Conditional Structure Generation through Graph Variational Generative Adversarial Nets
Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, Pan Li (corresponding: jiyang3@illinois.edu)

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

PrRoBLEM FORMULATION

Conditional Structure Generation: Given a set of graphs with
semantic contexts, learn to generate graphs of meaningful structures
with related contexts.

Motivations

1) Decompose massive networks into small subnetworks with
clear structures and contexts

2) Map network structures and context semantics in embedding
spaces

3) Flexibly generate network structures under given semantics

Lung cancer, Lung cancer, Lung cancer
Stage 1 Stage 2 Stage 3

Case 1: Sparse data
Task 1: Generate similar graphs
Skin cancer Skin cancer

Stage 2 Stage 3 ﬁ
?

Case 2: Missing data
Task 2: Generate novel graphs

Rich data Rich data

Skin cancer

Stage 1 j

Figure: Toy example of conditional structure generation: Real-world networks
nowadays are often associated with correlated semantic attributes/labels. This
allows us to explore the possible correspondence between graph contexts and
structures, which can be leveraged to generate structures for graphs with certain
semantic contexts that are hardly observed.

CHALLENGES AND REQUIREMENTS

Flexible context-structure conditioning: Learn a single
representation from a set of graphs with variable sizes.

Permutation-invariant graph generation: Capture unique graph
representations regardless of node ordering.

2 olof1]|1 2 olof1]|1
1 olof1]o0 1 olofo|1
1 1 0 1 A1 1 0 0 1 A3
3 4
4 1lo]1]o0 3 1l1]1]o0
3 S L [lA; - A,|l2 =2.8284
1 10|01
oo A, A, - Agl|2 =2.2361
4
2 11110 [IA; - Ayll2=1.7321

TECHNICAL CONTRIBUTIONS

Contribution 1: A novel GCN-VAE framework with flexible
conditioning function.

p(AlZ) = H HP(Aij|Zi/ zj), with p(A;j = 1|z;, z)) = o(f(z;)"f(z))), (1)

i=1 j=1

Learn with sets of graphs
Graph-level conditioning
Permutation-invariant
encoding

Figure: Use a single distribution to jointly model all nodes.

Contribution 2: A novel GCN-based graph discriminator to enable
permutation invariance

Lgan =log(D(A)) +1og(1 — D(S(Zs))) +1log(1 — D(S(Zc))). (2)

U, # U,
U, = U,

—)

Figure: End-to-end learnable graph structure representations.

Overall Architecture of ConDGEN: GCN-VAE-GAN.

Encoder (GCN)

Reconstructed graph Generated graph

I [

Original graph

Decoder (FNN)

Discriminator 2 (FNN)

Figure: The upper part is a graph variational autoencoder, where we collapse the
node embeddings into a single graph embedding, so as to enable flexible graph
context-structure conditioning and allow training/generating of graphs with
variable sizes. The lower part makes up for a graph generative adversarial nets,
where we leverage GCN to guarantee permutation-invariant graph encoding,
generation and comparison for reconstruction. Parameters in the decoder and
generator networks as well as those in the two GCN networks in the encoder and
discriminator are shared to further boost efficient and robust model inference.

Discriminator 1 (GCN)

Implementations: All code and data used in our experiments are
publicly available at https://github.com/KelestZ/CondGen.

EXPERIMENTAL EVALUATIONS

Datasets: We created two benchmark datasets, i.e., a set of author
citation networks from DBLP and a set of gene interaction networks
from TCGA.

Baselines: We carefully adapt three state-of-the-art graph
generation methods, i.e., GVAE, NetGAN and GraphRNN, by
concatenating the condition vectors to both the node features of the
input graph and the output of the last encoding layer.

Protocols: We evaluate both tasks of mimicking similar seen graphs
and creating novel unseen graphs, through visual inspection and
graph property comparison (statistics we use include LCC (size of
largest connected component), TC (triangle count), CPL
(characteristic path length), MD (maximum node degree) and GINI
(gini index), measuring different properties of graphs).

Graphs| Models |LCC TC CPL MD GINI
Real 96.00 48.54 3.696 11.62 0.3293
DBLP GVAE 20.91* 21.76™ 1.390* 2.32** (0.1964**
Seen NetGAN |21.15* 2246 1.641** 2.77** 0.0568"*
GraphRNN |6.88* 69.32** 1.628* 7.06"* 0.2446™
ConpGeN(R) | 6.70* 7.70* 1.201* 1.33 0.1232*
ConpGen(S) | 6.00 11.32 0.963 148 0.0959

Real 102.50 58.21 4982 1429 0.3223
DBLP GVAE 17.40* 17.02* 1.521** 3.53* 0.2479*
Unseen NetGAN [29.57** 39.85"* 1.494* 3.71** 0.0812
GraphRNN |6.43 73.21* 1.305* 6.43* (.1447*
ConpGEN(R) [9.25* 10.50 1.445* 1.92 0.1418*
ConDGEN(S) | 6.33 10.17 1.162 1.92 0.0861

Real 177.34 8913.20 4.171 38.27 0.4192
TCGA GVAE 54.82** 2396.94* 1.538 14.10" 0.2035**
Seen NetGAN [32.02** 3614.61** 1.702** 17.61** 0.1289*
GraphRNN |16.20* 2881.68** 1.899** 18.78** (.2726*
ConDGEN(R) | 34.42** 2594.16" 1.542 950 0.1509*
ConDGEN(S) |23.72 2076.05 1.524 8.32 0.1093

Real 177.91 8053.18 4.143 34.34 04154
TCGA GVAE 37.18* 2768.55* 1.324* 13.03"* (0.1497**
Unseen NetGAN |31.36" 3557.91** 1.645" 18.45™ (0.1277**
GraphRNN |15.73** 2605.73** 1.859** 13.55** (.2647*
ConpGEeN(R) [27.77% 3083.81** 1.362* 10.86* 0.1413*
ConDGEN(S) [23.97 2058.95 1.522 8.68 0.1003

Table: Performance evaluation over compared algorithms regarding several
important graph statistical properties. The Real rows include the values of real
graphs, while the rest are the absolute values of differences between graphs generated
by each algorithm and the real graphs. Therefore, smaller values indicate higher
similarities to the real graphs, thus better overall performance. We conduct paired
t-test between each baseline and CoNDGEN(S), scores with * and ** passed the
significance tests with p = 0.05 and p = 0.01, respectively.

More results: For more experimental results on runtimes, visual
inspections, and training details, please refer to our paper and
supplementary materials at http://jiyang3.web.engr.illinois.edu/.

