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Abstract—Data augmentation has become one of the keys
to alleviating the over-fitting of models on training data and
improving the generalization capabilities on testing data. Most
existing data augmentation methods only focus on one modality,
which is incapable when facing multiple data modalities. Some
prior works try to interpolate with random coefficients in the
latent space to generate new samples, which can generically work
for any data modality. However, these works ignore the extra
information conveyed by multimodality data. In fact, the extra
information in one modality can provide semantic directions to
generate more meaningful samples in another modality. This
paper proposes Cross-modal Data Augmentation (CMDA), a
simple yet effective data augmentation method to alleviate the
over-fitting issue and improve the generalization performance.
We evaluate CMDA on unsupervised and supervised tasks of
different modalities, on which CMDA consistently and signif-
icantly outperforms baselines. For instance, CMDA improves
the unsupervised anomaly detection baseline in vision modality
from the AUROC 76.46%, 73.07% and 64.36% to 83.25%, 76.22%
and 70.57% on three different datasets, respectively. Besides,
extensive experiments demonstrate that CMDA is applicable
to various neural network architectures. Furthermore, prior
methods that interpolate in the latent space need to work with
downstream tasks to construct the latent space. In contrast,
CMDA can work with or without downstream tasks, which
makes the applicability of CMDA more extensive. Our source
code is publicly available for non-commercial or research use at
https://github.com/Anfeather/CMDA.

Index Terms—Cross-modal, Data Augmentation.

I. INTRODUCTION

W ITH the rapid gains in computational resources, the
trained neural network is prone to having much more

parameters compared to the number of training samples, thus,
over-fitting might happen and weaken its generalization ability.
For example, a learned model may describe random error or
noise instead of the underlying data distribution [1], and it
may exhibit good performance on the training data but fail
drastically on the testing data.

Most data augmentation methods only focus on a sin-
gle modality, which is modality-specific. Popular methods
for vision modality include geometric changes, photometric
changes, information dropping, etc. As for language modality,
the popular methods include random swap, random insertion,
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“A dog is running fast on 
the lawn as if it is flying.”
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Fig. 1. Cross-modal Data Augmentation (CMDA) tries to augment data for
the student modality with the advice of teacher modality. Specifically, we first
select the student modality (e.g., vision modality in this case) and teacher
modality (e.g., language modality in this case) according to the downstream
tasks (e.g., image classification in this case). Then, samples from different
individual modalities will be projected into the common latent space, and
samples (sentences) in the teacher modality will compute the matching score
with samples (images) in the student modality. Finally, we can interpolate
with advice (matching scores) in the raw space to get new semantic samples.

random deletion, random synonym replacement [2], etc. [3],
[4] and [5] propose to apply interpolation in the latent space
with the output of neural networks, which is a generic way
to augment data for different modalities. Although performing
data augmentation in the latent space is effective for differ-
ent individual modalities, all the aforementioned methods do
not consider the possibility of data augmentation with extra
information in multimodality data. At first, we define extra
information as the information conveyed by one sample in
one modality that matches multiple different samples from
other modalities. For example, as illustrated in Fig. 1, the
sentence “A dog is running fast on the lawn as if it is flying”
is paired with image 1 (e.g., a running dog), but it can also
match image 2 (e.g., a jumping dog) well because of the extra
information “flying”. [6] finds that the specific direction in
the latent space has special semantics. For example, we can
add facial hair to a male face by translating the corresponding
latent representation towards the direction of facial hair, which
suggests that interpolating with a specific direction in the latent
space can generate new semantic samples. In multimodality
datasets, the specific direction in one modality can be provided
by extra information in other modalities. Thus, we propose
to perform data augmentation with extra information that can
provide specific directions (expressed with matching scores) to
generate more meaningful samples. Specifically, we regard the
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matching scores as advice to generate samples, the modality
that provides advice as the teacher modality, and the modality
that accepts advice as the student modality. As illustrated in
Figure 1, the sentence “A dog is running fast on the lawn as if
it is flying” may have a matching score of 0.7 with image 1,
while that of 0.3 with image 2. Thus, we may get a new image
where a dog is flying above the lawn as 3 with the advice of
language modality (e.g., matching scores, 0.3 with image 2
and 0.7 with image 1). In the above example, there are two
modalities. One is the student modality where we want to get
more samples, and the other is the teacher modality that gives
advice (i.e., matching scores) to the student modality. Note
that there may be multiple teacher modalities and only one
student modality.

This paper proposes Cross-modal Data Augmentation
(CMDA), a simple yet effective data augmentation method to
alleviate the over-fitting issue and improve the generalization
performance of the vanilla method. When performing data
augmentation for the student modality, CMDA first projects
samples from different individual modalities into the common
latent space and computes the matching scores. Then, CMDA
perform interpolating with matching scores in the raw space
(i.e., student modality data space), where the generated sam-
ples will be more meaningful. Therefore, the proposed method
is adaptable for various modalities, that is, modality-agnostic.

Besides, traditional interpolation methods randomly select
samples from one batch to augment the dataset, which ignores
the relationships among them [7]. We argue that random selec-
tion may degrade the semantic representation of new samples.
As illustrated in Figure 2, image1 (papaver nudicaule with
a spider) can be interpolated with image2 (snapdragon) and
generate a new sample (a) that shows snapdragon with a spider.
However, if image1 interpolates with image3 (sailboat), the
new sample (b) can be meaningless, as no triangle will grow
on the flower. Therefore, we propose to compute the matching
score in CMDA by Double Cross-Attention (DCA), which
computes matching scores with inter-modal relation weight
and intra-modal relation weight. Inter-modal and intra-modal
relations denote the relationship between different modalities
and clusters of the same modality, respectively. Moreover,
we use inter-modal relation weight times intra-modal relation
weight as the overall matching scores to interpolate in the raw
space, where the intra-modal relation will select close clusters,
thus alleviating the meaningless interpolation.

new sample (a)

new sample (b)

image2 cluster 1

image1 cluster 1

image3 cluster 2

Fig. 2. Data augmentation with images from different clusters. In this paper,
we use clusters to represent the relationship between samples, and samples
in the same cluster are more similar than those in different clusters.

Overall, CMDA performs data augmentation for student
modality with the advice of teacher modalities to improve
the performance of downstream tasks in different modalities.
Without bells and whistles, CMDA significantly improves the
performance of unsupervised anomaly detection and super-
vised classification [8], [9] in different modalities over COCO,
Wikipedia, and Oxford-102. Moreover, we run experiments on
various neural network architectures, and CMDA consistently
and significantly improves the results in all these cases.
Furthermore, unlike prior latent space augmentation works,
CMDA (offline) can learn the common latent space without
downstream tasks, thus avoiding the computational overhead
of data augmentation when applied to different downstream
tasks. Meanwhile, CMDA (offline) also clears the suspicion
that the improvement comes from better mapping function, as
the downstream task model is only trained with augmented
data in the student modality.

The main contributions of this paper can be summarized as
follows:
• We propose a novel framework, CMDA, which can

perform data augmentation for various student modalities
and tasks with the advice of teacher modality.

• We propose a cross-modal attention method named DCA,
which utilizes inter-modal and intra-modal relations of
multimodality datasets to alleviate the meaningless inter-
polation.

• We extensively evaluate CMDA on unsupervised anomaly
detection, supervised classification and image caption
tasks in vision and language modalities over various
datasets and neural network architectures.

II. RELATED WORK

A. Cross-modal Learning

There are many modalities in datasets in practice, such as
vision modality and language modality. To learn a common
latent space, where the similarity between the samples from
different modalities can be measured, a variety of cross-
modal approaches have been proposed. And these cross-
modal approaches can be roughly divided into two cate-
gories: 1) Cross-modal hashing approaches [10]–[12]. Cross-
modal hashing approaches map the heterogeneous data into
a common Hamming space, in which the representations are
encoded to binary codes. However, the similarity will be
slightly inaccurate due to the loss of information [13]. 2) Real-
valued approaches [14]–[16] that includes three subclasses.
1. Unsupervised approaches [17] that only use co-occurrence
information to learn the latent space for all modalities. 2.
Pairwise approaches [18], [19] that utilize more similar pairs to
learn a meaning metric to learn the latent space. 3. Supervised
approaches [16] that exploit label information to distinguish
the samples from different categories. The supervised methods
target to pull each instance close to the instances from the
same category while pushing away from other instances from
different categories. This paper focuses on both unsupervised
and supervised cross-modal methods with contrastive learning
and supervised contrastive learning to construct a common
latent space.
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B. Data Augmentation

Data augmentation is a popular strategy that can improve
the generalization of neural networks. Specifically, data aug-
mentation usually augments datasets by transforming raw
data while preserving semantics globally, following humans’
cognitive intuition. The most popular data augmentation meth-
ods include geometric changes (horizontal flip and vertical
flip), photometric changes (color jitter and gaussian blur),
and information dropping (random erasing [20] and cutout
[21]). In addition, Mixup augments a dataset by interpolating
two images [7], which also has been empirically shown to
improve test performance substantially. However, most of the
aforementioned methods are only suitable for vision tasks.
Instead of improving the model performance in a specific
modality, this paper proposes a generic way to perform data
augmentation that can work for any data modality.

C. Data Augmentation in the Latent Space

Many tasks need to process different modalities, such as
vision and language [22]–[25], 3D [25]–[27], video [28]),
etc. It is effective to project all samples into the common
latent space [29]–[33], where all modalities become the same
pattern. Hence, [3] applies data augmentation in the latent
space for different modalities. Moreover, Manifold Mixup
generates new samples by interpolating the outputs from
different hidden layers [34]. LSI also interpolates in the
latent space for image classification [4]. Besides, [5] also
explores data augmentation in the latent space for text data.
Although performing data augmentation in the latent space is
applicable for various modalities, these methods ignore the
extra information conveyed by multimodality that provides
semantic directions to generate more meaningful samples in
other modalities. Therefore, we propose Cross-modal Data
Augmentation (CMDA) and try to augment data in the student
modality with the advice of teacher modalities.

III. METHOD

This section presents the proposed Cross-modal Data Aug-
mentation (CMDA) method that aims to perform data aug-
mentation in the student modality with advice of teacher
modalities.

Assume that a given data x :=
(
x(1), · · · , x(K)

)
consists

of K modalities, and x(k) ∈ D(k), where D(k) denotes the
k-th modality of input space D = D(1) ×D(2) × · · · × D(K).
Moreover, let student modality and teacher modalities be D̂
and D̄ (D̄ = D−D̂), respectively. We use Z to denote a latent
space, and use g? : D 7→ Z to denote the true mapping from
input space D to latent space Z . Besides, for a downstream
task, each data x will correspond to a target y ∈ Y , and
f? : Z 7→ Y denotes the true mapping from latent space Z to
downstream task space Y .

Intuitively, multimodality usually conveys extra informa-
tion. For example, as shown in Figure 1, the same caption
could correspond to multiple images with different matching
scores, which is helpful for generating new samples. Hence,
we propose to perform data augmentation for the student
modality with weights computed in the latent space. However,

it also works to interpolate images in the latent space [3] or
input space [7] with a single modality, i.e., student modality.
Therefore, we follow [35] to theoretically show the advantage
of multimodality latent space compared to single modality
latent space at first.

Let G and F denote function class that contains the mapping
from D to Z and Z to Y , respectively.

G , {g : D 7→ Z} ,F , {f : Z 7→ Y} (1)

and ĝ is the learned latent representation in the student
modality, g?, ĝ ∈ G. Given a data set S, the objective is,
following the Empirical Risk Minimization [?], to learn g and
f to minimize

min L (f ◦ g) , 1
m

∑m
i=1 ` (f ◦ g (xi)) (2)

where ` is the loss function, it could be contrastive loss
and cross-entropy loss for unsupervised and supervised tasks,
respectively.

We further define the corresponding population risk [35]–
[37] as

r (f ◦ g) = ES [L (f ◦ g)] (3)

And we introduce latent space quality as

η(g) = inf
f

[r(f ◦ g)− r (f? ◦ g?)] (4)

where η(g) measures the loss incurred by the distance between
g and g?.

We use Rademacher complexity to quantify the population
risk performance based on different modalities. Specifically,
for a class of vector-valued function, F : Rd 7→ Rd̂, the
Rademacher complexity is

Rm(F ) = ES

[
Eσ

[
sup
f∈F

1

m

m∑
i=1

σif (Zi)

]]
(5)

where σ = (σ1, . . . , σn)
> with σi

iid∼ unif {−1, 1}.
Then, we present an assumption [37] and Theorem 3.1 as

follows
Assumption 3.1: The loss function ` is L-smooth with

respect to the first coordinate and is bounded by a constant
C.

Theorem 3.1: Let S be a dataset with m examples. Assum-
ing we have produced the empirical risk minimizers

(
f̄ , ḡ
)

and(
f̂ , ĝ
)

, training with the K teacher modalities and 1 student
modality separately. Then, for all 1 > δ > 0, with probability
at least 1− δ

2 :

r
(
f̄ ◦ ḡ

)
− r

(
f̂ ◦ ĝ

)
≤ γS(K, 1) + 8L<m (F ◦ G) +

4C√
m

+ 2C

√
2 ln(2/δ)

m

where γS(K, 1) , η (ḡ)− η (ĝ)

(6)

γS(K, 1) in Eq.(6) compares the quality between latent space
learning from K teacher modalities and 1 student modality of
S, which bounds the difference of population risk and validates
the advantage of multimodality latent space.
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Different from prior methods that interpolate in the latent
space [3], [34], CMDA can work with or without downstream
tasks (i.e., CMDA and CMDA (offline)). CMDA and CMDA
(offline) learn the latent space Z in the same way that is
based on contrastive learning. Moreover, CMDA can work
with or without labels, and there may be a big gap between
unsupervised latent space and supervised latent space for the
same sample. Hence, we use different contrastive losses to
project all samples into the common latent space in different
situations. For unsupervised dataset

`i =

− log

∑K
p=1

∑K
q=1 1[p 6=q] exp

(
sim

(
z
(p)
i , z

(q)
i

)
/τ
)

∑K
p=1

∑K
q=1

∑m
l=1 1[p 6=q]1[l 6=i] exp

(
sim

(
z
(p)
i , z

(q)
l

)
/τ
)

(7)
where sim(·, ·) is cosine similarity, 1[p 6=q] ∈ {0, 1} is an
indicator evaluating to 1 iff p 6= q and τ denotes a temperature
parameter. Different from other contrastive methods, Eq.(7) try
to pull each modality of the same sample close while pushing
away from other samples.

For supervised dataset

`i =

−1

myi − 1

m∑
j=1

1[yi=yj ] log

∑K
p=1

∑K
q=1 1[p 6=q]e(i, j)

p,q∑K
p=1

∑K
q=1

∑m
l=1 1[p 6=q]1[l 6=i]e(i, l)p,q

,

where e(i, j)p,q = exp
(

sim
(
z
(p)
i , z

(q)
j

)
/τ
)

(8)
In Eq.(8), myi is the number of samples belonging to class
yi. Eq.(8) tries to pull each modality of the same class close
while pushing away from other classes.

To lean common latent space Z with a downstream task,
the loss function can be formulated as:

L = Lf + λLg, where Lg =

m∑
i=1

`i (9)

where Lf is the loss of downstream task. By minimizing
the joint loss function, the latent space and downstream task
can be iteratively optimized in a batch-by-batch manner with
a stochastic gradient descent optimization algorithm. We fix
λ = 0.1 in all following experiments. As for learning latent
space without downstream tasks (i.e., CMDA (offline)), there
is no task loss in the loss function and no other differ-
ences. Intuitively, learning the common latent space with a
downstream task (CMDA) always performs better than that
without a downstream task, as the augmented dataset is more
suitable for the downstream task. However, the cost of training
downstream task with CMDA (offline) is lower as the dataset
is augmented at first.

With the learned latent space, teacher modalities can guide
student modality to generate new samples as

x̂new =

m′∑
j=1

zti(ẑj)
T∑m′

j=1 z
t
i(ẑj)

T
x̂j (10)

where x̂ is the raw sample of student modality; ẑ and zti is the
sample of student modality and one teacher modality in the

A dog holding a red flower.

[0.1, 0.9] [0.4, 0.6] [0.3, 0.7] [0.7, 0.3] [0.6, 0.4] [0.8, 0.2]

pair

New sample

Cluster 1 Cluster 2
intra-modal relation 

inter-modal relation 

Student 
modality

Teacher 
modalityGenerate from 

one modality

Fig. 3. Double Cross-Attention (DCA) that includes intra-modal and inter-
modal relations.

latent space, respectively; m′ is the number of samples used
for interpolation.

Moreover, there is not only inter-modal information but
also intra-modal information in multimodal datasets, which
helps alleviate the meaningless interpolation. Therefore, we
propose Double Cross-Attention (DCA). As shown in Figure
3, we first perform cluster in the student modality. Then, the
relation between different clusters will be calculated and used
as weights to generate new samples. For example, we use one
sample zti in the latent space from teacher modality to augment
the student modality dataset as

x̂new =

m′∑
j=1

zti(ẑj)
T∑m′

j=1 z
t
i(ẑj)

T
wij x̂j ,

where wij =
αj∈c1φ (xi | θj∈c1) + αi∈c2φ (xi | θi∈c2)∑M

h=1 αhφ (xi | θh)
(11)

In Eq.(11), M is the number of clusters, j ∈ c1 denotes sample
j belongs to cluster c1, and αj∈c1 denotes the probability that
observations belong to the c1th cluster, θ is the parameters of
different clusters (i.e., mean and variance), φ(x|θ) denotes the
Gaussian distribution density function, wij is the intra-modal
relation between sample i and j that calculated by the proba-
bility sample i comes from cluster i ∈ c2 and j ∈ c1. When
implementing the algorithm, we use Expectation Maximization
(EM) [38] to compute the aforementioned hyperparameters it-
eratively. The proposed algorithm is summarized in Algorithm
1.

IV. EXPERIMENTS

In our experiments, we aim to (1) validate the effectiveness
of CMDA for different tasks and modalities, (2) validate
CMDA can combine with other data augmentation methods,
(3) validate the effectiveness of advice given by the teacher
modality, (4) validate the robustness of CMDA on various
neural network architectures, (5) validate the effectiveness
of DCA in CMDA by ablation experiments, (6) validate
that CMDA (offline) is as valid as CMDA. In this paper,
our experiments only focus on vision modality and language
modality, which are the most common. Moreover, if we run
tasks of vision modality, vision modality will be the student
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Algorithm 1 CMDA
1: Input: dataset X with K + 1 modalities and m samples.

Assume x̂ ∈ X(s) is the student modality data and x ∈
X{K} is the teacher modality data.

2: Output: augmented data x̂new.
3: For CMDA (offline), learn the latent space Z by Eq.(7)

or Eq.(8).
4: For CMDA, learn the latent space Z by Eq.(9).
5: Cluster one modality of X into M clusters, c, and get

distribution parameters θ, Gaussian distribution density
function φ(). α denotes the probability that observations
belong to c.

6: Compute all the intra-modal weights in student modal-

ity, such as wintraij =
αj∈c1

φ(x̂i|θj∈c1)+αi∈c2
φ(x̂i|θi∈c2)∑M

h=1 αhφ(x̂i|θh)
,

x̂i, x̂j ∈ X(s)

7: for X(n) in X{K} do
8: for x(n)i in X(n) do
9: Z(s) = g(s)(X(s))

10: z
(n)
i = g(n)(x

(n)
i )

11: Compute all the inter-modal weight as:
winter = z

(n)
i (Z(s))T /sum(z

(n)
i (Z(s))T )

12: x̂new =
∑m
j=1 w

inter
ij wintraij x̂j , WHERE x̂j ∈ X(s)

13: end for
14: end for

modality, and language modality will be the teacher modality
and vice versa.
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Fig. 4. Dataset of Class-COCO. There are 80 categories, each with a different
number of samples.

A. Datasets and Settings

Class-COCO. A popular multimodal dataset MS COCO [39]
contains images and the corresponding sentences annotated by
Amazon Mechanical Turk. To run classification and anomaly
detection tasks on MS COCO, we propose Class-COCO. The
training set is grouped according to the objects in the images.
Besides, we drop images that contain two or more objects.
As shown in Figure 4, there are 126,055 samples divided
into 80 groups . For image anomaly detection tasks, we

Code and data are included in the supplemental material. Code and data will
be released upon the paper acceptance.

select groups with a sample size greater than 6,000 as normal
samples (there are 6 groups, totaling 45,205), while 15,150
samples of 50 groups are regarded as abnormal samples.
As for text anomaly detection, there are 30 groups, totaling
110,905 normal samples, while 15,150 samples of 50 groups
are regarded as abnormal samples. Dataset of classification
tasks is divided in the same way.
Wikipedia [40] contains 2,866 image-text pairs that belong to
10 classes. For anomaly detection, we divide the dataset into
normal samples (3 classes, totaling 921) and abnormal samples
(7 classes, totaling 1,945). As for classification, we divide
the dataset into 2 subsets: 2,273 and 593 pairs for training
and testing, respectively. Note that we follow [41] to use the
precomputed Wikipedia as input.
Oxford-102 [42] dataset of flower images contains 8,189
pairs of flowers from 102 different categories. For anomaly
detection, we divide the dataset into normal samples (30
classes, totaling 4,018) and abnormal samples (72 classes,
totaling 4,171). As for classification, we divide the ten classes
with the largest amount of data into 2 subsets: 1,861 and 442
pairs for training and testing, respectively.

B. Implementation Details

In our experiments, all methods utilize the same features
extractor and downstream task module (classifier for classifica-
tion and detector for anomaly detection). More specifically, for
Class-COCO, we use ResNet-50 and the pretrained bert [43]
to extract features of vision modality and language modality,
respectively. Followed by the extractor, two and three fully-
connected layers are stacked to project all samples into the
common latent space. Each layer of fully-connected layers
follows a ReLU layer except the last one. The numbers of
hidden units are 2,048, 128 and 4,096, 4,096, 128 for vision
modality and language modality, respectively. We follow [44]
to employ stochastic gradient descent as the optimizer with
a learning rate of 0.01 for 200 epochs. Moreover, weight
decay and batch size are set to 1e-4 and 128, respectively.
As for Wikipedia, we follow [41] to adopt VGG-19 as the
backbone for vision, and Doc2Vec [45] model as the backbone
for language. The following fully-connected layers and other
hyperparameters are the same as that of Class-COCO. As for
Oxford-102, we follow [42] to extract the language features
with a deep convolutional-recurrent text encoder, and the
other settings are the same as that of Class-COCO. For all
classification models, we additionally add a fully-connected
layer that follows a softmax layer. Moreover, all Mixup
experiments use the same hyperparameter of beta distribution,
e.g., α = 0.25 that is the mean of IMAGENET experiments in
[7]. It should be noted that if there is no special explanation,
all experiments use the basic data augmentation methods
like geometric transformation, photometric transformation, and
information dropping.

C. Cross-modal Augmentation for Unsupervised Anomaly De-
tection

To validate the effectiveness of CMDA for unsupervised
tasks, we run unsupervised anomaly detection based on the
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TABLE I
RESULTS OF UNSUPERVISED ANOMALY DETECTION IN VISION MODALITY AND LANGUAGE MODALITY. THE ± SHOWS 95% CONFIDENCE INTERVAL

OVER TASKS.

Dataset Method VISION LANGUAGE
AUROC AUPR AUROC AUPR

Class-COCO
Base 76.46± 1.16% 88.59± 0.69% 73.34± 0.74% 78.18± 0.38%

Base + Mixup 78.45± 2.05% 89.74± 0.74% 77.40± 5.70% 80.83± 5.83%
Base + CMDA (ours) 83.25± 1.25% 91.96± 1.06% 79.64± 1.64% 81.51± 5.31%

Wikipedia
Base 73.07± 1.27% 95.48± 0.28% 89.69± 1.99% 98.36± 0.36%

Base + Mixup 74.49± 3.09% 95.94± 0.54% 89.24± 8.04% 98.34± 1.34%
Base + CMDA (ours) 76.22± 2.62% 96.10± 0.50% 91.48± 1.18% 98.73± 0.23%

Oxford-102
Base 64.36± 0.76% 89.58± 0.98% 63.87± 0.87% 90.29± 0.29%

Base + Mixup 68.20± 3.90% 90.82± 1.22% 63.57± 0.57% 90.18± 0.08%
Base + CMDA (ours) 70.57± 1.07% 91.44± 0.24% 65.60± 0.60% 90.21± 0.11%

recent method, SSD [44] that learns latent space by self-
supervised learning and performs detection by Mahalanobis
distance. Note that text data is projected into latent space
before augmentation.

2 4 6 8 10 12 14
n_components

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1e8
BIC
AIC

Fig. 5. BIC and AIC of Class-COCO. The blue curve denotes BIC, and the
red curve denotes AIC.

We use the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) to decide the number of clusters in
CMDA. As shown in Figure 5, for Class-COCO AIC achieves
relatively stable values after 2, while BIC gets the lowest value
when ncomponent = 2. Hence, we select 2 as the number of
clusters. This hyperparameter for other datasets is computed
in the same way. We get clusters in the embedding space of
language modality by Gaussian mixture models (GMM) [46],
where the number of EM iterations is 100, the convergence
threshold is 1e-3, non-negative regularization added to the
diagonal of covariance is 1e-6.

Results in Table I show that CMDA consistently outper-
forms baselines by a remarkable margin, especially on the
largest dataset Class-COCO, CMDA improves AUROC in
vision and language modalities by more than 6% compared
to the Base. For the vision modality on Class-COCO, Mixup
enhances the original AUROC 76.46% and AUPR 88.59% to
78.45% and 89.74%, respectively. CMDA further improves the
AUROC and AUPR to 83.25% and 91.96%. Its distinguished
performance from CMDA compared to that of Mixup verifies
the efficacy of advice given by teacher modality under this
challenging scenario. Moreover, for language modality on
Wikipedia and Oxford-102, Mixup degrades the base method,
which shows that interpolation with sampled weights in the
latent space is easily corrupted. In contrast, with the advice of
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Fig. 6. Convergence of CMDA, Mixup and Base on anomaly detection task.

the teacher modality, the generated samples can significantly
improve original results in each modality.

From the perspective of combining CMDA with other basic
data augmentation methods, in Table I, Base uses geometric
transformation, photometric transformation, information drop-
ping, and adding noise, and Base + CMDA achieves better
results. Thus, CMDA can be combined with other augmenta-
tion methods to achieve better results for unsupervised tasks.

We show the convergence by AUPR and AUROC in Figure
6. These promising results show that CMDA can stably exceed
baselines after convergence, while Mixup and Base even
degrade after about 125 and 75 epochs due to overfitting.
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TABLE II
RESULTS OF SUPERVISED CLASSIFICATION IN VISION AND LANGUAGE
MODALITY. THE ± SHOWS 95% CONFIDENCE INTERVAL OVER TASKS.

Dataset Method VISION LANGUAGE
Accuracy Accuracy

Class-COCO
Base 15.74± 0.64% 83.93± 0.33%

+Mixup 18.03± 0.93% 81.49± 0.39%
+CMDA 18.65± 0.95% 84.23± 0.23%

Wikipedia
Base 53.39± 2.49% 70.82± 1.92%

+Mixup 53.96± 3.39% 68.17± 1.17%
+CMDA 54.79± 1.09% 72.11± 2.11%

Oxford-102
Base 27.43± 2.13% 51.03± 0.83%

+Mixup 24.60± 2.10% 49.82± 1.02%
+CMDA 28.43± 1.23% 51.98± 1.48%

D. Cross-modal Augmentation for Supervised Classification

To validate the effectiveness of CMDA for supervised tasks,
we run data augmentation methods with classification tasks in
this section.

As shown in Table II, CMDA still significantly improves
the results of Base in all modalities. However, Mixup severely
degrades the results of language modality (text data is pro-
jected into latent space before interpolation) over all datasets,
while it shows good performance in raw image space over
Class-COCO. These results implicitly show that the generated
samples from Mixup are corrupted with their classes, thus even
degrading the classification boundary in the latent space. In
contrast, CMDA can work well in both raw space and latent
space with the advice of teacher modality for the supervised
task. Besides, Mixup cannot work for the vision modality
of Oxford-102. It may be that the hyperparameters α of
the beta distribution (which decides the sampled weights for
interpolation) are not applicable to this dataset. Compared to
Mixup, CMDA performs well on all datasets, which shows that
the robustness of CMDA is much better than that of Mixup.

From the perspective of combining CMDA with other basic
augmentation methods, in Table II, Base uses geometric trans-
formation, photometric transformation, information dropping,
and adding noise, and Base + CMDA achieves better results.
Thus, CMDA can be combined with other data augmentation
methods to achieve better results for supervised tasks.

We show the convergence of CMDA, Mixup and Base on
classification task for vision modality and language modality
in Figure 7. In picture (a) of Figure 7, CMDA and Mixup
significantly improve the Base after about 10 epochs. However,
Mixup’s performance gets progressively worse after about 100
epochs, while the results of CMDA still rise steadily. This
may be caused by the fact that the random interpolation of
Mixup cannot effectively introduce new information, resulting
in the overfitting of the model. Moreover, picture (b) implicitly
shows that Mixup (randomly sample weights to interpolate)
cannot work well for language modality in the latent space as
the green curve is much lower than the blue curve. In contrast,
CMDA works well for both modalities. These results validate
the effectiveness of the advice of the teacher modality.

E. Compare with More Data Augmentation Methods

We have shown that CMDA can be combined with other
data augmentation methods in sections IV-C and IV-D. In this
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Fig. 7. Convergence of CMDA, Mixup and Base on classification task.

section, we compare CMDA with the aforementioned methods
such as geometric transformation (GT), photometric transfor-
mation (PT), and information dropping (ID). The results are
reported in Table III. Note that all the aforementioned methods
only work for the raw images, and Wikipedia is precomputed
[41]; thus, we only run experiments on Class-COCO and
Oxford-102 in this section.

Table III shows that it is important to combine multiple
methods for data augmentation, as a single method cannot
improve the performance of the vanilla method well (e.g.,
GT and ID on Class-COCO; GT and PT on Oxford-102),
while the combination of all methods achieves the best results.
Meanwhile, using CMDA alone can consistently improve the
performance on different datasets. In contrast, other augmenta-
tion methods do not always work. For example, using ID alone
can hardly improve the performance on Class-COCO, while
using ID alone can significantly improve the performance on
Oxford-102. These results show the robustness of CMDA to
different datasets compared to other methods.

F. Ablation

We show the effectiveness of Double Cross-Attention
(DCA) by Figure 8. It can be seen that DCA helps the
training process more stable as the green curve is more stable
than the red curve. These results validate the intuition that
“randomly sample may degrade the semantic representation of
new samples” in section I. In other words, intra-modal relation
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TABLE III
COMPARE CMDA WITH OTHER BASIC DATA AUGMENTATION METHODS,

WHERE GT DENOTES GEOMETRIC TRANSFORMATION, PT DENOTES
PHOTOMETRIC TRANSFORMATION, AND ID DENOTES INFORMATION

DROPPING. THE ± SHOWS 95% CONFIDENCE INTERVAL OVER TASKS.
NOTE THAT ALL THE AFOREMENTIONED METHODS ONLY WORK FOR THE

RAW IMAGES, AND WIKIPEDIA IS PRECOMPUTED AS [41]; THUS, WE
ONLY RUN EXPERIMENTS ON CLASS-COCO AND OXFORD-102. BESIDES,

VANILLA DENOTES A METHOD WITHOUT DATA AUGMENTATION.

Dataset Method AUROC AUPR

Class-COCO

Vanilla 64.74± 3.74% 85.06± 2.56%
+ GT 63.18± 2.28% 84.16± 1.46%
+PT 66.17± 5.17% 84.76± 1.46%
+ID 63.09± 10.09% 83.79± 7.49%

+CMDA 73.39± 5.39% 87.52± 3.52%
+all 83.25± 1.25% 91.96± 1.06%

Oxford-102

Vanilla 58.35± 4.45% 86.80± 1.80%
+ GT 57.21± 3.31% 86.60± 1.80%
+PT 57.01± 0.71% 86.44± 0.34%
+ID 66.94± 1.74% 90.75± 0.55%

+CMDA 63.39± 2.29% 88.99± 0.99%
+all 70.57± 1.07% 91.44± 0.24%

weight in DCA always selects samples from other clusters that
are not too different from the original sample, which makes
results more stable.
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Fig. 8. Convergence of CMDA, CMDA-DCA and Base on anomaly detection
task.

G. Augmentation with Different Architectures

We follow [47], [48] to run data augmentation experiments
on more neural network architectures. Table IV shows the

results of Oxford-102 on Deep residual network (ResNet,
includes ResNet-18, ResNet-50, ResNet-101) [49], Visual Ge-
ometry Group (VGG, includes VGG-11, VGG-16, VGG-19)
[50], and Dense Convolutional Network (DenseNet, includes
DenseNet-121, DenseNet-169, DenseNet-201) [51]. Results
indicate that models trained with CMDA have significant
improvement, demonstrating that our method is applicable
to various architectures. Specifically, on ResNet-18, ResNet-
50 and ResNet-101, CMDA enhances the AUROC 66.74%,
64.36% and 63.92% to 71.96%, 70.57% and 66.38%, re-
spectively. For three DenseNet architectures, CMDA enhances
the original AUROC about 66% to about 70%. As for VGG,
CMDA improve the 64.83% AUROC to 70.94% on VGG-11,
while improve 59.95% and 58.36% to 65.21% and 62.97% on
VGG-16 and VGG-19, respectively. The same trend for AUPR.
These results verify that CMDA can significantly improve
baseline performance on various network architectures.

H. Augmentation with More Complicated Task

This section compares CMDA with other methods on
more complicated task. In section IV-C, we run unsupervised
anomaly detection on Class-COCO, where normal samples
belong to 6 groups. To demonstrate the potential of CMDA
for more complicated problems, we set the normal samples
to 30 groups while keeping other settings, and the results are
presented in Table V.

As shown in Table V, when Groups = 30, the margin of
AUROC and AUPR between CMDA and Base is 9.98% and
8.09%, respectively, while when Groups = 6, the margin is
6.79% and 3.37%. It can be seen that with the task complexity
increasing, CMDA achieves better performance on Class-
COCO. Although Mixup also gets better results, as the margin
becomes 3.25% from 1.99% of AUROC and 2.27% from
1.15% of AUPR, the improvements of Mixup are much lower
than that of CMDA.

I. Offline Data Augmentation

Data augmentation methods that interpolate in the latent
space [3], [34] always need to learn latent space with the
downstream task, which may significantly increase the cost
of training downstream task models. Therefore, it is crucial
to augment the dataset offline. Different from prior methods,
CMDA augments the dataset by the extra information across
different modalities, which enables offline data augmentation.

In this section, we augment the dataset at first. Then, we
run downstream tasks based on the new dataset. As shown
in Table VI, CMDA (offline) gets similar results as CMDA.
More specifically, CMDA consistently gets better results than
CMDA (offline), as the latent space learned by CMDA also
works for downstream tasks. Thus, the new data will be
more applicable. Besides, CMDA (offline) still significantly
improves Base, except for language modality on Class-COCO,
the results of CMDA (offline) are slightly lower than that of
Base. This may result from the request for the high quality of
latent space to perform text interpolation, as text classification
results on Class-COCO are much higher than that of other
datasets.
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TABLE IV
MORE RESULTS OF ANOMALY DETECTION OVER OXFORD-102 ON DIFFERENT ARCHITECTURES

Model Model Size FLOPs Base CMDA
AUROC AUPR AUROC AUPR

ResNet-18 11.17M 27.28G 66.74± 0.94% 90.58± 0.58% 71.96± 1.16% 92.12± 0.72%
ResNet-50 23.50M 63.93G 64.36± 0.76% 89.58± 0.98% 70.57± 1.07% 91.44± 0.24%
ResNet-101 42.49M 123.49G 63.92± 1.92% 89.28± 0.98% 66.38± 1.68% 90.27± 1.07%

DenseNet-121 13.51M 2.89G 66.18± 0.58% 90.03± 0.23% 71.47± 1.87% 91.59± 0.29%
DenseNet-169 20.35M 3.42G 66.97± 0.77% 90.28± 0.48% 70.21± 1.51% 91.24± 0.84%
DenseNet-201 26.49M 4.37G 66.24± 1.24% 90.19± 0.39% 70.78± 0.48% 91.27± 0.27%

VGG-11 124.84M 7.62G 64.83± 1.33% 89.64± 0.34% 70.94± 3.14% 91.92± 0.92%
VGG-16 130.34M 15.50G 59.95± 2.35% 88.03± 1.63% 65.21± 6.01% 90.24± 1.84%
VGG-19 135.65M 19.67G 58.36± 3.16% 87.42± 1.42% 62.97± 4.67% 90.68± 5.68%

TABLE V
RESULTS OF MORE COMPLICATED UNSUPERVISIED TASK IN VISION

MODALITY. THE ± SHOWS 95% CONFIDENCE INTERVAL OVER TASKS.

Groups Method AUROC AUPR

6
Base 76.46± 1.16% 88.59± 0.69%

+Mixup 78.45± 2.05% 89.74± 0.74%
+CMDA 83.25± 1.25% 91.96± 1.06%

30
Base 65.50± 2.90% 67.68± 2.18%

+Mixup 68.75± 1.65% 69.95± 1.65%
+CMDA 75.48± 1.38% 75.77± 1.17%
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Fig. 9. Convergence of CMDA, CMDA (offline) and Base on classification
task.

We show the convergence of CMDA (offline), CMDA, and
Base in vision modality on classification task in Figure 9.
Note that CMDA (offline) performs 100 epochs ahead of
time to learn the common latent space. When training the

TABLE VI
RESULTS INCLUDE CMDA (OFFLINE) OF SUPERVISED CLASSIFICATION IN

VISION MODALITY AND LANGUAGE MODALITY. THE ± SHOWS 95%
CONFIDENCE INTERVAL OVER TASKS.

Dataset Method VISION LANGUAGE
Accuracy Accuracy

Class-COCO CMDA 18.65± 0.95% 84.23± 0.23%
CMDA (offline) 18.30± 1.70% 83.80± 0.10%

Wikipedia CMDA 54.79± 1.09% 72.11± 2.11%
CMDA (offline) 54.75± 1.15% 71.80± 1.40%

Oxford-102 CMDA 28.43± 1.23% 51.98± 1.48%
CMDA (offline) 27.97± 0.87% 51.67± 1.77%

downstream task model, CMDA always gets better results
than CMDA (offline), which validates the importance of latent
space to generate new samples. Moreover, for vision modality,
after about 110 epochs, CMDA and CMDA (offline) both
significantly outperform the Base method. As for language
modality, CMDA (offline) outperforms Base after 75 epochs,
as Base drastically overfits on the trained dataset. Figure 9
shows that even if the result of CMDA (offline) is not as good
as CMDA, it can significantly improve the performance of
Base without increasing the cost of training downstream task.
In addition, the results of CMDA (offline) also verify that the
improvement profits from the augmented data.

J. Data Augmentation for Multi-modal Task

In this section, we validate the effectiveness of CMDA on
the image caption task. We follow [52] to implement the image
caption part, except the output size of an encoder is 2048 for
convenience. As for the data augmentation part, we use the
pre-trained CLIP [53] to align samples from vision modality
and language modality.

Results are presented in Figure 10. Compared to estab-
lished baselines, our approach yields significant performance
improvements. More specifically, the lowest value of CMDA is
higher than the highest value of Base. In addition, the results
range of CMDA is significantly smaller than that of Base,
which indicates that CMDA is more stable. All these results
show that the proposed augmentation method is generic and
can easily be incorporated into various tasks.

It is noteworthy that neither CMDA nor other data aug-
mentation algorithms can be directly applied to the image
caption task due to the demanding requirements of fine-
grained matching between modalities. However, CMDA works
when it combines with an attenuation coefficient, making the
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model more focused on raw data with increasing epochs. This
phenomenon can be explained by curriculum learning [54].
When the epoch is low, the model trains with mixed samples,
and there are lower requirements for fine-grained matching,
making models learn more generalizable features. With the
increasing epochs, the proportion of raw data is getting higher,
and it is easier for the model to learn specific features based
on the generalizable features.
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Fig. 10. Box-plot of CMDA and Base on the image caption task. The triangle
denotes the median, the boundary of the lower whisker denotes the minimum
value, and the boundary of the upper whisker denotes the maximum value.

K. Computational Complexity Analysis

In this paper, we mainly focus on vision modality and lan-
guage modality, thus, we perform computational complexity
analysis based on these modalities. As mentioned in section
IV-J, we can use the pretrained CLIP [53] to align samples
from vision modality and language modality, and perform data
augmentation. Thus, the computationally intensive computa-
tion is clustering and computing similarity of samples.

As for clustering, we perform GMM in the embedding space
in one modality, and the complexity is of O(mMd̂3), where
m is the number of data points in a batch, M is the number
of Gaussian components and d̂ is the embedding dimension
(for CLIP, d̂ = 512).

The similarity of samples is computed by multiplying two
matrices where each matrix is m × d̂, and the complexity is
of O(d̂m2).

Therefore, the overall complexity is O(mMd̂3 + d̂m2). As
m and d̂ will not be too large, the complexity of CMDA is
acceptable.

L. Hyperparameters Analysis

One of the most important hyperparameters is the number
of clusters M ; thus, we show the results with different M in
Figure 11. It can be seen that both AUROC and AUPR get
the best performance when M = 2, which is consistent with
the conclusions of AIC and BIC in section IV-C. Besides, this
experiment shows the effectiveness of DCA, as CMDA with
M > 1 gets better results than that with M = 1. That is,
DCA selects samples from close clusters and thus alleviates
the meaningless interpolation.
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Fig. 11. Averaged results with different M on anomaly detection task.

V. CONCLUSION

This paper proposes a generic framework, CMDA, to per-
form data augmentation for different individual modalities
and tasks to alleviate the over-fitting issue and improve the
generalization performance. More specifically, CMDA uses
extra information in one modality that can provide semantic
directions to generate more meaningful samples in another
modality. Extensive experiments on unsupervised anomaly
detection task, supervised classification task and image caption
in vision modality and language modality validate the effec-
tiveness of CMDA. In addition, we run CMDA on various
neural network architectures, which show the robustness of
CMDA. Besides, CMDA (offline) that does not need to train
with the downstream tasks module avoids the concerns about
the computational cost of training downstream tasks.
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