
CONE: Community Oriented Network Embedding
Carl Yang #, Hanqing Lu ∗, Kevin Chen-Chuan Chang #

University of Illinois, Urbana Champaign
201 N Goodwin Ave, Urbana, Illinois 61801, USA

{jiyang3, kcchang}@illinois.edu
∗ Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, Pennsylvania 15213, USA
hanqinglu@cmu.edu

Abstract—Detecting communities has long been popular in the
research on networks. It is usually modeled as an unsupervised
clustering problem on graphs, based on heuristic assumptions
about community characteristics, such as edge density and
node homogeneity. In this work, we doubt the universality of
these widely adopted assumptions and compare human labeled
communities with machine predicted ones obtained via typical
mainstream algorithms. Based on supportive results, we argue
that communities are defined by their underlying social patterns
and unsupervised learning algorithms based on heuristics is inca-
pable of capturing their various forms. Therefore, we propose to
inject supervision into community detection through Community
Oriented Network Embedding (CONE), which leverages limited
ground-truth communities as examples to learn an embedding
model aware of the underlying social patterns. Specifically, a
deep architecture is developed by combining recurrent neural
networks with random-walks on graphs towards capturing social
patterns directed by ground-truth communities. Generic cluster-
ing algorithms on the embeddings of other nodes produced by
the learned model then effectively reveals more communities that
share similar social patterns with the ground-truth ones.

I. INTRODUCTION

One of the most popular topics in network research is
to identify communities. On the one hand, as networks are
growing larger than ever before, it is efficient and necessary
to look into smaller sub-networks, which consist of specific
groups of interacting objects (i.e., nodes) and their links (i.e.,
edges). On the other hand, the knowledge of community
structures allows us to better understand the status of an
object within a group and the relations between it and its
peers, so as to enable multiple benefits including the discovery
of functionally related objects [1], the study of interactions
between modules [2], the inference of missing contents [3],
the prediction of unobserved connections [4] and so on.

Many algorithms aim to solve this problem [5], [6], [7], [8],
[9], [10], [11]. However, they are all formulated based on the
heuristic assumptions of edge density and node homogeneity,
i.e., communities are constructed by densely connected nodes
and nodes within one community are all homogeneous in some
ways. Most surprisingly, even the ground-truth community
labels used for evaluation in many standard datasets are
generated by machines rather than humans based on these two
assumptions [12]. In this work, we doubt the universality of
these widely trusted assumptions.

Student

Secretory

Professor

Fig. 1. Toy example of communities in a CS department

To see how these two assumptions do not necessarily hold
true, consider the scenario in Figure 1, where two groups of
students and professors are circled by dashed lines. Each of
the two is naturally a valid community as everyone is affiliated
to the same research group. However, they are not always
densely connected, as it is possible that students work on their
individual projects and hardly meet each other. The community
is not homogeneous in a specific way either. Students may
have similar age range, salary range and come from the same
hometown, but these might be quite different from those of
the professors. Therefore, unsupervised community detection
algorithms based on edge density and node homogeneity can
hardly detect communities like these.

Although neither of the density and homogeneity character-
istics is prominent in the communities in Figure 1, we observe
that there are indeed some interesting social patterns. For
example, a pattern of star is clearly formed within the commu-
nities, and the secretory obviously acts as a bridge between
communities. Those patterns are characterized by both link
structures and user contents. For instance, the professor as a
star center is distinctive in ages from the students around but
may possess similar other contents such as research interest
and department. The professor is also densely connected with
the students around, but the students may not directly work
with each other. On the other hand, the secretory as a bridge
shares similar contents like department with all others, while
also connects to many of them. Nevertheless, she/he belongs
to neither of the two groups. Clearly, communities are defined
and should be detected by the underlying social patterns.

Intuitively, a social pattern as we want to leverage should
be formed by users with certain contents into specific local
structures, and it should appear often in communities. How-
ever, while we can think of some intuitive ones like those in

Figure 1, the actual social patterns should be fuzzy, complex
and varying across networks. It is impractical to enumerate
all possible ones and design an unsupervised algorithm to
detect communities of all patterns. Moreover, traditional ways
of finding and matching patterns on even small networks are
notoriously time-consuming and almost impossible on real-
world large social networks [13]. To the best of our knowledge,
there exists no previous work that aims to leverage such fuzz,
complex and varying patterns on networks.

In this work, we propose to inject weak supervision into
community detection by learning an embedding model that
automatically captures fuzzy social patterns. Instead of taking
pre-defined assumptions about community characteristics, it
is more reliable to learn from the data what the underlying
social patterns look like. Specifically, given a network, we
propose to leverage a few labeled communities as examples,
and automatically explore and memorize their important social
patterns. The model can then easily compute the embeddings
on other parts of the network or other similar networks,
which can then be leveraged for the detection of unlabeled
communities there. For example, in Figure 1, it is intuitive to
leverage the star pattern learned from one community to detect
the other, and the patterns learned from research groups in the
CS department can be well leveraged to detect research groups
in other departments, shools, etc.

While network embedding has attracted intense research
attention recently [14], [15], [16], [17], [18], a supervised
embedding directed by social patterns is non-trivial and has
never been explored. The task is challenging due to the lack
of an efficient way to explore and combine complex user con-
tents, network structures and community labels into a unified
learning framework that effectively captures social patterns.
In this work, we develop an end-to-end deep architecture of
Community Oriented Network Embedding (CONE). The key
advantages of CONE over some existing network embedding
techniques are as follows:

1) Content expressive: to deeply explore and understand
high-dimensional noisy contents as signatures of social
patterns, we start from content embedding, by decompos-
ing it into multiple nonlinear layers of recurrent neural
networks (RNN).

2) Structure aware: to leverage links and capture social pat-
terns with local structures, we design a network regular-
ization layer, which essentially generalizes the embedding
from single users to local structures according to high-
order random-walk transitions on the graph.

3) Community oriented: to exploit example communities,
we connect a softmax supervision layer into an end-
to-end framework to directly require users within the
same communities and thus forming some special social
patterns to be close in the embedded space. In this way,
the supervision can be properly back propagated to the
content embedding layer via the network regularization
layer, which explores their mutual reinforcement and
reliably captures prominent social patterns.

4) Out-of-sample: CONE directly learns an embedding
model, rather than the embeddings of a specific set of
nodes. Therefore, it is able to handle the out-of-sample
problem, which addresses the challenges of limited su-
pervision and dynamic network.

II. MOTIVATING STUDY

In this section, we show the deficiency of traditional un-
supervised community detection algorithms by quantitively
examining the density and homogeneity assumptions they
adopt and their consequences. On the contrary, we demonstrate
that there are indeed some communities that are neither dense
nor homogeneous, but they share some underlying social
patterns.

We conduct a set of analysis using the Facebook dataset
described in [8]. This dataset includes 10 ego-networks, con-
sisting of 193 social circles and 4,039 nodes. 10 ego users have
manually identified all the communities to which their friends
belong. The average number of social circles in each ego-
network is 19, with an average community size of 22 users.
We trust these manually labeled social circles and use them
as the ground-truth communities.

Let a graph G = {V,E} represent a network with a vertex
set V and an edge set E. A community can be represented
as a sub-graph C = {VC , EC} with VC ⊂ V and EC ⊂ E.
ai is the content vector of a vertex vi ∈ V . We evaluate the
density and homogeneity of both ground-truth communities
and communities detected by the state-of-the-art algorithms.

Metrics. We use a density metric D(·) and a homogeneity
metric H(·) defined as follows:

D(C) =
2|EC |

|VC |(|VC | − 1)
. (1)

The value of D(C) ranges from 0 (a graph without edges) to
1 (a complete clique). It is a standard measure of the density
of a network widely used in related literature [12].

H(C) =

∑
vi,vj∈VC ,vi 6=vj

σ(
aT
i aj

avg(aT
i aj)

)

|VC |(|VC | − 1)
, (2)

where avg(aTi aj) is the average of content similarity among
all pairs of nodes in the whole network G, and σ(t) = 1−e−t

1+e−t

is the adjusted half sigmoid function in the range of [0, 1]. The
value of H(C) also ranges from 0 (none of the nodes share
the same contents) to 1 (all nodes share the same contents),
while the value increases rapidly as the content similarity in
C is small compared with the average content similarity in the
whole network G.

Compared algorithms. We study three mainstream commu-
nity detection algorithms within the state-of-the-art: MinCut
[7] (based on network modularity), CESNA [10] (based on
probabilistic generative model) and InfoMaps [19] (based on
information theory).

Density and homogeneity analysis.
Assumption 1: nodes within the same community are

densely connected.

Conflicting evidence: In Figure 2, we present D(C) com-
puted on the ground-truth communities as well as the com-
munities detected by the state-of-the-art algorithms in ego-
network 686 as an example. It can be observed that ground-
truth communities do not always have a high density. In fact,
it is possible that there are more low-density communities than
high-density ones as in (a). The evidence directly contradicts
with Assumption 1.

Based on this inaccurate assumption, traditional unsuper-
vised community detection algorithms tend to detect commu-
nities with high density. As an example, the distributions of
D(C) computed on the detected communities in the same ego-
network are presented in Figure 2(b)-(d). It can be observed
that most of the detected communities have a high density
(D(C) > 0.5), which is inconsistent with the density dis-
tribution of the ground-truth communities. It suggests that
the inaccurate assumption of edge density indeed leads to
unreliable community detection results.

(a) Ground-truth (b) MinCut

(c) CESNA (d) InfoMap

Fig. 2. Community density in ego-net 686.

(a) Ground-truth (b) MinCut

(c) CESNA (d) InfoMaps

Fig. 3. Community homogeneity in ego-net 698.

Assumption 2: nodes within the same community are ho-
mogeneous in some ways.

Conflicting evidence: As an example, the distribution of
H(C) computed on the ground-truth communities in ego-
network 698 is contradictory to Assumption 2. As shown in
Figure 3(a), few communities are indeed homogeneous (e.g.,
the one with homogeneity higher than 0.8), while the majority
are much less homogeneous. Given σ(1) ' 0.46, the results
indicate that most communities have a homogeneity similar to
that of the whole network.

We conduct the same homogeneity analysis on communities
detected by the same group of algorithms. As can be seen
in Figure 3(c)-(d), since CESNA and InfoMaps assume node
homogeneity in communities, they do detect communities of
slightly higher homogeneity, which diverge from the ground-
truth ones. MinCut does not assume node homogeneity.

(a) Cmt 1 in ego-net 1684 (b) Cmt 15 in ego-net 3437

Fig. 4. Examples of real communities with social patterns.

Real community social pattern analysis. After showing that
nodes within the same communities are not always densely
connected or homogeneous in some ways, we look into the
structures of ground-truth communities to find evidence for
the existence of social patterns, so as to further motivate our
novel approach of community detection.

In Figure 4, among many patterns and examples, we show
two communities that clearly share a co-star pattern, where
almost all members connect to two center nodes, while they do
not densely connect within themselves. Moreover, the center
nodes in both communities indeed have some special contents
such as a certain degree in the college or job in the company,
which are not shared by other non-center members. (We
removed a few isolated noise nodes for clear visualization.)

III. CONE

A. Overall Framework

The analysis in Sec. II clearly demonstrates the deficiency
of existing unsupervised community detection algorithms,
which is a consequence of their falsifiable assumptions of
edge density and node homogeneity. As we motivated in
Sec. I, the existence of fuzzy, complex and varying social
patterns underlying communities further indicates an urge for
developing a novel community detection algorithm that aims
at leveraging such patterns.

In this work, rather than enumerating and evaluating all
important social patterns, we propose to automatically capture
them from labeled communities through weak supervision.
Instead of exhaustive graph matching, we model the problem

as representation learning. Specifically, we do not care about
the exact shapes of the patterns, but we intuitively require the
users within the same patterns to be close in an embedded
space. We formulate our framework as follows.

We are given a network modeled by G = {V, E ,A, C},
where V is the set of n users, E is the set of observed links
among V . A is the set of observed user contents on V , where
ai is the set of contents on user vi. C is a set of ground-
truth community memberships, where ck is the set of users in
community ck. For learning the model, only a small number
of ground-truth communities are required as examples, while
others are used for evaluation.

To detect more communities, we firstly learn an embedding
model that captures social patterns in G based on A, E and C.
The model should effectively explore various social patterns
and transform each user into a p-dimensional vector. In the
embedded space, users forming some important social patterns
and thus within each example community are close. More
importantly, the model should be able to leverage the social
patterns and produce embeddings on all users in V in a
similar way. Therefore, new communities can then be detected
through generic clustering algorithms such as k-means on the
p-dimensional features. Overlapping communities can also be
discovered by algorithms like MOC [20].

Figure 5 illustrates the overall architecture of our CONE
model. We take the input of A for all users V and compute the
content embeddings H, which is then regularized by network
structures E to yield the community oriented embeddings S.
For representation learning, S is then used to generate com-
munity predictions Y, which is supervised by the ground-truth
community labels L derived from the example communities
in C. L can be either point-wise, where lik = 1 means vi
is a member of community ck, or pair-wise, where lij = 1
means vi and vj are in the same community. To detect more
communities, we take S as the actual output of CONE and
apply generic clustering algorithms like k-means on it.

To ensure a desirable representation, ideally we should
require users within the same example communities indicated
by L, and thus forming some specific social patterns, to be
close in the embedded space. That is, we need to compute
the pair-wise loss among all users and our overall high-level
objective function should look like the following,

J = Φ(Y,L) =
∑

(vi,vj),i6=j

φ(ŷij , lij). (3)

where Φ is a loss function, L is the pair-wise community labels
and Y is the pair-wise prediction.

In what follows, we further explain the reasons for our
model architecture and how it works in details.

B. Deep Architecture

While it is intuitive to automatically learn an embedding
model that captures important social patterns, the task is non-
trivial and posts some unique challenges:
• Explore high-dimensional noisy user contents.
• Leverage complex links and local structures.
• Exploit limited supervision of example communities.

To deal with all challenges above, we develop a deep architec-
ture of CONE, which inherently combines RNN with random-
walks in an end-to-end supervised learning framework.

RNN: deeply explore and understand user contents as
signatures of social patterns. Existing network embedding
algorithms are insufficient in exploring contents for capturing
social patterns. They usually focus on preserving the link
structures among users [14], [16], [15], and incorporate user
contents as augmented attribute nodes [21], text feature matri-
ces [17] or bag-of-word vectors [18]. Thus, the deep semantics
within user contents are not fully explored. In our situation,
contents are so important that they often become the signatures
of social patterns. For example, in a football fans’ club, a
popular player identified by the contents of his tweets is likely
to be the center, surrounded by groups of fans identified by
their semantically different tweet contents.

However, exploring and understanding user contents in so-
cial networks is a non-trivial task, since they can be complex,
noisy and high-dimensional. E.g., in text-rich networks like
Twitter, contents can be a list of recent tweets; in tag-rich
networks like Flickr, they can be a list of frequently used
hashtags in a timely order; in networks with explicit attributes
like Facebook and LinkedIn, they can be a set of categorical
variables like Birthday, School, Occupation with lots of noisy
and missing data. The situation reminds us of the task in
natural language processing (NLP) of understanding noisy text
sequences, where the semantics is usually hidden in ordered
tokens of variable lengths.

In this work, instead of starting from the links, we start from
deeply modeling user contents. To this end, we employ RNN
from NLP, which has been proven advantageous over various
other methods in understanding text-like sequences, due to its
supreme expressiveness within the neural networks to explore,
understand and memorize important semantic patterns. The
deep learning framework of RNN also provides us with the
flexibility to modify the neural network architectures in order
to leverage other information like network structures and
community supervision. To the best of our knowledge, this
is the first work that models user contents as raw texts and
successfully applies RNN to network embedding.

To leverage RNN, given a user vi’s textual contents such
as a list of recent tweets, we can concatenate them into a
single sequence si, each element of which is the index of the
corresponding word after stemming and stop word removing;
given vi’s categorical contents ai such as education and work
on Facebook, we transform it into a sequence si = {j|aij =
1}. The sequence si is then used as the input of RNN. As
mentioned in [22], simple RNN would be difficult to train
due to the resulting long term dependencies. Therefore, we
use the long-short term memory (LSTM) cells [23] instead to
embed A. The architecture and implementation of LSTM can
be found in the public website1.

Upon each input si, there will be one output from the
LSTM cell as a semantic embedding of user contents. To

1http://deeplearning.net/tutorial/lstm.html

a1

a2

an

LSTM h1

LSTM h2

LSTM hd

Attribute
Embedding

Matrix

H

Random
Transition

Matrix

T

Random
Transition

Matrix

T

Regularized
Embedding

Matrix

S

Softmax
Prediction

Matrix

Y

Ground-
Truth
Label
Matrix

L

(1) Attribute Embedding Layer (2) Network Regularization Layer (3) Community Supervision Layer(1) Content Embedding Layer (2) Network Regularization Layer (3) Community Supervision Layer

Fig. 5. The end-to-end deep architecture of Community Oriented Network Embedding (CONE).

further improve model expressiveness, we use d LSTM cells
to output d embedding vectors {h1

i ,h
2
i , . . . ,h

d
i }, and apply

mean pooling on them, which is commonly used to integrate
features and reduce deviation. So we have

hi = h(si) =
1

d

d∑
j=1

hj
i , (4)

where h(·) denotes the overall deep content embedding func-
tion. Supposing the embedding size of each LSTM cell is p,
we get a content embedding matrix H ∈ Rp×n to represent
the embeddings of V , where the i-th column of H equals to
hi.

Note that, while RNN is especially useful for exploring
complex text-like sequences, for simple numerical or categor-
ical contents like user attributes, it also makes sense to use
simpler models like feedforward neural networks, which can
be incorporated into our end-to-end framework in the same
way. We will also show the performance of such basic neural
networks in our experiments.

Random-walk: leverage links and capture social patterns
with local structures. The objectives of existing network
embedding algorithms are not appropriate for leveraging
network structures to capture social patterns. They usually
model network structures by sampling a set of paths from
the networks and applying a Skipgram-based model [24] to
uniformly require the embeddings of nodes that share similar
graph context to be similar [14], [15], [17], [18]. To capture
social patterns, we want the user embedding to be guided by
community supervision. Users having similar network context
do not necessarily belong to the same communities, and thus
should not be required to have similar embeddings without
discrimination. Besides, by sampling the networks into paths,
structural information beyond paths is not efficiently lever-
aged. In our situation, the shapes of local network structures
are extremely important, since they may well indicate the
existence of specific social patterns, like the star and co-star
shapes as we mentioned in Sec. I and II.

In this work, we directly leverage local structures to regu-
larize the supervision of example communities. To this end,
we armor our RNN-based content embedding with random-
walk-based network regularization. It efficiently generalizes
the embeddings on single users to their ambient local struc-
tures, allowing RNN to explore content embedding under the

regularization of network local structures and the guidance of
example communities.

Consider the RNN-based content embedding. Due to Eq. 4,
if ai is similar to aj , then it is likely that the embeddings
hi and hj are also close. However, this may not be ideal,
because similar users can well form different communities.
The key question is, are they also on the same local structure?

To account for this, we insert a random-walk-based network
regularization layer, which recomputes the embedding of each
user w.r.t. her neighbors, according to their distances measured
by random-walks of k steps, i.e., si =

∑n
j=1 t

k
jihj , where tkji

is the k-step random-walk transition probability from vj to
vi. In matrix form, a more compact formula is S = HTk.
tij = wij/di, where wij is the binary or real-valued weights
on edge eij and di =

∑
j wij .

Intuitively, each vi ‘collects’ the embeddings transmitted
from its local neighbors. Compared with hi, si encodes
the local structure around vi, rather than just the semantic
information from ai. As a consequence, only users with similar
contents as well as local structures will be embedded as close.

Moreover, consider the loss in Eq. 3 brought by the supervi-
sion of example communities. Without network regularization,
the loss on content embeddings can be formulated as

JH =
∑

(vi,vj),i6=j

φ(ŷ(h(ai), h(aj)), lij). (5)

Under JH , e.g., if there are some professors and students in the
same example communities, all professors and students will be
required to get similar content embeddings, which should not
be the case. Instead, we apply supervision on the regularized
embeddings as

JS =
∑

(vi,vj),i6=j

φ(ŷ(si, sj), lij). (6)

As a consequence, only professors and students connected in
certain local structures indicated by supervision are embedded
as close.

End-to-end learning: exploit community supervision and
the mutual reinforcement between contents and links. As
we discussed about Eq. 3 before, to directly meet our goal
of embedding users in the same example communities to be
close, we need to construct a pair-wise loss on each pair
of users in the same communities. However, pair-wise loss
functions can not be built into our end-to-end embedding

framework and permit efficient training of the neural networks.
Moreover, converting the community memberships to pair-
wise 0-1 labels will lead to significant information loss,
especially for overlapping communities.

To overcome these difficulties, we find the point-wise soft-
max prediction with cross entropy loss as a suitable substitute
to the exact pair-wise loss [25]. While having a different
objective, softmax with cross entropy basically ensures that
instances predicted with the same label are close in a space
that can be viewed as a linear projection of the original
embedding space. Therefore, it can be viewed as achieving
a similar goal as the direct pair-wise loss. Moreover, softmax
is commonly used in end-to-end deep learning frameworks
to predict multiple labels, and the cross entropy loss can
be efficiently back propagated through neural networks. By
allowing the training on multi-label predictions, it is also able
to leverage overlapping example communities and distinguish
among different communities.

Therefore, we incorporate a softmax supervision layer to
form our end-to-end deep learning framework, where commu-
nity supervision can be exploited as a guidance for exploring
social patterns, and the mutual reinforcement between user
contents and link structures can be leveraged. Our practical
objective function based on cross entropy loss is as follows:

ŷik =
exp(wT

k si)∑K
k′=1 exp(wT

k′si)
, J =

n∑
i=1

K∑
k=1

liklog(ŷik), (7)

where w’s are the model parameters in the softmax layer
and K is the total number of example communities. Y and
L encode the predicted and ground-truth community labels,
respectively, where ŷik = 1 means vi is predicted to be a
member of community ck, and L is the point-wise community
labels.

To optimize Eq. 7, we employ stochastic gradient descent
(SGD) with the diagonal variant of AdaGrad from [26]. At the
t-th step, the parameters Θ is updated by:

Θt ← Θt−1 −
ρ√∑t
i=1 g

2
i

gt, (8)

where ρ is the initial learning rate and gt is the sub-gradient at
time t. Since our network regularization layer is implemented
as a matrix multiplication, the gradients can be efficiently
back-propagated to the content embedding layer, and the
overall embedding framework is end-to-end.

When detecting communities in a network, embeddings of
users produced by the CONE model learned on labeled data
are fed into generic clustering algorithms like k-means. We
apply cross-validation to automatically choose the optimal
number of communities as done in [10].

The efficiency of CONE: CONE is an end-to-end deep
learning framework implemented using TensorFlow2. Only
minimum setup is required to run it efficiently on GPU. We
will make the code available upon acceptance of the work.

2https://www.tensorflow.org/

IV. EXPERIMENTS

In this section, we evaluate CONE for community detection
with extensive experiments on 3 real-world networks.

A. Experimental Settings

Datasets. We use three real-world network datasets. The first
is the Facebook dataset we used in Sec. II for data analysis,
which consists of 10 ego-networks with community labels
explicitly provided by the ego users [8]. The contents in
this dataset are well-defined user profiles such as education,
work and location, and links are undirected friendships among
users. The second is a Flickr dataset collected by [27]. The
community labels are generated from the groups joined by
users. The contents are the tags aggregated on users’ posted
photos and the links are undirected friendships. The third is
a Twitter dataset also collected by [8], which consists of 973
ego-networks. The community labels are generated from friend
circles (or lists), i.e., friends put into the same list by the ego
user are regarded as within one community. The contents are
the hashtags and popular account mentions within users’ recent
tweets and the links are directed followings. Detailed statistics
of the three datasets we use are shown in Table 1.

Dataset #nodes #comms #links #attrs
Facebook 4,039 192 88,234 634

Twitter 81,306 837 1,768,149 12,274
Flickr 35,313 200 3,017,530 77,263

TABLE I
STATISTICS OF 3 REAL-WORLD NETWORK DATASETS.

Compared algorithms. We compare with two groups of al-
gorithms from the state-of-the-art to comprehensively evaluate
the performance of CONE.

Community detection algorithms. Some algorithms are based
on the edge density assumption alone, while others also
assume node homogeneity. We compare with this group of
algorithms to show the advantage of abandoning these inac-
curate assumptions and leveraging the supervision of example
communities.
• MinCut [7]: a classic community detection algorithm

based on modularity.
• BigClam [9]: an advanced community detection algo-

rithm solely based on network structure.
• Circles [8]: a generative model of edges w.r.t. attribute

similarity to detect communities.
• CESNA [10]: a generative model of edges and attributes

to detect communities.
• SGM [28]: a semi-supervised framework incorporating

individual labels and pair-wise constraints.

Network embedding algorithms. While we find it intuitive to
model the problem as representation learning, we compare
with the state-of-the-art network embedding algorithms to
show that CONE is advantageous in capturing social patterns.
The embeddings learned by all algorithms are fed into the
same k-means clustering algorithm as CONE to produce
community detection results.

• DeepWalk [15]: an embedding algorithm based on trun-
cated random walks that only considers network structures.

• node2vec [14]: an embedding algorithm based on 2nd
order random walks that only considers network structures.

• TADW [17]: an embedding algorithm that generalizes
DeepWalk to consider both node attributes and network
structures by tensor factorization.

• PTE [21]: an embedding algorithm that generalizes LINE
[16] to consider node attributes, network structures and
class labels by graph augmentation.

• Planetoid [18]: an embedding algorithm that extends
DeepWalk to consider node features, network structures
and class labels by jointly predicting labels and contexts.

The number of communities to detect is tuned via standard 5-
fold cross validation for all algorithms. The implementations
of compared algorithms are all provided by the original
authors.

Metrics. Two widely used metrics for evaluating community
detection results are used in our experiments. For a detected
community c∗i and a ground-truth community ci, the F1
similarity and Jaccard similarity are defined as

F1 =
2 · precision · recall
precision+ recall

,

Jaccard =
|ci ∩ c∗i |
|ci ∪ c∗i |

,

where precision =
ci∩c∗i
|c∗i |

, recall =
ci∩c∗i
|ci| .

For a set of ground-truth communities {c∗i }Mi=1 and a set of
detected communities {ci}Ni=1, we compute the score as

1

2|C|
·
∑
ci∈C

max
c∗i∈C∗

eval(ci, c
∗
i)+

1

2|C∗|
·
∑

c∗i∈C∗
max
ci∈C

eval(ci, c
∗
i),

where eval(ci, c∗i) can be either replaced by F1 or Jaccard.

B. Performance Comparison with Baselines

We quantitively evaluate CONE against all baselines on
community detection. We randomly split the labeled commu-
nities into training and testing sets. We use 10% of the labeled
communities as examples to learn the models for CONE,
SGM, PTE and Planetoid. All compared algorithms are then
evaluated on the rest 90% labeled communities. To observe
significant difference in performance, we split the training and
testing sets 10 times and conduct statistical t-tests with p-value
0.01.

Table II shows the average F1 and Jaccard scores evaluated
on all compared algorithms over the same 10 random splits
of training and testing sets. The results all passed our t-tests.
The parameters of baselines are all set to the default values
as suggested in the original works. Some numbers are a bit
different with those in the original work, because we directly
use all node contents as input and only evaluate on the testing
set. For CONE, we intuitively use two random transitions in
the regularization layer to stress network locality and leverage
the link structures in close neighborhoods.

CONE reaches around 30% relative improvements on the
Facebook dataset and more than 10% improvements on the

Algorithm F1 Score Jaccard Score
FB Flickr Twitter FB Flickr Twitter

MinCut 0.265 0.059 0.114 0.181 0.031 0.081
BigClam 0.284 0.076 0.121 0.198 0.041 0.084
Circles 0.267 0.042 0.102 0.185 0.029 0.069
CESNA 0.298 0.076 0.126 0.242 0.042 0.084

SGM 0.281 0.077 0.177 0.202 0.043 0.116
DeepWalk 0.211 0.071 0.136 0.135 0.039 0.094
node2vec 0.245 0.074 0.119 0.145 0.041 0.084
TADW 0.269 0.073 0.146 0.193 0.036 0.105

PTE 0.221 0.069 0.147 0.142 0.038 0.110
Planetoid 0.272 0.079 0.188 0.231 0.045 0.121
CONE 0.397 0.096 0.206 0.313 0.052 0.149

TABLE II
PERFORMANCE COMPARISON ON 3 DATASETS.

other two datasets, compared with the second-runner among
the 10 baselines on both F1 and Jaccard scores, while they
have varying performance. This indicates the robustness and
general advantages of our proposed approach.

Taking a closer look, we observe that the scores on the
Facebook dataset look much better than those on the other
two. This is due to the high quality of both contents and
links in the dataset. Since the Facebook dataset is the only
one that has explicit human labels of communities, the large
performance improvement on it indicates the advantage of
CONE in leveraging user provided community examples to
understand specific social patterns.

The scores of network embedding algorithms are lower than
traditional community detection algorithms on the Facebook
dataset, probably because traditional models work better on
few and clean contents. However, as the contents become
high-dimensional and noisy like in the Flickr and Twitter
datasets, network embedding algorithms excel. This indicates
the advantage of leveraging embeddings for traditional social
network tasks and further proves the efficacy of CONE in
dealing with complex user contents.

All experiments are done on a local PC with two 2.5 GHz
Intel i7 processors and 8GB memory. The runtime of CONE
is comparable to all baselines, while it is trivial to run more
efficiently on GPU.

C. Model Selection

We comprehensively evaluate the performance of CONE
with different amounts of supervision and varying neural
architecture.

Impact of supervision. We study the impact of supervision on
the performance of CONE by varying the training and testing
set portions. Figure 7 shows the results. CONE’s advantage
of leveraging community examples is significant on all three
datasets. As can be observed, CONE efficiently leverages
supervision by learning from very small amounts of labeled
communities, and the performance converges rapidly as the
training set portion reaches around 11% on the Facabook and
Flickr datasets. On datasets with large amounts of labeled
communities such as Twitter, around 6% of them are enough
to learn a good CONE model.

Note that the other three supervised algorithms do not
leverage community labels effectively, basically because they
are not designed to capture social patterns and leverage them
for out-of-sample community detection.

Impact of architecture. We study the impact of parameters
inside CONE by varying the number of random-walk transi-
tions and the size of embeddings. We also substitute the RNN
in the content embedding layer with basic fully connected
feed forward neural networks to demonstrate the effectiveness
of using RNN to deeply explore the high-dimensional noisy
contents. Among the basic neural networks we experimented
on with varying layers (from 1 to 4) and embedding sizes
(the last layer with sizes of 4, 8, 16 and 32), we show the
performance of a three-layer basic neural network (embedding
sizes are 64→ 32→ 16 from bottom up as a common practice
[29]) with ReLU as the activation function, which generally
yields the best performance.

Figure 8 shows the results. The number of random-walk
transitions has a large impact on the performance of CONE,
especially when the number is small. This demonstrates the
utility of our novel network reconfiguration layer. As the num-
ber of transitions grows larger and the stationary distribution
of random walk is approximated, the performance becomes
stable. Note that large numbers of transitions do not necessar-
ily lead to optimal performance, because community structures
are often well described within small neighborhoods.

The number of embedding dimensions does not have a
significant impact on the performance with RNN as the content
embedding layer, indicating the robustness of CONE inherited
from RNN. However, the performance is significantly worse
without RNN as the content embedding layer, which justifies
our motivation of leveraging RNN to effectively explore the
noisy contents in high-dimensional spaces. The runtime of
RNN is also significantly shorter than basic neural networks,
especially with more layers and larger embedding sizes.

D. Case Study

To understand the advantage of CONE, we conduct the
same density and homogeneity analysis on our detected com-
munities and present the results on the same ego-networks
we showed in Sec. II. Comparing Figure 6(a) and 6(b) with
Figure 2(a) and 3(a), we observe that CONE indeed finds
communities that are similar in distributions of density and
homogeneity as the ground-truth, which indicates its effec-
tiveness in capturing the social patterns that essentially define
user-described communities.

We also looked into the structures of communities found
by different algorithms. Still taking the example of the clear
co-star pattern, when we took the ground-truth communities
in ego-network 1684 as supervision, CONE indeed found a
total of 6 co-star communities on other parts of the dataset,
specifically, in ego-networks 0, 107, 348 and 3437. We did not
observe communities of such a co-star pattern detected by any
other algorithms, from all communities they detected through
a single execution on the same training and testing sets.

(a) Density in ego-net 686 (b) Homogeneity in ego-net 698

Fig. 6. Communities detected by CONE.

V. RELATED WORK

A. Community detection

Traditional community detection algorithms are mostly un-
supervised, based on either of the edge density or node ho-
mogeneity assumptions, or both. Therefore, the communities
they detect are only constructed by densely connected or
homogeneous nodes.

Among them, many are based on probabilistic generative
models. For instance, COCOMP [11] extends LDA [30] by
taking community assignments as latent variables. It leverages
node homogeneity by assuming that each community is a
group of people that use a specific distribution of words.
BigClam [9] does not make use of node content at all.
It leverages edge density by modeling the assignments of
communities solely based on existing links. A variation of
BigClam called CESNA [10] is later proposed, with addi-
tional consideration of binary-valued node attributes. Another
method within the state-of-the-art, Circles [8], also leverages
the same assumptions with a slightly different model.

Many non-generative algorithms have also been proposed.
Among them, some are based on graph metrics such as
modularity [7] and maximal clique [31]. They are fundamen-
tally leveraging the edge density assumption. As for node
homogeneity, some algorithms firstly augment the graph with
content links and then do clustering on the augmented graph
[32], [33], while some others attempt to find a partition that
yields the minimum encoding cost based on information theory
[5], [19]. They do not scale trivially to networks with high-
dimensional noisy contents.

As we leverage whole labeled communities as examples to
learn the underlying social patterns, CONE is also different
from the few semi-supervised community detection algorithms
that leverage individual labels and pair-wise constraints as part
of some communities [28].

B. Network embedding

We aim to find node embeddings that are suitable for
the task of community detection, under the social pattern
assumption. Unlike the techniques that compute embeddings
based on node proximities in the network [34], [35], [36],
we frame the objective as learning a representation that
captures social patterns. Moreover, we aim to learn it under
the guidance of communities, instead of the unsupervised ways
based on relational data in the networks [37], [38] or structural
relationships between concepts [39], [40].

6% 7% 8% 9% 10% 11% 12% 13% 14% 15%
Trainset Portion

0.2

0.25

0.3

0.35

0.4
F1

-s
co

re
CONE
SGM
PTE
Planetoid
Best unsupervised
Worst unsupervised

(a) Facebook

6% 7% 8% 9% 10% 11% 12% 13% 14% 15%
Trainset Portion

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

F1
-s

co
re

CONE
SGM
PTE
Planetoid
Best unsupervised
Worst unsupervised

(b) Flickr

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Trainset Portion

0.1

0.12

0.14

0.16

0.18

0.2

F1
-s

co
re

CONE
SGM
PTE
Planetoid
Best unsupervised
Worst unsupervised

(c) Twitter

6% 7% 8% 9% 10% 11% 12% 13% 14% 15%
Trainset Portion

0.15

0.2

0.25

0.3

Ja
cc

ar
d

CONE
SGM
PTE
Planetoid
Best unsupervised
Worst unsupervised

(d) Facebook

6% 7% 8% 9% 10% 11% 12% 13% 14% 15%
Trainset Portion

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Ja
cc

ar
d

CONE
SGM
PTE
Planetoid
Best unsupervised
Worst unsupervised

(e) Flickr

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Trainset Portion

0.05

0.1

0.15

Ja
cc

ar
d

CONE
SGM
PTE
Planetoid
Best unsupervised
Worst unsupervised

(f) Twitter

Fig. 7. Model selection results with varying training set portion.

0 1 2 3 4 5 6 7 8 9
Number of Random Transitions

0

0.1

0.2

0.3

0.4

F1
-s

co
re

CONE-RNN-16
CONE-RNN-32
CONE-RNN-64
CONE-Basic
Best baseline
Worst baseline

(a) Facebook

0 1 2 3 4 5 6 7 8 9
Number of Random Transitions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ja
cc

ar
d

CONE-RNN-16
CONE-RNN-32
CONE-RNN-64
CONE-Basic
Best baseline
Worst baseline

(b) Flickr

0 1 2 3 4 5 6 7 8 9
Number of Random Transitions

0.02

0.04

0.06

0.08

0.1

0.12

F1
-s

co
re

CONE-RNN-16
CONE-RNN-32
CONE-RNN-64
CONE-Basic
Best baseline
Worst baseline

(c) Twitter

0 1 2 3 4 5 6 7 8 9
Number of Random Transitions

0.02

0.03

0.04

0.05

0.06

0.07

Ja
cc

ar
d

CONE-RNN-16
CONE-RNN-32
CONE-RNN-64
CONE-Basic
Best baseline
Worst baseline

(d) Facebook

0 1 2 3 4 5 6 7 8 9
Number of Random Transitions

0.1

0.12

0.14

0.16

0.18

0.2

F1
-s

co
re

CONE-RNN-16
CONE-RNN-32
CONE-RNN-64
CONE-Basic
Best baseline
Worst baseline

(e) Flickr

0 1 2 3 4 5 6 7 8 9
Number of Random Transitions

0.05

0.1

0.15

Ja
cc

ar
d

CONE-RNN-16
CONE-RNN-32
CONE-RNN-64
CONE-Basic
Best baseline
Worst baseline

(f) Twitter

Fig. 8. Model selection results with varying neural architecture.

As discussed in Sec. III, the most related techniques to ours
are the Skipgram-based network embeddings [14], [15], [16].
Recent works [21], [18], [17] have extended such techniques
to incorporate node attributes and class labels. Their models
using augmented nodes, text feature matrices and bag-of-word
vectors are ineffective for deeply exploring high-dimensional
noisy contents. Moreover, they all use network context as
supervision to uniformly require nodes with similar context
to have similar embeddings. Our objective is different, where
we only require users within the same communities to be
embedded as close. To this end, our supervision is directly
guided by community examples, and we leverage network
structures only as a regularization. Finally, since they sample
networks into paths and predict context based on paths, the
techniques are inefficient in capturing local network structures
beyond paths. Our regularization efficiently generalizes the
embedding of single users to their ambient local structures,
which are deterministic rather than approximated by paths.

C. Node classification

Traditional supervised learning on networks is essentially
node classification [41], [42], [35], [43], which uses node
attributes as labels and leverages network structures for tasks
like content prediction. Our problem is quite different from
node classification. Although we utilize supervision to learn
the community oriented features, our final goal is to perform
unsupervised detection of unlabeled communities. To be more
specific, our predictions are new clusters of nodes, for which
no predefined categories or labeled data are available at all.
As a consequence, node classification algorithms are not
applicable to our problem.

VI. CONCLUSION

In this paper, we doubt the generality of the two widely
trusted assumptions about community characteristics, i.e., edge
density and node homogeneity, and we show the deficiency
of mainstream algorithms adopting those assumptions through
real data analysis. To deal with this deficiency, we propose

to leverage the underlying social patterns that define and
detect network communities. We design CONE that effectively
explores and captures important social patterns under the guid-
ance of example communities through network embedding.
Generic clustering algorithms performed on the embeddings
can yield reliable community detection results.

While CONE was originally designed for leveraging super-
vision for reliable community detection free from falsifiable
assumptions, it can be easily applied to many network learning
tasks to coherently leverage node contents, link structures and
various kinds of supervision or constraints. As we observe
from our experiments, CONE is especially advantageous in
dealing with high-dimensional noisy contents, such as se-
quences of hashtags and even raw texts.

REFERENCES

[1] A. P. Streich, M. Frank, D. Basin, and J. M. Buhmann, “Multi-
assignment clustering for boolean data,” in ICML. ACM, 2009, pp.
969–976.

[2] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed
membership stochastic blockmodels,” JMLR, vol. 9, no. Sep, pp. 1981–
2014, 2008.

[3] R. Li, C. Wang, and K. C.-C. Chang, “User profiling in an ego network:
co-profiling attributes and relationships,” in WWW. ACM, 2014, pp.
819–830.

[4] J. Chang and D. M. Blei, “Relational topic models for document
networks,” in AIStats, vol. 9, 2009, pp. 81–88.

[5] L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos, “Pics: Parameter-
free identification of cohesive subgroups in large attributed graphs,” in
ICDM. SIAM, 2012, pp. 439–450.

[6] T. Chakraborty, S. Patranabis, P. Goyal, and A. Mukherjee, “On the
formation of circles in co-authorship networks,” in KDD. ACM, 2015,
pp. 109–118.

[7] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[8] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in NIPS, 2012, pp. 539–547.

[9] J. Yang and J. Leskovec, “Overlapping community detection at scale:
a nonnegative matrix factorization approach,” in WSDM. ACM, 2013,
pp. 587–596.

[10] J. Yang, J. McAuley, and J. Leskovec, “Community detection in net-
works with node attributes,” in ICDM. IEEE, 2013, pp. 1151–1156.

[11] W. Zhou, H. Jin, and Y. Liu, “Community discovery and profiling with
social messages,” in KDD. ACM, 2012, pp. 388–396.

[12] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” KIS, vol. 42, no. 1, pp. 181–213, 2015.

[13] Y. Fang, W. Lin, V. W. Zheng, M. Wu, K. C.-C. Chang, and X.-L. Li,
“Semantic proximity search on graphs with metagraph-based learning,”
in ICDE. IEEE, 2016, pp. 277–288.

[14] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD. ACM, 2016, pp. 855–864.

[15] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD. ACM, 2014, pp. 701–710.

[16] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW. ACM, 2015, pp.
1067–1077.

[17] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, 2015, pp.
2111–2117.

[18] Z. Yang, W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised
learning with graph embeddings,” in ICML, 2016.

[19] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proceedings of the National
Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008.

[20] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney,
“Model-based overlapping clustering,” in KDD. ACM, 2005, pp. 532–
537.

[21] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through
large-scale heterogeneous text networks,” in KDD. ACM, 2015, pp.
1165–1174.

[22] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014, pp. 3104–3112.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[25] C. M. Bishop, “Pattern recognition,” Machine Learning, vol. 128, pp.
1–58, 2006.

[26] X. Qiu and X. Huang, “Convolutional neural tensor network architecture
for community-based question answering.” in IJCAI, 2015, pp. 1305–
1311.

[27] X. Wang, L. Tang, H. Liu, and L. Wang, “Learning with multi-resolution
overlapping communities,” KAIS, 2012.

[28] E. Eaton and R. Mansbach, “A spin-glass model for semi-supervised
community detection,” in AAAI, 2012, pp. 900–906.

[29] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua, “Neural
collaborative filtering,” in WWW, 2017, pp. 173–182.

[30] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
JMLR, vol. 3, no. Jan, pp. 993–1022, 2003.

[31] N. Du, B. Wu, X. Pei, B. Wang, and L. Xu, “Community detection in
large-scale social networks,” in WebKDD. ACM, 2007, pp. 16–25.

[32] Y. Ruan, D. Fuhry, and S. Parthasarathy, “Efficient community detection
in large networks using content and links,” in WWW. ACM, 2013, pp.
1089–1098.

[33] T. Yang, R. Jin, Y. Chi, and S. Zhu, “Combining link and content for
community detection: a discriminative approach,” in KDD. ACM, 2009,
pp. 927–936.

[34] K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong,
and C. Faloutsos, “It’s who you know: graph mining using recursive
structural features,” in KDD. ACM, 2011, pp. 663–671.

[35] L. Tang and H. Liu, “Relational learning via latent social dimensions,”
in KDD. ACM, 2009, pp. 817–826.

[36] ——, “Leveraging social media networks for classification,” DMKD,
vol. 23, no. 3, pp. 447–478, 2011.

[37] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and
A. J. Smola, “Distributed large-scale natural graph factorization,” in
Proceedings of the 22nd international conference on World Wide Web.
ACM, 2013, pp. 37–48.

[38] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: a general framework for dimensionality
reduction,” TPAMI, vol. 29, no. 1, pp. 40–51, 2007.

[39] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
TASLP, vol. 20, no. 1, pp. 30–42, 2012.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[41] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social network data analytics. Springer, 2011, pp.
115–148.

[42] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang, “Manifold-ranking
based image retrieval,” in ICM. ACM, 2004, pp. 9–16.

[43] X. Zhu, Z. Ghahramani, J. Lafferty et al., “Semi-supervised learning
using gaussian fields and harmonic functions,” in ICML, vol. 3, 2003,
pp. 912–919.

