center.

Step 3: Multi-feature clustering. We apply k-means with Silhou-
ette analysis again on the feature combinations. As for the example,
the clustering is done on {x1, x2, x3, x4}. The algorithm explores
all existing combinations of single-dimensional cluster centers,
which record the typical values of combined features. Therefore,
the multi-feature clustering results are the typical combinations of
single-dimensional clusters, which are inherently interpretable.

3.3 Results
Clustering on single features. We first present our single-feature
clustering results on each of users’ 12-dimensional behaviors. Fig-
ure 5 provides the detailed results on lens_sent as an example. The
results on other features are slightly different regarding the num-
bers of clusters, shapes of the curves, and numbers of users in each
cluster. However, the method used is the same and they are omitted
to keep the presentation concise.

Mean

La
g(
1)

!

q

(a) Parameter dist. (b) Activity patterns.

Figure 5: 4 types of users shown with different colors.
Figure 5 (a) shows the four parameters we compute over the

14-day period on users’ lens_sent activities, as they distribute into
the four clusters detected by the k-means algorithm. The number of
clusters is automatically selected with the largest average Silhouette
score when k is iterated from 2 to 6, which corresponds to clusters
that are relatively far away from each other while having similar
sizes. Figure 5 (b) shows the corresponding four types of users with
different activity patterns on lens_sent. The first type of users (red)
have no activity at all, while the second type (green) have stable
activities during the two weeks. Type 3 users (blue) are only active
in the beginning, and type 4 users (black) are occasionally active.
These activity patterns are indeed well captured by the volume
and burstiness of their daily measures, as well as the shape of the
curves of their aggregated measures. Therefore, the clusters are
highly interpretable. By looking at the clustered curves, we can
easily understand the activity patterns of each type of users.
Clustering on network properties. For single-feature clustering
on network properties, as we get four clusters on ego-network size
and three clusters on density, there is a total of 4 × 3 = 12 possible
combinations of different patterns. However, when putting these
two features of network properties together with the ten features
of daily activities through our multi-feature clustering framework,
we find that our new users only form three typical types of ego-
networks. This result proves the efficacy of our algorithm since it
automatically finds that only three out of the twelve combinations
are essentially typical.

Figure 6 illustrates three example structures. The ego-networks
of type 1 users have relatively large sizes and high densities; type
2 users have relatively small ego-network sizes and low densities;
users of type 3 have minimal values on both measures.

Through further analysis, we find that these three types of new
users clustered by our algorithm based on the features of their ego-
networks have strong correlations with their positions in the whole
social network. Precisely, if we define network core as the top 5%
users that have the most friends in the entire network, and depict



(a) Type	1 users (b) Type	2 users (c) Type	3 users

Figure 6: Examples of 3 types of ego-network structures.

the whole network into a jellyfish structure as shown in Figure
7, we can exactly pinpoint each of the three user types into the
tendrils, outsiders, and disconnected parts. Specifically, type 1 users
are mostly tendrils with about 58% of direct friends in the core;
type 2 users are primarily outsiders with about 20% of direct friends
in the core; type 3 users are mostly disconnected with almost no
friends in the core. Such result again proves that our clustering
framework can efficiently find important user types.

tendrilsoutsiders

core

disconnected

Figure 7: The whole network depicted into a jellyfish shape.

Clustering on all behaviors. Combining new users’ network
properties with their daily activities, we finally come up with six
cohorts of user types, which is also automatically discovered by
our algorithm without any prior knowledge. Looking into the user
clusters, we find their different combinations of features quite mean-
ingful, regarding both users’ daily activities and ego-network struc-
tures. Subsequently, we are able to give the user types intuitive
names, which are shown in Table 2. Figure 8 (a) shows the portions
of the six types of new users.

We define a user churns if there is no activity at all in the second
week after account registration. To get more insight from the user
clustering results and motivate an efficient churn prediction model,
we also analyze the churn rate of each type of users and present
the results in Figure 8 (b). The results are also very intuitive. For
example, All-star users are very unlikely to churn, while Swipers
and Invitees are the most likely to churn.
ID Type Name Daily Activities Ego-network Type
0 All-star Stable active chat, snap, story & lens Tendril
1 Chatter Stable active chat & snap, few other acts Tendril
2 Bumper Unstable chat & snap, few other acts Tendril
3 Sleeper Inactive Disconnected
4 Swiper Active lens swipe, few other acts Disconnected
5 Invitee Inactive Outsider

Table 2: 6 types of new users and their characteristics.

Note that, our new user clustering results are highly intuitive,
and in the meantime provide a lot of valuable insights. For example,
the main differences between All-star users and Chatters are their
activities on story and lens, which are the additional functions of
Snapchat. Being active in using these functions indicates a much
lower churn rate. The small group of Swipers is impressive too
since they seem to only try out the lenses a lot without utilizing

Chatter

All-star
Bumper

Sleeper
Swiper

Invitee

(a) Portions (b) Churn rates

Figure 8: Portions and churn rates of the six new user types.
The y-axis is rescaled to not show the absolute values.

any other functions of the app, which is related to an entirely high
churn rate. Quite a lot of new users seem to be invited to the app
by their friends, but they are highly likely to quit if not interacting
with their friends, exploring the app functions or connecting to
core users. Insights like these are highly valuable for user modeling,
growth, retention and so on.

Although we focus our study on Snapchat data in this paper, the
clustering pipeline we develop is general and can be applied to any
online platforms with multi-dimensional user behavior data. The
code of this pipeline has also been made publicly available.

4 FAST-RESPONSE CHURN PREDICTION
Motivated by our user type analysis and the correlations between
user types and churn, we aim to develop an efficient algorithm for
interpretable new user churn prediction. Our analysis of real data
shows that new users are most likely to churn in the very beginning
of their journey, which urges us to develop an algorithm for fast-
response churn prediction. The goal is to accurately predict the
likelihood of churn by looking at users’ very initial behaviors, while
also providing insight into possible reasons behind their churn.

4.1 Challenges
New user churn prediction with high accuracy and limited data is
challenging mainly for the following three reasons.
Challenge 1: Modeling sequential behavior data. As we dis-
cuss in Section 2.1, we model each new user by their initial inter-
actions with different functions of the social app as well as their
friends, and we collect a 12-dimensional time seriesAi for each new
user ui ∈ U . However, unlike for user clustering where we lever-
age the full two-week behavior data of each user, for fast-response
churn prediction, we only focus on users’ very limited behavior
data, i.e., from the initial few days. The data are naturally sequential
with temporal dependencies and variable lengths. Moreover, the
data are very noisy and bursty. These characteristics pose great
challenges to traditional time series models like HMM.
Challenge 2: Handling sparse, skewed and correlated activi-
ties. The time series activity data generated by each new user are
multi-dimensional. As we show in Section 3, such activity data are
very sparse. For example, Chatters are usually only active in the first
four dimensions as described in Table 1, while Sleepers and Invitees
are inactive in most dimensions. Even All-star users have a lot of
0’s in certain dimensions. Besides the many 0’s, the distributions
of activity counts are highly skewed instead of uniform and many
activities are correlated, like we discuss in Section 3.1.



Challenge 3: Leveraging underlying user types. As shown in
our new user clustering analysis and highlighted in Figure 8 (b),
our clustering of new users is highly indicative of user churn and
should be leveraged for better churn prediction. However, as we
only get access to initial several days instead of the whole two-
week behaviors, user types are also unknown and should be jointly
inferredwith user churn. Therefore, how to design the propermodel
that can simultaneously learn the patterns for predicting user types
and user churn poses a unique technical challenge that cannot be
solved by existing approaches.

4.2 Methods and Results
We propose a series of solutions to treat the challenges listed above.
Together they form our efficient churn prediction framework. We
also present comprehensive experimental evaluations for each pro-
posed model component. Our experiments are done on an anony-
mous internal dataset of Snapchat, which includes 37M users and
697M bi-directional links. The metrics we compute include accu-
racy, precision, and recall, which are commonly used for churn
prediction and multi-class classification [47]. The baselines we com-
pare with are logistic regression and random forest, which are the
standard and most widely practiced models for churn prediction
and classification.We randomly split the new user data into training
and testing sets with the ratio 8:2 for 10 times, and run all compared
algorithms on the same splits to take the average performance for
evaluation. All experiments are run on a single machine with a
12-core 2.2GHz CPU and no GPU, although the runtimes of our
neural network models can be largely improved on GPUs.
Solution 1: Sequence-to-sequence learning with LSTM. The
intrinsic problem of user behavior understanding is sequence mod-
eling. The goal is to convert sequences of arbitrary lengths with
temporal dependences into a fixed-length vector for further usage.
To this end, we propose to leverage the state-of-the-art sequence-to-
sequence model, that is, LSTM (Long-Short TermMemory) from the
family of RNN (Recurrent Neural Networks) [21, 33]. Specifically,
we apply a standard multi-layer LSTM to the multi-dimensional
input A. Each layer of the LSTM computes the following functions

it = σ (Wi · [ht−1,xt ] + bi ) (1)
ft = σ (Wf · [ht−1,xt ] + bf )
ct = ft ∗ ct−1 + it ∗ tanh(Wc · [ht−1,xt ] + bc )
ot = σ (Wo · [ht−1,xt ] + bo )
ht = ot ∗ tanh(ct )

where t is the time step in terms of days, ht is the hidden state
at time t , ct is the cell state at time t , xt is the hidden state of
the previous layer at time t , with xt = a ·t for the first layer, and
it , ft , ot are the input, forget and out gates, respectively. σ is the
sigmoid function σ (x ) = 1/(1 + e−x ). Dropout is also applied to
avoid overfitting. We use Θl to denote the set of parameters in all
LSTM layers.

A linear projection with a sigmoid function is connected to the
output of the last LSTM layer to produce user churn prediction as

ŷ = σ (WcoT + bc ). (2)
We use Θc to denote the parameters in this layer, i.e., Wc and bc .

Unlike standard methods for churn prediction such as logistic re-
gression or random forest, LSTM is able to model user behavior data

as time series and capture the evolvement of user activities through
recognizing the intrinsic temporal dependencies. Furthermore, com-
pared with standard time series models like HMM, LSTM is good
at capturing both long term and short term dependences within
sequences of variable lengths. When the lengths are short, LSTM
acts similarly as basic RNN [33], but when more user behaviors
become available, LSTM is expected to excel.

Figure 9 (a) shows the performances of compared models. The
length of the output sequence of LSTM is empirically set to 64. In the
experiments, we vary the amounts of user behavior data the models
get access to and find that more days of behavior data generally lead
to better prediction accuracy. We can also see that new users’ initial
activities in the first few days are more significant in improving
the overall accuracy. A simple LSTM model can outperform all
compared baselines with a substantial margin. The runtime of LSTM
on CPU is within ten times of the runtimes of other baselines, and
it can be significantly improved on GPUs.
Solution 2: LSTMwith activity embedding. To deal with sparse,
skewed and correlated activity data, we propose to add an activity
embedding layer in front of the standard LSTM layer. Specifically,
we connect a fully connected feedforward neural network to the
original daily activity vectors, which converts users’ sparse activity
features of each day into distributional activity embeddings, while
deeply exploring the skewness and correlations of multiple features
through the linear combinations and non-linear transformations.
Specifically, we have

e ·t = ψ
H (. . .ψ 2 (ψ 1 (a ·t )) . . .), (3)

where
ψh (e ) = ReLU(W h

e Dropout(e ) + bhe ). (4)
H is the number of hidden layers in the activity embedding network.
Θe is the set of parameters in these H layers. With the activity
embedding layers, we simply replace A by E for the input of the
first LSTM layer, with the rest of the architectures unchanged.

Figure 9 (b) shows the performances of LSTM with activity em-
bedding of varying number of embedding layers and embedding
sizes. The length of the output sequence of LSTM is kept as 64. The
overall performances are significantly improved with one single
layer of fully connected non-linear embedding (LSTM+1), while
more layers (e.g., LSTM+2) and larger embedding sizes tend to
yield similar performances. The results are intuitive because a sin-
gle embedding layer is usually sufficient to deal with the sparsity,
skewness, and correlations of daily activity data. We do not ob-
serve significant model overfitting due to the dropout technique
and the large size of our data compared with the number of model
parameters.
Solution 3: Parallel LSTMs with joint training. To further im-
prove our churn prediction, we pay attention to the underlying new
user types. The idea is that, for users in the training set, we get their
two-week behavior data, so besides computing their churn labels y
based on their second-week activities, we can also compute their
user types t with our clustering framework. For users in the testing
set, we can then compare the initial behaviors with those in the
training set to guess their user types, and leverage the correlation
between user types and churn for better churn prediction.

To implement this idea, we propose parallel LSTMs with joint
training. Specifically, we assume there are K user types. K can be
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Figure 9: Comprehensive experimental results on our churn prediction framework compared with various baseline methods.

either chosen automatically by our clustering framework or set to
specific values. Then we jointly train K sub-LSTMs on the training
set. Each sub-LSTM is good at modeling one type of users. We
parallelize the K sub-LSTMs and merge them through attention
[13] to jointly infer hidden user types and user churn.
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Figure 10: Parallel LSTMs with user type attention.

As shown in Figure 10, for each user, the input of a sequence of
activity embedding vectors E is put into K sub-LSTMs in parallel
to generate K typed sequences:

sk = LSTMk (E). (5)
To differentiate hidden user types and leverage this knowledge

to improve churn prediction, we introduce an attention mechanism
to generate user behavior embeddings by focusing on their latent
types. A positive attention weightwk is placed on each user type
to indicate the probability of the user to be of a particular type. We
computewk as a similarity of the corresponding typed sequence
sk and a global unique typing vector vt , which is jointly learned
during the training process.

wk = softmax(vTt sk ). (6)
Here softmax is taken to normalize the weights and is defined
as softmax(xi ) =

exp(xi )∑
j exp(x j )

. The user behavior embedding u is
then computed as a sum of the typed sequences weighted by their
importance weights:

u =
K∑
k=1

wk sk . (7)

The same linear projection with sigmoid function as in Eq. 2 is
connected to u to predict user churn as binary classification.

ŷ = σ (Wcu + bc ). (8)
To leverage user types for churn prediction, we jointly train a

typing loss lt and a churn loss lc . For lt , we firstly compute users’
soft clustering labels Q as

qik =
(1 + | |fi − ck | |2)−1∑
j (1 + | |fi − cj | |2)−1

. (9)

qik is a kernel function that measures the similarity between the
feature fi of user ui and the cluster center ck . It is computed as the
probability of assigning ui to the kth type, under the assumption
of Student’s t-distribution with degree of freedom set to 1 [30].

We usewik to denote the attention weight for user ui on type
tk . Thus, for each user ui , we compute her typing loss as the cross
entropy on qi · andwi ·. So we have

lt = −
∑
i

∑
k

qik log(wik ). (10)

For lc , we simply compute the log loss for binary predictions as

lc =
∑
−yi log ŷi − (1 − yi ) log(1 − ŷi ), (11)

where yi is the binary ground-truth churn label and ŷi is the pre-
dicted churn label for user ui , respectively.

Subsequently, the overall objective function of our parallel LSTM
with joint training is

l = lc + λlt , (12)

where λ is a hyper-parameter controlling the trade-off between
churn prediction and type prediction. We empirically set it to a
small value like 0.1 in our experiments.

Figure 9 (c) shows the performances of parallel LSTMs with and
without joint training (PLSTM+ vs. PLSTM). The only difference
between the two frameworks is that PLSTM is not trained with
the correct user types produced by our clustering framework. In
the experiments, we vary the number of clusters and sub-LSTMs
and find that joint training is always significantly helpful. The
performance of parallel LSTMs with joint training peaks with 3
or 6 sub-LSTMs. While the number 3 may accidentally align with
some trivial clusters, the number 6 actually aligns with the six inter-
pretable cohorts automatically chosen by our clustering framework,
which illustrates the coherence of our two frameworks and further
supports the sanity of splitting the new users into six types.

Besides churn prediction, Figure 9 (d) shows that we can also
predict what type a new user is by looking at her initial behaviors
rather than two-week data, with different precisions and recalls.
Our algorithm is good at capturing All-star, Sleeper and Invitee, due
to their distinct behavior patterns. Swiper and Bumper are harder to
predict because their activity patterns are less regular. Nonetheless,
such fast-response churn predictions with insights into user types
can directly enable many actionable production decisions such as
fast retention and targeted promotion.



5 RELATEDWORK
5.1 User Modeling
The problem of user modeling on the internet has been studied
since the early 80’s [37], with the intuitive consideration of stereo-
types that can group and characterize individual users. However,
during that time, with the scarce data, a lot of knowledge has to be
manually collected or blindly inferred. Such labor and uncertainty
make the models hard to capture stereotypes accurately. While the
lack of large datasets and labeled data have hindered deep user
modeling for decades [48, 54], the recent rapid growth of online
systems ranging from search engine and social media to vertical
recommenders have been collecting vast amounts of data and gen-
erating tons of new problems, which has enabled the resurgence of
machine learning in user modeling.

Nowadays, there has been a trend in fusing personalization into
various tasks, including search [18, 41], rating prediction [16, 44],
news recommendation [1, 28, 53], place recommendation [27, 45,
49, 56], to name a few. Most of them design machine learning
algorithms to capture users’ latent interests and mutual influences.
However, while boosting the overall performance for particular
tasks, such algorithms work more like black boxes, without yielding
interpretable insight into the user behaviors.

Instead of building the model based on vague assumptions of
user behavior patterns, in this work, we systematically analyze
users’ activity data and strive to come up with a general framework
that can find interpretable user clusters. For any real-world online
system as we consider, such interpretation can lead to both better
prediction models and more personalized services.

5.2 Churn Prediction
It has been argued for decades that acquiring new users is often
more expensive than keeping the old ones [10, 15]. Surprisingly,
however, user retention and its core component, churn prediction,
have received much less attention from the research community.
Only a few papers can be found discussing user churn, by modeling
it as an evolutionary process [3] or based on network influence
[23]. While significant research efforts have been invested on bril-
liant ads to acquire new users, when dealing with old users, the
most common practice is to simply plug in off-the-shelf logistic
regression or random forest model67.

To the best of our knowledge, this is the first effort in the research
community to seriously stress the emergence and challenge of
churn prediction for online platforms. We are also the first to shift
the focus of churn prediction from black box algorithms to deep
understanding while maintaining high performance and scalability.

5.3 Network Analysis
Recent algorithms on network analysis are mostly related to the
technique of network embedding [7, 12, 17, 24, 35, 36, 46, 50–52].
They are efficient in capturing the high-order similarities of nodes
regarding both structural distance and random-walk distance in
large-scale networks. However, the latent representations of em-
bedding algorithms are hard to interpret, as they do not explicitly

6http://blog.yhat.com/posts/predicting-customer-churn-with-sklearn.html
7https://www.dataiku.com/learn/guide/tutorials/churn-prediction.html

capture the particular essential network components, such as hubs,
cliques, and isolated nodes. Moreover, they are usually static and
do not capture the evolution or dynamics of the networks.

On the other hand, traditional network analysis mostly focuses
on the statistical and evolutionary patterns of networks [14, 26],
which provides more insights into the network structures and dy-
namics. For example, the early work on Bowtie networks [2] offers
key insight into the overall structure of the web; more recent works
like [11, 29, 32] help people understand the formation and evolution
of online communities; the famous Facebook paper analyzes the
romantic partnerships via the dispersion of social ties [4] and so
on. Such models, while providing exciting analysis of networks, do
not help improve general downstream applications.

In this work, we combine traditional graph analysis techniques
such as ego-network construction, degree and density analysis,
as well as network core modeling, together with advanced neu-
ral network models, to coherently achieve high performance and
interpretability on user clustering and churn prediction.

5.4 Deep Learning
While much of the current research on deep learning is focused on
image processing, we mainly review deep learning models on se-
quential data, becausewemodel user activities asmulti-dimensional
time series. Current research on deep learning has agreed that RNN
[33] is the best model for sequential data. Its network design with
loops allows information to persist and has been widely used in
tasks like sentiment classification [43], image captioning [31] and
language translation [9], as a great substitute to traditional models
like HMM. Among many RNN models, LSTM [21], which specifi-
cally deals with long-term dependencies, is often the most popular
choice. Variants of LSTM have also been developed, such as GRU
(Gated Recurrent Unit) [9], bi-directional LSTM [39], tree LSTM
[42], latent LSTM [55] and parallel LSTM [5]. They basically tweak
on the design of LSTM neural networks to achieve better task per-
formance, but the results are still less interpretable.

In this work, we leverage the power of LSTM, but also care about
its interpretability. Rather than using neural networks as black
boxes, we integrate it with an interpretable clustering pipeline and
leverage the hidden correlations among user types and user churn
with an attention mechanism. Attribute embedding is also added
to make the model work with sparse noisy user behavior data.

6 CONCLUSIONS
In this paper, we conduct in-depth analysis of Snapchat’s new user
behavior data and develop ClusChurn, a coherent and robust frame-
work for interpretable new user clustering and churn prediction.
Our study provides valuable insights into new user types, based
on their daily activities and network structures, and our model
can accurately predict user churn jointly with user types by taking
limited data of new users’ initial behaviors after joining Snapchat
on large scales. While this paper focuses on the Snapchat data as
a comprehensive example, the techniques developed here can be
readily leveraged for other online platforms, where users interact
with the platform functions as well as other users.



We deployed ClusChurn in Snap Inc. to deliver real-time data
analysis and prediction results to benefit multiple productions in-
cluding user modeling, growth, retention, and so on. Future works
include but are not limited to the study on user ego-network hetero-
geneity, where we hope to understand how different types of users
connect with each other, as well as the modeling of user evolution
patterns, where we aim to study how users evolve among different
types and how such evolvements influence their activeness and
churn rates.
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