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Introduction:

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by complex and
heterogeneous changes in brain morphometry over time (Armstrong, 2020). Modeling these longitudinal
trajectories is essential for understanding disease pathology, guiding treatment development, and enabling
personalized "digital twin" simulations to forecast the evolution of PD under various hypothetical interventions
(Gratwicke, 2015). However, existing methods usually adopt recurrent neural networks and transformer
architectures, which rely on discrete, regularly sampled data and struggle to handle the irregular and sparse
magnetic resonance imaging (MRI) in PD cohorts. Moreover, these methods have difficulty in capturing
individual heterogeneity including variations in disease onset, progression rate, and symptom severity, which is
a hallmark of PD (Lian, 2024). To address these challenges, we propose CNODE (Conditional Neural ODE), a
novel framework for continuous, individualized PD progression forecasting as shown in Fig. 1. The core of
CNODE is to model morphological brain changes as continuous temporal processes using a neural ODE
model. In addition, we jointly learn patient-specific initial time and progression speed to align individual
trajectories into a shared progression trajectory. We validate CNODE on the Parkinson's Progression Markers
Initiative (PPMI) dataset (Marek, 2011). Experimental results show that our method outperforms state-of-the-
art baselines in forecasting PD progression, which can pave the way for deeper insights into PD dynamics and
improved clinical decision support.
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 Methods:

CNODE first extracts vertex-wise medial thickness from MRI scans, along with subcortical structure volumes
and metadata (Fischl, 2012). Then CNODE constructs a shared progression trajectory, aligning patient data
through two neural networks that predict for individual start time and progression speed. To ensure that visits
with similar shape features are mapped closer in time, we integrate contrastive learning (Oord, 2018). This is
achieved by computing feature-based similarity scores and optimizing a contrastive loss to refine the shared
trajectory. Next, we employ a Neural ODE (Chen, 2018) to model the continuous evolution of shape features.
The model consists of an encoder that maps observed features to a latent space, an ODE solver that predicts
latent state dynamics over time, and a decoder that reconstructs shape features from the latent
representations.

Results:

We evaluate our model using the PPMI dataset, leveraging T1-weighted MRI scans from 161 PD patients, with
50 individuals having three visits and another 111 having two visits. The average visit interval is 1.11 years,
with a maximum of 2.27 years and a minimum of 0.61 years. CNODE demonstrating superior performance in
MSE, RMSE, and R^2 compared with RNN-based methods (Sherstinsky, 2020), Transformer (Vaswani, 2017)
and LLMTime (Gruver, 2023). Ablation studies confirm the effectiveness of contrastive learning and
progression speed alignment. To further demonstrate the interpretability of CNODE, we visualize the predicted
disease progression trajectories for individual patients in Fig. 2. It highlights CNODE's ability to generate
biologically plausible progression patterns that closely align with real patient data. This interpretability is
particularly valuable for identifying high-risk individuals and enabling timely interventions.
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 Conclusions:

In this work, we introduced CNODE that models continuous Parkinson's disease progression. By harnessing
subcortical shape features and aligning patients within a shared progression trajectory, CNODE captures
individualized disease dynamics while addressing common challenges such as missing timepoints and
heterogeneous progression rates. Experimental results demonstrate the superiority of our proposed CNODE
over state-of-the-art methods, highlighting its potential for personalized disease monitoring and therapeutic
decision support.
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The Open Science Special Interest Group (OSSIG) is introducing a reproducibility challenge
for OHBM 2025. This new initiative aims to enhance the reproducibility of scientific results and
foster collaborations between labs. Teams will consist of a “source” party and a “reproducing”
party, and will be evaluated on the success of their replication, the openness of the source
work, and additional deliverables. Click here for more information. Propose your OHBM
abstract(s) as source work for future OHBM meetings by selecting one of the following
options:
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