
Multi-View Brain Network Analysis with
Cross-View Missing Network Generation
Gongxu Luo

Department of Machine Learning
MBZUAI

Abu Dhabi, United Arab Emirates
gongxu.luo@mbzuai.ac.ae

Chenyang Li
Dept. of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON, Canada

chenyang.li@uwaterloo.ca

Hejie Cui
Department of Computer Science

Emory University
Atlanta, GA, United States

hejie.cui@emory.edu

Lichao Sun
Dept. of Computer Science and Engineering

Lehigh University
Bethlehem, PA, United States

lis221@lehigh.edu

Lifang He
Dept. of Computer Science and Engineering

Lehigh University
Bethlehem, PA, United States

lih319@lehigh.edu

Carl Yang*
Department of Computer Science

Emory University
Atlanta, GA, United States

j.carlyang@emory.edu

Abstract—Parkinson’s Disease (PD), one of the most common
neurological disorders, has long been a challenge in public health
clinical diagnosis as well as scientific understanding. Recently,
there has been an upsurge of interest in brain network analysis
which benefits the understanding of brain functions and early
detection of neurological disorders extensively. Multi-view brain
networks with different connectivity patterns among regions
of interests (ROIs) can be constructed to reflect different and
complementary perspectives of the brain connectivity profile.
However, the extraction of such multi-view brain networks relies
on the availability of multiple neuroimaging modalities and heavy
data preprocessing, which often leads to severe missing data
in either view. The cross-view missing issue hinders the prag-
maticality of multi-view representation learning and downstream
analysis. In this work, we formulate the novel problem of cross-
view brain network generation and propose CroGen, a graph
generative model that can generate the missing view when only
one view is given. Specifically, GroGen leverages the potential
correlation between diverse views of brain networks of the same
individuals. Moreover, we design a pre-train schema to make
full use of the labeled individuals with only single views of
brain networks. Extensive experiments on real-life Parkinson’s
Progression Markers Initiative (PPMI) cohort demonstrate the
supreme effectiveness of CroGen over baselines on both cross-
view generation tasks and downstream PD classification.

Index Terms—multi-view network analysis, cross-view network
generation, brain network-based disease classification

I. INTRODUCTION

According to the statistics of the World Health Organiza-
tion (WHO), disabilities and deathes due to PD are increasing
faster than other neurological diseases [1]. Brain is an or-
gan with extremely complex nervous systems. Understanding
the relationship between fundamental mechanisms of brain
functions and diseases is beneficial for the early diagnosis of
PD and other neurological disorders [2]–[5]. Therefore, brain
network analysis has attracted increasing attention in both
machine learning and neuroscience communities. Aided by
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the rapid advances in modern neuroimaging technology, e.g.,
functional Magnetic Resonance Imaging (fMRI), Diffusion
Tensor Imaging (DTI), and CT scans, human brains can be rep-
resented by graph data, known as brain networks. specifically,
nodes in brain networks denote the Region-of-Interests (ROIs),
while the rich link structures model the connection strength
among ROIs. Such brain networks generated from various
neuroimaging modalities have provided invaluable insights
into the underlying PD mechanism [6], [7].

In recent years, the appetite for data motivates biomedical
researchers to explore new methods to utilize rich information
through deep learning [8], [9]. Considering the incomplete
information in single modalities of brain network data, multi-
view representation learning methods come to rescue and
have achieved great success in brain network analysis for
PD by utilizing the mutual complement between different
views [10]–[14]. However, despite the success of multi-view
learning methods, collecting the multi-view networks is a non-
trivial task, sometimes even impossible. Moreover, limitations
such as poor quality of sample views and restricted access
to specific equipments lead to a severe missing view problem,
which impedes the pragmaticality of multi-view brain network
analysis. This brings up a natural and challenging question:
Can we learn to generate the missing view based on the given
view to better support downstream analysis?

In this work, we formulate and study a novel problem of
cross-view graph generation to deal with the missing view
phenomenon in multi-view brain network analysis with a case
study on PD. Specifically, we propose to learn the correlation
patterns between the two views of structural brain networks
based on a small set of individuals with both views available,
so as to generate the missing views for individuals with
only one view of data. To further leverage the single-view
individuals, we design a schema to pre-train the model on
single views of data, and then fine-tune the model on both
views of data.
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(a) The distribution of edge weights in V1.
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(b) The distribution of edge weights in V2.

Fig. 1. The weight distribution of brain networks. The horizontal axis denotes the value range of the edge weights. The ordinate counts the number of edges
whose weights fall within the interval.

The missing view scenario is first simulated by splitting the
Parkinsons Progression Markers Initiative (PPMI) dataset with
ratio 6:2:2, where 60% individuals have the complete pairs
of two views while the other two 20% are single individuals
with only one view. Next, different from the existing graph
translation task [15]–[17], the goal of cross-view brain network
generation is to generate the missing view that is a graph with
a fixed node order and weighted edges conditioned on the
given view. Moreover, as shown in Fig. 1, we further analyze
the distribution of edge weights and find that the mean and
variance of the normalized edge weights are dramatically small
over both views in the dataset, which poses a unique challenge
for graph generation task. In addition, the majority of weights
are near the mean, which corresponds to the typically known
light-tailed distribution [18], rendering higher requirements in
the accuracy of the weighted graph generation model. Thanks
to the surge of deep learning, many successful models, e.g.,
Variational graph auto-encoders (GVAE) [19], CondGen [20],
CycleGAN [22], have been studied to model the complex
dependencies and relationships in graph data. However, these
graph generative models, which predict the existence of links,
fail to generate the ideal weighted graphs with the unique brain
network properties of small-mean-small-variance and light-
tailed distribution.

Driven by such unique characteristics, we propose the
novel model CroGen1 to address the essential challenges of
cross-view brain network generation. Specifically, CroGen
is essentially a neural architecture of CycleGAN [22]. It
fully leverages the well-developed graph convolutional net-
work (GCN) [23] to perform node encoding and employs
a deep translator for distribution transformation. When de-
coding, different from predicting the existence of the links
directly, we treat cross-view graph generation as a set of
regression tasks, and design an effective decoder with node
concatenation operation and deep layers for information pro-
jection. The ability to learn an injective function guarantees
the accuracy of generating small weights to conquer the
essential challenges of cross-view brain network generation.
The availability of a limited amount of paired views allows
direct supervision of the cross-view generation process via
a pair-wise loss. In addition, inspired by the semi-supervise

1https://github.com/GongxuLuo/CroGen

methods for graph translation [15], we combine it with CroGen
to make full use of single views. For example, when we adopt
the 6:2:2 data split that includes 60% individuals with paired
views as training set (with direct pairwise supervision), the
other two 20% individuals with single views can be used
for both (unsupervised) pre-training and testing towards the
bidirectional cross-view generation process. This allows us to
leverage 80% single views to train an autoencoder [25] to get
a more robust embedding for the initialization of cross-view
generation models. Finally, to fully demonstrate the value of
cross-view graph generation and the power of our proposed
CroGen model, we conduct a series of experiments on real-
world brain networks from Parkinson’s Progression Markers
Initiative (PPMI) to evaluate the model against strong deep
graph generative models properly adapted to the same setting.
Additionally, downstream multi-view brain network analysis
task for PD classification is evaluated in the missing view
scenario to further verify the effectiveness of CroGen. The
comparisons over various graph properties and careful visual
inspections verify the supreme effectiveness of CroGen on
cross-view brain network generation.

II. RELATED WORK

A. Graph Generation

Graph generation task aims to model the distribution of the
given graphs and to generate graphs with novel properties [26].
Due to the wide range of graph generation applications, e.g.,
traffic congestion prediction [27], novel drug discovery [28],
[29], and protein structure modeling [30], the development of
graph generation models has been well-established resulting in
rich literature and popular models [31]. Recently, thanks to the
development of deep learning, deep generative models become
a mainstream method because of its capacity of modeling
complex dependency in graphs [32]. Deep generative models
can be divided into two categories, unconditional generative
models and conditional ones. Unconditional generative models
learn the distribution P (G) based on the observed realistic
graphs. Conditional generative models learn a conditional
distribution P (y|x) based on observed realistic graphs with
corresponding auxiliary information. Graph translation is a
branch of conditional generative model, which translates the
graph from source domain to target domain [26]. In the past
few years, different models are proposed for graph generation



with disparate types. Similar to image and text translation, an
initial work has been done for graph translation [16]. They
formulated an interesting problem of deep graph translation
and proposed a novel Graph-Translation-Generative Adversar-
ial Networks (GT-GAN) to handle the challenge of preserving
the local property of graphs during generation. Based on this
work, [33] stressed the importance of forecasting and synthe-
sizing local events, and proposed Unpaired Graph Translation-
Generative Adversarial Nets (UGT-GAN) for unpaired local
event synthesize. It leveraged graph convolutional layers and
deconvolutional layers for graph translation and extended the
consistency loss proposed by CycleGAN [22] for unpaired
translation. Similarly, to resolve the limitation of lacking
high-quality paired dataset, [15] formulated the scenario of
semi-supervised graph translation and proposed SegTran to
cope with the semantic gap between the source graph and
target graph by designing the translator for embedding trans-
formation. Besides these canonical graph translation models,
some important properties such as the topology infromation in
graph learning [17], the hierarchical community structure of
complex graph organizations [34], and complicated structure
transformation of molecules in chemical reaction [35] etc.,
were also be considered for learning the dependency between
graphs. Despite the great success in graph translation models,
they mainly focus on predicting the existence of edges by
classifier failing to generate the correct edge weights for brain
network analysis with the intrinsic challenges of small-mean-
small-variance and light-tailed distribution.

B. Deep Brain Network Analysis

Brain network analysis has became a hot research topic
in recent years because of its vital role in disease diagnosis
and understanding of the functional mechanism in brains [36].
Many effective neural network models have been studied to
capture the complex dependencies of brain network recently.
Considering the high risk of cognitive and neuromotor in
preterm infants, the BrainNetCNN framework was proposed
to predict cognitive and motor developmental outcome scores
from structural brain networks of infants born preterm [37].
To explore how certain brain regions relate to a specific
neurological disorder or cognitive stimuli, BrainGNN was
designed to discover neurological biomarkers by leveraging
topological and functional information of the functional mag-
netic resonance images (fMRI) [38]. IBGNN [39] proposes
an interpretable framework to analyze disorder-specific ROIs
and prominent connection. Brain Network Transformer [40]
adapts the well-known transformer architecture specifically for
brain networks. To explore the intrinsic mechanisms of PD,
mutli-view GCN was proposed to fuse multiple modalities of
brain images in PD classification [13]. Furthermore, Multi-
view multi-graph embedding method was proposed to obtain
a robust brain network embedding by exploiting comple-
mentary information from multiple neuroimaging modalities
or views [11]. Similarly, due to the fact that most existing
methods fail to accommodate the intrinsic structure, a novel
multimodal brain network classification framework called

Multiplex Graph Network (MGNet) was designed to extract
latent structures of a set of multimodal brain networks by
integrating tensor representation into multiplex GCNs [41].
Although multi-view learning methods are helpful for brain
network analysis, the severe missing view problem is ignored,
which becomes the main obstacle and hinders the progmati-
cality of these methods.

III. METHODOLOGY

A. Problem formulation

We focus on the novel problem of cross-view brain net-
work generation, which relates graphs from multiple views
with different link structures. Given a set of graphs G =
{G1, G2.....Gn}, where Gi =

{
N1

i , N
2
i , A

1
i , A

2
i

}
represents

a brain network described by two views with the same set
of nodes Ni, and the adjacent matrixes A1

i and A2
i . The

superscribe 1 and 2 indicate the two views respectively, and
the subscribe denotes the i-th graph. Note that the order of
nodes is fixed and the same in both views [4]. Ai is a matrix
holding the set of weights for the corresponding edges, where
the weight Aij indicates the connection strength between ROIs
i and j in the brain. Apart from the limited number of paired
views, the phenomenon of missing view results in abundant
individuals with a single view in practice. We use V1 and V2

to denote the corresponding views of individuals. V1− to−V1

and V2 − to − V2 represent the single view reconstruction
tasks respectively. V1 − to− V2 and V2 − to− V1 indicate the
bidirectional cross-view brain network generation tasks. In this
work, we aim to explore and model the possible correlation
patterns between different link structures. That is, by training
model M on paired views, the corresponding missing view is
generated based on the arbitrary given view.

By analyzing the distribution of the weighted brain net-
works, we summarize the essential challenges of cross-view
brain network generation as follows:

1) Weighted graph generation. Compared with the tra-
ditional edge-based transformation which predicts the
existence of edges, the brain networks with weighted
edges lead to more complex node embedding space and
dependencies between different link structures.

2) Light-tailed distribution. The link structures of brain net-
works are of small-mean-small-variance. Moreover, the
weights obey a light-tailed distribution with extremely
small values of mean and variation. Campaired to the
simple binary classification task, this regression task
has higher requirements on the expressive power and
sensitivity of the generative models to generate small
weights with fine-grained differences.

B. Model formulation

We propose CroGen to handle the above intrinsic chal-
lenges, which coherently joins the power of GCN, CycleGAN
and the pre-training schema for cross-view brain network
generation. Specifically, CroGen has two generators and two
discriminators. The generator consists of an encoder that maps
the input signal of the given view to the hidden representation
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Fig. 2. The overview of CroGen.

space, a translator that transforms the distribution of node
embedding from the given view to the corresponding missing
view, and a decoder that constructs the link structures and
generates the corresponding weights of edges in the missing
view. The discriminator maps the observed signal to the
specific latent representation space and obtains the graph-
level embedding through the pooling operation. Different from
the standard architecture of CycleGAN, the availability of
paired views allows us to supervise the generation process
directly, which mitigates the side efforts of quantifying the
similarity of two probability distributions from samples known
as two-sample test problem [24]. Fig. 2 illustrates the overall
framework of CroGen. In the following, we will introduce the
details of each module of CroGen.

a) Generator:
• Encoder: Following CondGen [20], nodes are firstly ini-

tialized by an one-hot embedding. Next, the spectral em-
bedding method2 is utilized for feature extraction based
on the given adjacent matrix A, which results in the initial
node features [21]. This allows us to get a more compact
node embedding and reduce the memory consumption.
After that, the two-layer GCN with nonlinear active
functions and layer norm updates the input signals to get
the node embedding as:

H(l) = σ(g(l)(f(A), A)), (1)

where σ denotes the Leaky-ReLU activation function,
f(A) denotes the spectral embedding function for dimen-
sion reduction, and g(l) means the l-th layer of GCN.

• Translator: The goal of translator is to build the mapping
function to explore the correlation patterns between the
two views. This translation process bridges the distri-
bution discrepency through transforming the node em-
bedding of the given view to that of the corresponding

2https://scikit-learn.org/stable/modules/generated/sklearn.manifold.
SpectralEmbedding.html

missing view. The translator with stacked four-layer Mul-
tilayer Perceptions (MLPs) meets the requirements of the
complex distribution transformation across two views of
networks.

• Decoder: Different from the traditional graph generation
task that predicts the existence of the edges, we treat
the cross-view brain network generation task as a set of
regression tasks. Inspired by the work on exploring the
expressive power of Graph Neural Networks (GNNs),
the concatenate operation is utilized to aggregate node
information and enhance the expressive power of Cro-
Gen [42]. This is because compared with mean, sum
and max operation for node embedding aggregation, this
function preserves complete node information and can
be learned to be injective. Next, considering the intrinsic
characters of brain network, we append a four-layer fully
connected feed-forward network with layernorm [43]
and ReLU function to the concatenated embedding for
information fusion. Followed by the sigmoid function,
the computational process of edge weights is as follows:

wij = sigmoid(MLP (hi
′ ⊕ hj

′)), (2)

where hi
′ and hj

′ represent the node embedding with
distribution transformation, wij denotes the learned edge
weight between node i and node j. Considering the light-
tailed distribution and the data preprocessing, we choose
the corresponding top K edge weights as the final results.
b) Discriminator: The discriminator tries to determine

whether the input graph is real or generated. Given a graph,
we get the node embedding through GCN. To perform graph-
level classification, the mean pooling operation is utilized to
get the graph-level embedding as follows:

X = Pool(MLP (g(f(A), A))), (3)

where X indicates the graph-level embedding, Pool is the
mean pooling operation to get the graph-level embedding by



averaging all the node embeddings, and MLP is utilized to
transform the representation from node-level to graph-level.

Algorithm 1: CroGen
Input: Trainset G1, G2, · · · , Gn, testset with V1,

testset with V2; Hyperparameter λpair, λcyc, β;
Output: The corresponding missing view V1 in

V2− to−V1 task and V2 in V1− to−V2 task.
1 Extracting the single views from trainset and testset to

construct the dataset for single view reconstruction.
2 Pre-tain the autoencoder for V1 − to− V1 and

V2 − to− V2 tasks by using £pretrain in Eq. (7);
3 Storing the parameters of the pre-train models and

initialize the corresponding encoder, decoder and
discriminator of CroGen separately;

4 Fine-tuning CroGen on trainset;
while Not Converge do

Receive a batch of data from Trainset
Update the discriminator by £gan

if epoch % 2 = 0 then
Update the generator by £CroGen through Eq. (5)

end if
end while

C. Training Algorithm

Paired views help overcome the two-sample test problem
by directly supervising the generation process. However, there
are lots of individuals with just a single view in practice. To
make full use of the labeled individuals only with single views,
we adopt the pre-training fine-tuning pipeline to leverage
them through single view reconstruction for the initialization
of CroGen, as illustrated in Algorithm 1. The pre-training
schema joins the power of autoencoder [44] and Generative
Adversarial Nets (GAN) [45]. For instance, in the V1−to−V1

task, the node embedding of V1 is firstly obtained by the
encoder. Next, the decoder reconstructs the input view directly
based on the obtained embedding. The encoder and decoder
form the generator of GAN, which tries to generate a graph
that can fool the discriminator. The discriminator is trained to
differentiate the real and generated graphs. After training, the
encoder is used to initialize that in V1 − to − V2 task. The
decoder and discriminator initialize the corresponding one in
the V2 − to− V1 task. Similarly, the V2 − to− V2 task is also
used to initialize the decoder in V1 − to − V2 task, and the
discriminator and the encoder in V2 − to− V1 task.

D. Training Details

We jointly train the generator and discriminator for both
V1− to−V2 and V2− to−V1 by optimizing the loss function

£CroGen = £gan + λpair£pair + λcyc£cyc, (4)

where £CroGen is the loss function for CroGen, £gan is the
adversarial loss to make sure that the graph generated by the
generator can fool the discriminator and the discriminator can

distinguish the ground truth and the generated graphs. The
pair loss £pair = MSE(Ĝ,G) guarantees the cross-view
generation ability. £cyc denotes the cycle consistency loss.
λpair and λcyc are tunable hyperparameters to control the
weights of £pair and £cyc. The updating rules in each batch
are as follows:

θG
+← −▽G(£gan + λpair£pair + λcyc£cyc), (5)

θD
+←− ▽D£gan.

In the pre-training stage, the loss function of V1− to−V1 and
V2 − to− V2 tasks are formulated as:

£pretrain = £gan + β£rec, (6)

where the £gan is same as that in Eq. (4), £rec is the loss
function for single view reconstruction, and β indicates the
weight of the reconstruction loss. Similarly, the updating rules
are as follows:

θG
+← −▽G(£gan + β£rec), (7)

θD
+←− ▽D£gan.

IV. EXPERIMENT

In this section, we conduct experiments to evaluate the
effectiveness of CroGen for missing view brain network gen-
eration. Moreover, the performance is further verified by the
downstream PD classification task.

A. Dataset and preprocessing

The dataset we used is Parkinson’s Progression Markers
Initiative (PPMI), which contains 718 subjects, where 569
subjects suffer from PD, and the rest 149 subjects are Healthy
Control (HC) ones. There are two modalities in PPMI: link
structures constructed by Probabilistic Index of Connectivity
(PICo) [46] and Hough Voting [47] with size of 84 × 84.
Nodes indicate brain ROIs, while edges indicate the connec-
tion strength among ROIs. The means of edge weights in two
views are approximately 0.010 and 0.014, which follow the
typical light-tailed distribution. To reduce weak connections
between different brain regions, we process the data by setting
the weight less than the mean to zero.

B. Baselines

Since no baselines are available for the novel task of
cross-view brain network generation, we carefully adapt four
up-to-date strong graph generative models as baselines, i.e.,
Conditional Generative adversarial nets (C-GAN) [48], Cond-
Gen [20], Cycle-GAN [22], Variational Auto-encoding Gener-
ative Adversarial Networks (VAEGAN) [49]. To ensure a fair
comparison, the generator and discriminator are kept in the
same setting and design with CroGen.

C. Protocols

For the 6:2:2 setting, in the testing stage, V1 is seen as the
single view in V1 − to − V2 task, V2 is the corresponding



V1 − to− V2

Model Degree Clustering MSE
C-GAN 0.1397 ± 0.0183 0.7450 ± 0.1438 0.0571 ± 0.0005

Cycle-GAN 0.1631 ± 0.0124 1.2933 ± 0.1286 0.0683 ± 0.0054
CondGen 0.2009 ± 0.0084 0.7332 ± 0.3635 0.0850 ± 0.0049
VAEGAN 0.1959 ± 0.0058 0.7849 ± 0.3451 0.0791 ± 0.0239
Ablation 0.1000 ± 0.0165 0.3944 ± 0.1167 0.0580 ± 0.0005
CroGen 0.0779 ± 0.0444 0.0344 ± 0.0304 0.0081 ± 0.0003

Pre-train+CroGen 0.0608 ± 0.0291 0.0208 ± 0.0158 0.0081 ± 0.0002
V2 − to− V1

C-GAN 0.2127 ± 0.0057 1.0191 ± 0.1819 0.0690 ± 0.0004
Cycle-GAN 0.2465 ± 0.0154 1.5124 ± 0.0603 0.0830 ± 0.0040
CondGen 0.2622 ± 0.0150 0.9567 ± 0.2951 0.0903 ± 0.0046
VAEGAN 0.2669 ± 0.0165 0.9561 ± 0.2216 0.0821 ± 0.0226
Ablation 0.2138 ± 0.0112 0.7681 ± 0.1485 0.0703 ± 0.0005
CroGen 0.1699 ± 0.0942 0.1342 ± 0.1604 0.0088 ± 0.0003

Pre-train+CroGen 0.1188 ± 0.0595 0.1015 ± 0.0589 0.0088 ± 0.0001
TABLE I

PERFORMANCE ON BIDIRECTIONAL CROSS-VIEW BRAIN NETWORK GENERATION.

Model V1 V2 V1 + GenV2 GenV1 + V2 V1 + V2

GCN 0.723 ± 0.069 0.716 ± 0.064 0.746 ± 0.049 0.755 ± 0.039 0.756 ± 0.046
GAT 0.695 ± 0.041 0.676 ± 0.050 0.752 ± 0.022 0.754 ± 0.020 0.751 ± 0.019
GIN 0.662 ± 0.057 0.672 ± 0.045 0.675 ± 0.061 0.670 ± 0.060 0.670 ± 0.034

BrainNN 0.792 ± 0.030 0.743 ± 0.066 0.791 ± 0.015 0.793 ± 0.016 0.793 ± 0.027
TABLE II

PERFORMANCE ON DOWNSTREAM GRAPH CLASSIFICATION TASK, Gen DENOTES THE CORRESPONDING MISSING VIEW GENERATED BY CROGEN.

missing view. Similarly, V2 is the single view and V1 is the
missing view in the V2 − to − V1 task. In the pre-training
stage, the V1 in the trainset and the testset for V1 − to − V2

task is extracted for the V1 − to − V1 task. In the same way,
the V2 in the trainset and the testset for V2 − to− V1 task is
obtained for the V2−to−V2 task. For evaluation, following the
Maximum Mean Discrepancy (MMD) [50], [51] measures to
evaluate the performance of generative models, we use the
degree distribution and clustering coefficient distribution to
evaluate the quality of the generated sample by measuring
the distance of the corresponding distribution between the
generated graph and ground truth [28]. In addition, the Mean
Square Error (MSE) loss is utilized to measure the weight
difference between the generated graph and the ground truth.

D. Settings

In the cross-view brain network generation task, the learning
rate of the generator of CroGen is 0.00006 and 0.001 for the
discriminator. The exponential decay rates for the first and
the second moment estimates are 0.9 and 0.999 respectively.
The dimension of node embedding after reduction is 32, the
dimension of hidden node embedding is 64, and the dimension
of graph embedding is 16. λpair and λcyc determine the
weights of pair and cycle loss. We set λpair to 15 and λcyc to
5. In the pre-training stage, β, which determines the wight of
reconstruction loss, is set to 15. To guarantee the significance
of the experimental results, we conduct every experiment five
times for all tasks and get the final results by averaging them.

E. Experimental results and analysis

1) Performance on cross-view brain network generation:
Experimental results on the PPMI dataset are shown in Table I
to evaluate the effectiveness of CroGen. From Table I we
can see that compared with strong baselines, CroGen gets
the best results on all evaluation methods and the variance is
smaller in Clustering coefficient and MSE. What is more, the
quality of the missing view generated by CroGen has an order
of magnitude improvement in the evaluation metrics. This is
because the translator with a deeper network fits the complex
dependency better, and the joint loss function provides strong
supervised objection to guide the weighted graph generation
of the missing view. Moreover, the decoder composed by the
concatenation operation and MLP layers is more powerful.
The concatenation operation guarantees the expressive power
for node information aggregation. The four-layer MLP and
sigmoid function compose a strong regressor, which satisfies
the requirements of weighted edge generation. Therefore, com-
pared with dot product function, this decoder is more sensitive
and powerful to handle the intrinsic challenges of small-mean-
small-variance and light-tailed distribution. To test whether
CroGen can effectively generate the missing view, we visualize
the connection map between ROIs of ground-truth graph (left)
and the generated one (right) in both views as shown in Fig 3.
From Fig 3, we can see that the distribution of generated views
consist with the ground truth. To verify the effectiveness of the
decoder, ablation study is conducted by replacing the decoder
with dot production (DP). Experimental results in Table I



V1 − to− V2

λpair-λcyc Degree Clustering MSE
5-5 0.1045 ± 0.0519 0.0621 ± 0.0950 0.0082 ± 0.0003

10-5 0.0715 ± 0.0351 0.0215 ± 0.0179 0.0082 ± 0.0003
15-5 0.0608 ± 0.0291 0.0208 ± 0.0158 0.0081 ± 0.0002
20-5 0.0675 ± 0.0406 0.0287 ± 0.0114 0.0082 ± 0.0002
15-10 0.0984 ± 0.0517 0.0533 ± 0.0474 0.0082 ± 0.0003
15-15 0.0944 ± 0.0625 0.0600 ± 0.0709 0.0081 ± 0.0003
15-20 0.0900 ± 0.0550 0.0376 ± 0.0421 0.0081 ± 0.0002

V2 − to− V1

5-5 0.1428 ± 0.0743 0.0896 ± 0.0847 0.0090 ± 0.0003
10-5 0.1331 ± 0.0788 0.0913 ± 0.0556 0.0088 ± 0.0003
15-5 0.1188 ± 0.0595 0.1015 ± 0.0589 0.0088 ± 0.0001
20-5 0.1194 ± 0.0619 0.0584 ± 0.0287 0.0089 ± 0.0004
15-10 0.1738 ± 0.0958 0.1289 ± 0.0951 0.0090 ± 0.0004
15-15 0.1210 ± 0.0800 0.0983 ± 0.0788 0.0089 ± 0.0003
15-20 0.1669 ± 0.0708 0.1129 ± 0.0656 0.0088 ± 0.0002

TABLE III
HYPERPARAMETER ANALYSIS.
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(a) The ground truth and generated V1.
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(b) The ground truth and generated V2.

Fig. 3. visualization of the connectivity map between ROIs in multi-view
brain networks.

show a dramatic decrease in the degree distribution, clustering
coefficient, and MSE loss evaluation metrics. This illustrates
the superiority of the decoder of CroGen over the dot product
on the cross-view graph generation.

Table I shows that CroGen initialized by the pre-taining
models demonstrates better performance compared with ran-
dom initialization. The reason is that the single views provide
more prior knowledge to assist the cross-view brain network
generation. To be specific, we can use 80% individuals with
single view in the reconstruction tasks. Therefore, the encoder,
decoder, and discriminator obtain more information than ran-
dom initialization, leading to a better performance directly.

2) Performance on PD classification: To further verify the
effectiveness of CroGen and the quality of the generated miss-

ing views, we conduct experiments on up-to-date models for
the downstream PD classification task, including GCN [23],
GAT [52], GIN [42] and BrainGNN [38]. Specifically, these
models are trained with five data settings, i.e. V1, V2, V1 +
corresponding generated V2 by CroGen, V2 + corresponding
generated V1 by CroGen, and V1 + V2. Experimental results
are reported in Table II. It is shown that the up-to-date models
trained on completed datasets i.e. V1 with corresponding
generated V2 and V2 with corresponding generated V1 get
better performance compared to single view datasets. Besides,
the performances are rather close to that on full ground truth
V1 + V2 dataset and sometimes exceed.

F. Hyperparameter analysis

There are two important hyperparameters λpair and λcyc

in CroGen to tune the weights of pair loss £pair and cycle
consistency loss £cyc for cross-view brain network generation.
£pair supervises the generation process directly. £cyc further
considers the cycle consistency. We compare the performance
of CroGen under different λpair and λcyc values to analyze
the importance of the two losses. Experimental results of
hyperparameter analysis are shown in Table III. It shows that
£pair is often more important than λcyc. Since the cross-
view generation is our final goal, it is reasonable to pay more
attention on it. Overall, CroGen present a relatively stable
performance unless λpair and λcyc are set to extreme values
like 5-5 or 15-20, which has a relative small proportion for
the pair loss. With proper weights such as 10-5, 15-5 and 20-
5, CroGen obtains better performance and smaller variance
compare with other baselines.

V. CONCLUSION

To the best of our knowledge, this is the first research
effort towards the novel but important problem of cross-
view brain network generation considering the missing view
phenomenon. To address the intrinsic challenges of cross-view



brain network generation, we design CroGen to coherently
join the power of GCN, CycleGan and pre-train schema.
In practice, we conduct experiments on real-life Parkinson’s
Progression Markers Initiative (PPMI) data to validate the
effectiveness of CroGen in comparison with several up-to-date
generative models adapted to our missing view brain network
generation settings. Moreover, the quality of the generated
view is validated concretely on downstream Parkinson’s Dis-
ease (PD) classification task.
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