
Contrastive Unlearning: A Contrastive Approach to Machine Unlearning

Hong kyu Lee , Qiuchen Zhang , Carl Yang , Jian Lou and Li Xiong
Emory University

{hong.kyu.lee, qiuchen.zhang, j.carlyang, jian.lou, lxiong}@emory.edu

Abstract
Machine unlearning aims to eliminate the influ-
ence of a subset of training samples (i.e., unlearn-
ing samples) from a trained model. Effectively and
efficiently removing the unlearning samples with-
out negatively impacting the overall model perfor-
mance is challenging. Existing works mainly ex-
ploit input and output space and classification loss,
which can result in ineffective unlearning or per-
formance loss. In addition, they utilize unlearn-
ing or remaining samples ineffectively, sacrificing
either unlearning efficacy or efficiency. Our main
insight is that the direct optimization on the rep-
resentation space utilizing both unlearning and re-
maining samples can effectively remove influence
of unlearning samples while maintaining represen-
tations learned from remaining samples. We pro-
pose a contrastive unlearning framework, leverag-
ing the concept of representation learning for more
effective unlearning. It removes the influence of
unlearning samples by contrasting their embed-
dings against the remaining samples’ embeddings
so that their embeddings are closer to the embed-
dings of unseen samples. Experiments on a variety
of datasets and models on both class unlearning and
sample unlearning showed that contrastive unlearn-
ing achieves the best unlearning effects and effi-
ciency with the lowest performance loss compared
with the state-of-the-art algorithms. In addition, it
is generalizable to different contrastive frameworks
and other models such as vision-language models.
Our main code is available on github.com/Emory-
AIMS/Contrastive-Unlearning

1 Introduction
Machine unlearning [Cao and Yang, 2015] aims to remove
a subset of data (i.e., unlearning samples) from a trained
machine learning (ML) model without retraining the model
from scratch and has received increasing attention due to var-
ious privacy regulations. Notably, “the right to be forgot-
ten” from the General Data Protection Requirement (GDPR)
gives individuals the right to request their data to be removed
from databases, which extends to models trained on such

data [Mantelero, 2024]. Since models can remember training
data within their parameters [Arpit et al., 2017], it is neces-
sary to “unlearn” these data from a trained model. The goals
and evaluation metrics for unlearning typically include: 1)
unlearning efficacy, which measures how well the algorithm
removes the influence of unlearning samples. This can be
assessed by the model’s performance on the unlearning sam-
ples, or by its robustness against membership inference at-
tacks [Shokri et al., 2017; Carlini et al., 2022; Ye et al., 2022;
Sablayrolles et al., 2019]; 2) model performance on its orig-
inal tasks, which ensures that the unlearning does not sig-
nificantly degrade its overall accuracy; and 3) computational
efficiency, which assesses the time and resources required for
the unlearning.

While many promising approaches are proposed, existing
works present several limitations: 1) They exploit input and
output space and classification loss. As a result, it may lead to
significant shift in decision boundaries, affecting model util-
ity. 2) They either utilizes unlearning or remaining samples
alone or use both but in an ineffectively and hence sacrifice ei-
ther unlearning efficacy or efficiency. For example, Gradient
Ascent [Golatkar et al., 2020] only uses unlearning samples
and attempts to reverse their impact by applying gradient as-
cent using the classification loss. Finetune [Golatkar et al.,
2020] only uses remaining samples to iteratively retrain the
model to gradually remove the influence of unlearning sam-
ples leveraging the catastrophic forgetting effect [Goodfellow
et al., 2013]. SCRUB [Kurmanji et al., 2023] uses both un-
learning and remaining samples for unlearning, but requires
multiple iterations over the entire remaining samples, leading
to excessive computations.
Our Contributions. To address these deficiencies, we
present a novel contrastive approach for machine unlearn-
ing, or contrastive unlearning. We rethink the problem
of machine unlearning in the perspective of representation
space. We re-purpose the idea of supervised contrastive learn-
ing [Khosla et al., 2020], a widely used representation learn-
ing approach, for more effective unlearning of general classi-
fication models.

The goal for unlearning is rooted in the fundamental differ-
ence between how a model perceives training and test sam-
ples. The model optimizes the representations of the train-
ing samples during the learning process, resulting in em-
beddings that are deeply aligned within the correct decision
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boundaries, often with high confidence. Test samples, in con-
trast, are unseen during training and typically produce embed-
dings within the correct decision boundary but closer to the
boundary, reflecting the model’s generalization to new data.
This distinction is also the basis for privacy vulnerabilities,
such as membership inference attacks [Shokri et al., 2017;
Yeom et al., 2018], where adversaries exploit the model’s
higher confidence or distinctive embeddings for training sam-
ples to infer their membership in the training dataset.

Based on the rationale, our main idea is to simultaneously
contrast an unlearning sample with 1) Positive samples (re-
maining samples from the same class as the unlearning sam-
ple) and push their embeddings apart from each other, and 2)
Negative samples (remaining samples from different classes
as the unlearning sample) and pull their embeddings close to
each other. This results in embeddings of unlearning sam-
ples away from remaining training samples and closer to the
decision boundaries and test samples’ embeddings. It has
two main insights. First, directly optimizing the embeddings
of unlearning samples facilitates more effective unlearning.
Second, by contrasting embeddings of unlearning samples, it
can effectively unlearn while minimizing any change of the
decision boundaries. Additionally we introduce an auxiliary
classification loss on the contrasted remaining samples to fur-
ther maintain model accuracy.

Figure 1: Visualization of Representation Spaces for Contrastive
Unlearning, Gradient Ascent, and Finetuuning

Figure 1 illustrate the intuition of contrastive unlearning
compared to existing approaches in a normalized represen-
tation space. Circles, squares, and triangles are embeddings
of unlearning, remaining samples, and test samples, respec-
tively. Colors represent different classes. Dotted lines show
decision boundaries. We assume the model has been trained,
so the embeddings of training samples are clustered to their
respective classes [Das and Chaudhuri, 2024].

Given an embedding of sample zi, contrastive unlearning
pushes zi away from its own class (positive pairs) and pulls
zi towards the samples with different classes (negative pairs).
This results in the unlearned embedding z′i to be distant from
remaining samples and closer to the decision boundaries,
where test samples’ embeddings (triangles) are located. In
comparison, Gradient ascent [Golatkar et al., 2020] pushes
zi away in the representation space from its own class but
may either apply insufficient change (ineffective unlearning),
or significantly affect embeddings of remaining samples of

the same class and the decision boundary (model utility loss).
Finetune indirectly pushes the unlearning samples away from
its class (ineffective unlearning) and is susceptible to overfit-
ting to the remaining samples (model utility loss).

Our contrastive unlearning is fundamentally different from
contrastive learning. The goal of contrastive learning is to
learn representations to distinguish different samples, while
our goal is to modify embeddings of unlearning samples and
maintain model’s general classification performance. It fea-
tures several novel algorithm designs and new findings: 1) we
construct contrasting pairs different from conventional con-
trastive learning to serve the unlearning purpose and design
new contrastive unlearning losses for both sample unlearn-
ing (unlearning randomly selected training samples) and sin-
gle class unlearning (unlearning every sample of a class); 2)
while it is common to add a classification loss on the remain-
ing samples to maintain the performance of the unlearning
model, we find that the classification loss helps keep the em-
beddings of the remaining samples in place and reciprocally
improves unlearning effectiveness, validated by our empirical
analysis followed by in-depth analysis.

In addition, contrastive unlearning is highly scalable as it
can leverage other existing contrastive learning algorithms as
a backbone. While our main experiments and analysis uti-
lize supervised contrastive learning (SupCon) [Khosla et al.,
2020], we also demonstrate the scalability using MoCo [He et
al., 2020]-based contrastive framework. Finally, while exist-
ing approaches focus on standard classifiers, contrastive un-
learning is highly generalizable, capable of unlearning a va-
riety of models. We empirically demonstrate its effectiveness
in unlearning a class from a finetuned vision-language model
CLIP [Radford et al., 2021].

In summary, our contributions are as follows:
(1) We propose contrastive unlearning, a novel unlearning

framework utilizing the concept of the representation learn-
ing and contrastive loss. Instead of analyzing inputs and out-
puts of the model, we formulate the unlearning framework as
modifying embeddings of unlearning samples to be similar
to the embeddings of test samples (unseen samples) without
directly using them, hence effectively removing the influence
of unlearning samples.

(2) To achieve the unlearning goal, we customize the con-
trastive unlearning loss for two different unlearning tasks:
single class unlearning and random sample unlearning. We
design an effective termination condition for each task,
achieving effective and efficient unlearning.

(3) We conduct comprehensive experiments comparing
contrastive unlearning with various state-of-the-art methods
on two unlearning tasks, single class and sample unlearning,
to demonstrate the effectiveness, efficiency, and versatility of
our approach. We also conduct a membership inference at-
tack to verify the unlearning efficacy of sample unlearning.
The results show that contrastive unlearning has the best ef-
ficacy while maintaining model utility with high computa-
tional efficiency. In addition, we demonstrate generalizability
of contrastive unlearning across various models by unlearn-
ing an vision-language model. We show scalability of our
approach by leveraging more advanced contrastive learning
algorithms.



2 Related Works

Machine unlearning was introduced by [Cao and Yang, 2015]
with three goals: 1) completeness, suggesting an unlearning
algorithm should reverse the influence of unlearning sam-
ples and the unlearned model should be consistent with a
retrained model with the remaining samples; and 2) timeli-
ness, the unlearning algorithm should be be faster than re-
training; and 3) The unlearned model should maintain high
utility after unlearning. Exact unlearning ensures the com-
pleteness of unlearning. SISA is an exact unlearning frame-
work that splits the dataset into partitions and retrains sub-
models whose shard has the unlearning sample [Bourtoule et
al., 2021]. These require partitioned training and still costly
retraining, and model performance is highly dependent on
partitioning strategy [Koch and Soll, 2023].

Approximate unlearning allows approximate complete-
ness. Certified unlearning provides a mathematical guarantee
on unlearning. [Guo et al., 2020] proposed unlearning using
newton-type hessian update with (ε, δ)-indistinguishability.
[Neel et al., 2024] utilized projected gradient descent on the
partitioned dataset with a probabilistic bound. [Gupta et al.,
2021] proposed adaptive unlearning streams. Fisher unlearn-
ing uses fisher information matrix [Golatkar et al., 2020]
to identify optimal noise to remove the unlearning samples.
Drawbacks of certified unlearning algorithms include the dif-
ficulty to scale, and most of them require convexity for the
mathematical guarantee. Moreover, [Thudi et al., 2022]
questioned validity of certified unlearning. Recently, some
works tried to address limitations of certified unlearning, in-
cluding LCODEC [Mehta et al., 2022], which reduced the
computation cost by selectively generating hessian matrices
and certified unlearning for non-convex setting [Zhang et al.,
2024]. While both are promising, experimental results show
suboptimal unlearn efficacy.

Another body of approximate unlearning shows the un-
learning effect through empirical evaluations. Usually, these
works target class unlearning, which is to unlearn every sam-
ple of a class. UNSIR [Tarun et al., 2023] conducts noisy
gradient updates. Boundary unlearning unlearns an entire
class [Chen et al., 2023] by changing decision boundaries.
ERM-KTP uses a special model architecture known as an en-
tanglement reduce mask [Lin et al., 2023]. SCRUB [Kur-
manji et al., 2023] is based on the knowledge distillation,
where the teacher or the original model transfers knowledge
to the unlearned model in every class except the unlearn-
ing class. [Bui et al., 2024] proposed more robust second-
order unlearning. The authors proposed cubic-regularizer to
prevent hessian degeneration. [Nguyen et al., 2022] pro-
posed markov-chain monte carlo algorithm for unlearning,
and [Nguyen et al., 2020] proposed unlearning for bayesian
models. Recently, [Cha et al., 2024] proposed instance-wise
unlearning with analysis on decision boundaries. However, it
assumes that remaining samples are unavailable, and defined
the unlearning goal as to incorrectly classify all unlearning
samples, which are different from most unlearning works. As
most works, we assume that remaining samples are available
and our goal of unlearning is to make the model to perceive
unlearning samples as unseen samples, not to completely mis-

classify them. We do not compare with [Cha et al., 2024] due
to its different assumption and unlearning goal.

3 Problem Definition
We define a classification model F = H (Eθ (·)) where Eθ (·)
is a neural network based encoder parameterized by θ and
H (·) is a classification head. Eθ produces embeddings z
given a sample x. H receives z and yields a prediction. Let F
be trained using dataset Dtr = {(x1, y1) · · · (xn, yn)}, where
each data point is a tuple (xi, yi) including feature set xi and
label yi ∈ {0 · · ·C} where C is the number of classes. We
suppose F was trained with cross-entropy loss. Let Dts be a
test dataset sampled from an analogous distribution with Dtr,
satisfying Dts ∩ Dtr = ∅.

Let Du
tr ⊆ Dtr be a set of samples to be forgotten (i.e.,

unlearning samples). The remaining set is Dr
tr = Dtr \ Du

tr.
Let a retrained model FR be trained only with Dr

tr. An un-
learning algorithm M receives Dr

tr,Du
tr, θ and produces θ′.

An unlearned model F ′ = H (Eθ′) should resemble FR.

3.1 Single Class Unlearning
For single class unlearning, Du

tr consists of all samples of an
unlearning class c. The test set Dts can be split into Du

ts and
Dr

ts, where Du
ts includes all test samples of class c, and Dr

ts =
Dts \ Du

ts includes all test samples of remaining classes. A
retrained model FR will have zero accuracy on Du

tr and Du
ts,

the training and test samples of class c, since it was retrained
without class c. So given an accuracy function Acc, the goal
of single class unlearning is for the unlearned model F ′ to
achieve near-zero accuracy on both training and test samples
of class c (unlearning efficacy) and similar accuracy as the
retrained model FR for remaining classes (model utility).

Acc
(
F ′,Du

tr

)
≈ 0, Acc

(
F ′,Du

ts

)
≈ 0, (1)

Acc
(
F ′,Dr

ts

)
≈ Acc

(
FR,Dr

ts

)
. (2)

Single-class unlearning can be potentially implemented us-
ing simple rules such as assigning random labels from re-
maining classes to the samples classified as the unlearning
class. However, such rule-based unlearning has fundamen-
tal flaws: (1) Insufficient Unlearning: the patterns or influ-
ence of samples from the unlearning class remain within the
model (weights). If the model is released or leaked, an ad-
versary can potentially recover knowledge of the unlearning
class. (2) Model Utility: the random class assignment can
degrade the performance of all remaining classes. Hence our
goal is to unlearn the model itself to remove the influence of
the class.

3.2 Sample Unlearning
For sample unlearning, the unlearning samples Du

tr can be-
long to different classes. A retrained model FR has similar
accuracy on unlearning samples Du

tr and test samples Dts.
So the goal of sample unlearning is for the unlearned model
F ′ to achieve similar accuracy as the retrained model FR on
both unlearning samples (unlearning efficacy) and test sam-
ples (model utility).



Acc
(
F ′,Du

tr

)
≈ Acc

(
FR,Dts

)
, (3)

Acc
(
F ′,Dts

)
≈ Acc

(
FR,Dts

)
. (4)

As we discussed earlier, a model’s generalization capa-
bility is intrinsically related to unlearning. A model with
stronger generalization can be easier for sample unlearning
because it relies on broader patterns rather than memorizing
individual data points, and its test and train accuracy is al-
ready similar. (Equation 3). However, generalization alone is
insufficient and even a generalized model can still memorize
unique pattern of training samples and requires full unlearn-
ing [Long et al., 2018].

4 Contrastive Unlearning
Contrastive unlearning utilizes representation space for un-
learning purposes and leverages the contrast between remain-
ing and unlearning samples. If a sample x had been used
as a training example, information extracted from x by Eθ
would be geometrically expressed in the representation space.
Specifically, we hypothesize that samples of a class have sim-
ilar embeddings and samples from different classes have dis-
similar embeddings even when the model was not explicitly
trained with representation learning. Existing literature sup-
ports this by mathematically and empirically showing that a
model optimized with cross-entropy loss produces higher ge-
ometric similarity among embeddings of samples of the same
class and lower similarity among different classes [Das and
Chaudhuri, 2024; Graf et al., 2021].

From this intuition, we aim to isolate the representations
or embeddings of unlearning samples away from remaining
samples up to the point where the model perceives them as
unseen samples. To effectively achieve this, we contrast each
unlearning sample with 1) remaining samples from the same
class (positive pairs) and push their representations apart from
each other, and 2) remaining samples from different classes
(negative pairs) and pull their representations closer to each
other. To this end, the embeddings of unlearning samples ap-
proach to the decision boundaries of the classes. This has
some relation with existing literature of contrastive learning,
however, our approach is fundamentally different as it con-
trasts pairs of unlearning and remaining samples while con-
trastive learning contrasts samples simply by their classes.
Contrastive Unlearning Loss: Sample Unlearning. Con-
trastive unlearning uses a batched process. In each round, an
unlearning batch Xu = {xu

1 , · · ·xu
B} with size B is sam-

pled from the unlearning data Du
tr, and a remaining batch

Xr = {xr
1 · · ·xr

B} is sampled from the remaining set Dr
tr.

We denote xi, the i-th sample of Xu, as an anchor. Based
on xi, positives and negatives are chosen from Xr. Posi-
tives are Px (xi) = {xj |xj ∈ Xr, yj = yi}, or remaining
samples with the same class as xi; negatives are Nx (xi) =
{xj |xj ∈ Xr, yj ̸= yi}, or remaining samples with different
class as xi. Correspondingly, let embeddings of positives and
negatives be Pz (xi) = {zj |zj = Eθ (xj) , xj ∈ Px (xi)} and
Nz (xi) = {zj |zj = Eθ (xj) , xj ∈ Nx (xi)}. The contrastive
unlearning loss aims to minimize the similarity of positive

pairs and maximizes the similarity of negative pairs (the op-
posite of contrastive learning).

LUL =
∑

xi∈Xu

−1

|Nz (xi)|
∑

za∈Nz

log
exp (zi · za/τ)∑

zp∈Pz(xi)

exp (zi · zp/τ)
.

(5)

where τ ∈ R+ is a scalar temperature parameter. In our final
algorithm, we contrast each Xu, with ω randomly sampled
batches of Xr. Thus within a single unlearning round, our
algorithm computes every batch of Du

tr for ω times. Refer to
appendix B for more details.
Contrastive Unlearning Loss: Single Class Unlearning.
For single class unlearning, the unlearning set Du

tr =
{(xi, yi) |yi = c} and remaining set Dr

tr = {(xi, yi) |yi ̸=
c}. This makes the positive set Pz = ∅ as none of remaining
samples belong to class c. In short, there are no positive re-
maining samples to push away the unlearning samples. Thus
we change equation 5 as follows.

LUL =
∑

xi∈Xu

−1

|Nz (xi)|
∑

za∈Nz

log
exp (zi · za/τ)

|Nz (xi)|
. (6)

We replaced the previous denominator to |Nz (xi)|. This is
because equation 5 requires both directions to push and pull
unlearning samples. Lacking one of the directions increases
the instability, as it can lead to representation collapse [Chen
and He, 2021]. Since Pz = ∅, we replace the denominator
to |Nz (xi)| to introduce damping effects against excessively
pulling unlearning samples to negative samples.
Classification Loss of Remaining Samples. A novel chal-
lenge of contrastive unlearning is to preserve embeddings of
remaining samples. Optimizing equation 5 not only alters
embeddings of the anchor unlearning sample but also recip-
rocally alters embeddings of all samples in Px and Nx. All
positive samples are slightly pushed away from and all neg-
atives are slightly pulled toward the anchor. A similar effect
arises in contrastive learning, but it is not problematic as it
reinforces the consolidation of embeddings of the same class.
However, for unlearning purposes, embeddings of Xr have to
be preserved, because: 1) not preserving them directly leads
to a loss in model performance, and 2) it also reciprocally
affects unlearning effectiveness as magnitude of pulling and
pushing decreases. In short, embeddings of Xr are also mod-
ified as a byproduct of optimization and it is necessary to re-
store them back. We utilize cross-entropy loss for restoring
embeddings of Xr, because it derives maximum likelihood
independently to each sample [Shore and Johnson, 1981].
This ensures obtaining directions very close to the original
embeddings. Combining the unlearning loss, the final loss
for our proposed contrastive unlearning is as follows,

L = λULLUL + λCELCE (F (Xr) , Y r) (7)

where Xr and Y r are the sampled batches of remaining sam-
ples and their corresponding labels. λCE and λUL are hyper-
parameters to determine influence of the two loss terms. The
full algorithm is in Appendix B.
Termination Condition. Pinpointing the right moment to
terminate the unlearning process is crucial, as terminating too
early or too late will lead to insufficient unlearning or poor
model utility. None of existing works explicitly discuss the



termination condition. We design explicit termination condi-
tions for both class and sample unlearning based on our un-
learning goals. We assume a small dataset Deval is available
for determining the termination condition. We evaluate the
conditions every unlearning round.

For class unlearning, recall our problem definition in 3.1
and the goal in equation 1. We can set Deval = Du

ts, the
test data of the unlearning class. Ideally, we want F ′ to have
close to 0 accuracy for the unlearning class. However, this
can be too strict for termination. We loosen the condition and
terminate the algorithm when the accuracy of F ′ on the un-
learning class falls below a threshold. We set the threshold
to be 1/C where C is the total number of classes in the train-
ing data and 1/C corresponds to the accuracy of a random
guess, which suggests knowledge about the unlearning class
is sufficiently removed from the model.

Acc
(
F ′,Deval

)
≤ 1

C
. (8)

For sample unlearning, recall our problem definition of 3.2
and the goal in equation 3. Ideally, we want the accuracy of
unlearning samples by the unlearned model to be similar to
the accuracy of the test samples by the retrained model. Since
we do not have access to the retrained model, we use a proxy
criteria which requires the accuracy of the unlearning samples
to be similar to the test samples by the same unlearned model.
Specifically, we set Deval = {Du

eval,Dts
eval} where Du

eval ⊆
Du

tr and Dts
eval ⊆ Dts. The algorithm terminates when the

accuracy of F ′ on Du
eval drops below the accuracy on Dts

eval.

Acc
(
F ′,Du

eval

)
≤ Acc

(
F ′,Dts

eval

)
. (9)

Intuitively, it is not desired to terminate the algorithm before
satisfying the condition in 9 because it implies that the model
still retains information regarding Du

tr. It is also not desired
to continue running the algorithm to further reduce accuracy
on Du

tr much lower than Dts because it is negatively injecting
information regarding Du

tr into θ′. This results in F ′ to de-
liberately make incorrect classification on Du

tr, which is not
aligned with our goal of sample unlearning.

5 Experiments
5.1 Experiment Setup
Datasets and Models. We use three benchmark datasets:
CIFAR-10, SVHN, and Mini-Imagenet [Cao, 2022], and em-
ploy ResNet (RN)-18, 34, 50, and 101 models [He et al.,
2016] and ViT-small [Dosovitskiy et al., 2021]. We report
the results of CIFAR-10 and Mini-Imagenet in the main pa-
per. Please refer to the appendix for details on the models,
implementations (code), results of SVHN, additional experi-
ments on CIFAR-10 and Mini-Imagenet, and parameter stud-
ies. We use CLIP model [Radford et al., 2021], and a different
contrastive framework MOCO [He et al., 2020] to show the
generalizability and scalability.
Comparison Methods. For class unlearning, we remove all
samples belonging to class 5 by default. For sample unlearn-
ing, we remove randomly selected 500 samples by default.
We also evaluate class unlearning on other classes and sample
unlearning of varying number of samples. Please refer to Ap-
pendix D.3 and D.5 for results. To assure the robustness, we

repeat sample unlearning with a random seed for five times
and report the average and standard deviation of the results.
We provide Retrain, a retrained model using the training data
excluding the unlearning data, as a reference.

We include four state-of-the-art (SOTA) methods specif-
ically designed for single class unlearning: 1) Boundary
Expansion [Chen et al., 2023] trains the model using all un-
learning samples as a temporary class and then discards the
temporary class. 2) Boundary Shrink [Chen et al., 2023]
modifies the decision boundary of unlearning class to prevent
unlearning samples from being classified into the unlearning
class. 3) SCRUB [Kurmanji et al., 2023] is based on the
knowledge distillation, selectively transfers knowledge from
the original model to the unlearned model (all information
except that of the unlearning class). 4) UNSIR [Tarun et al.,
2023] uses an iterative process of generating noise that max-
imizes error in the unlearning class and repairing the classifi-
cation performance for the other classes.

We include four SOTA methods designed for sample un-
learning: 1) Finetune [Golatkar et al., 2020] iteratively
trains the original model using only the remaining samples.
2) Gradient Ascent [Golatkar et al., 2020] conducts gradi-
ent ascent using unlearning samples. 3) Fisher [Golatkar et
al., 2020] is a certified unlearning algorithm using random-
ization with Fisher information matrix. 4) LCODEC [Mehta
et al., 2022] is also a certified unlearning method with a fast
and effective way of obtaining Hessian by importance-based
parameter selection.

We note that sample unlearning methods may be used for
class unlearning. However, our class unlearning baselines al-
ready demonstrated their superiority over the sample unlearn-
ing baselines. Hence we do not include them in comparison.

Evaluation Metrics. 1) Model performance. For class un-
learning, we assess the accuracy of the unlearned model on
Dr

ts (test data of remaining classes). For sample unlearn-
ing, we evaluate Dts (test data). 2) Unlearning efficacy.
For class unlearning, we assess accuracy of the unlearned
model on Du

tr and Du
ts (training and test data of unlearning

class). Successful class unlearning should achieve zero for
both. For sample unlearning, we assess accuracy of Du

tr (un-
learning samples). We provide an additional metric of un-
learn score. It is the absolute difference between the accu-
racy of test and unlearn samples. A successful sample un-
learning should achieve a low unlearn score which means the
model perceives unlearning samples and test samples (unseen
samples) similarly. The statistical reliability is dependent on
the test and unlearn accuracy. 3) Efficiency is measured by
the runtime of the unlearning algorithm.

Unlearning Verification via MIA. We conduct a member-
ship inference attack (MIA) [Shokri et al., 2017] to verify ef-
fectiveness of sample unlearning. Although more robust MIA
frameworks are available such as LiRA [Carlini et al., 2022],
we used the MIA framework from [Shokri et al., 2017] as
our main goal is to fairly compare our contrastive unlearn-
ing and other baseline unlearning algorithms and to obtain
a generalizable comparison on unlearning efficacy. Refer to
appendix C.1 for details of MIA.

We report the Member prediction rate defined as num-



Remain test ↑ Unlearn train ↓ Unlearn test ↓

Method RN18 RN34 RN50 RN101 RN18 RN34 RN50 RN101 RN18 RN34 RN50 RN101

Retrain (Reference) 65.62 67.64 70.57 71.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Contrastive 60.69 57.61 58.81 58.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Boundary Shrink 10.17 14.88 - - 0.00 0.00 - - 0.00 0.00 - -
Boundary Expansion 51.26 26.89 - - 0.00 0.00 - - 0.95 0.00 - -
SCRUB 50.20 26.57 22.03 12.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSIR 17.05 12.32 12.74 8.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Performance evaluation for single class unlearning on Mini-Imagenet

Model Retrain
(Reference)Contrastive Boundary

Shrink
Boundary
Expansion SCRUB UNSIR

RN18 329.23 4.51 7.99 8.38 12.54 5.74
RN34 468.89 8.25 14.76 12.82 21.54 10.05
RN50 911.55 16.01 - - 47.50 20.95

RN101 1473.07 26.94 - - 76.17 31.01

Table 2: Running time of class unlearning on Mini-Imagenet (Min-
utes).

ber of positive (member) predictions by the MIA divided by
total number of tests. It can be considered as false positive
rate (FPR) for unlearning samples (considering them as non-
members) and true positive rate (TPR) for members. An ef-
fective unlearning algorithm should have a low member pre-
diction rate on unlearning samples and high member predic-
tion rate on member samples. Our metric is consistent with
existing literature [Jia et al., 2023] utilizing true negative rate
(TNR) for unlearning samples and test non-member samples.

5.2 Results on Single Class Unlearning

Unlearning Efficacy and Model Performance. Table 1
shows the accuracy of unlearned models on Mini-Imagenet.
Results of other classes are consistent. Readers may refer to
Appendix D.3. We only report the average and omit standard
deviation since all of them are very small (<0.01). The re-
train shows an ideal unlearning with good performance and
zero accuracy for both unlearn train and unlearn test sets.
Contrastive unlearning achieves zero unlearn accuracy across
all models with the smallest performance loss, showing com-
pleteness in unlearning while preserving model utility. Com-
pare to the experiments on CIFAR-10 and SVHN datasets,
the utility loss is bigger on unlearning Mini-Imagenet dataset.
We presume that it is due to the large number of classes as
model could exhibit more intricate decision boundaries. We
did not report experiments of ViT models, Boundary Shrink
and Boundary Expansion for ResNet50 and ResNet101 be-
cause they required excessive computational resources and
resulted out-of-memory error.

Efficiency. Table 2 depicts the elapsed time for each unlearn-
ing algorithm of the single class unlearnings. Contrastive un-
learning is the fastest compared to all baselines, requiring the
smallest number of passes over the entire unlearning samples.

5.3 Results on Sample Unlearning

Model Performance. Table 3 shows the performance metrics
of unlearned models. Like the results of the retrained model,

successful sample unlearning should achieve high test accu-
racy (utility) and low unlearn score (effective unlearning).
Contrastive unlearning achieved best utility and good unlearn
score. LCODEC achieved higher test accuracy on ViT, how-
ever, its unlearn score implies unlearning was not complete,
resulting in higher test accuracy. Although fine-tuning re-
sulted lower unlearning scores, the difference is not signifi-
cant and we demonstrate in the following paragraph that con-
trastive unlearning actually achieves effective unlearning.

Unlearning Efficacy via MIA. Table 4 shows the mem-
ber prediction rate of the MIA on unlearning samples and
test member samples against each unlearned model. An
ideal attack model against the retrain model should have zero
member prediction rate for unlearning samples and 100%
for member samples (since the unlearning samples are non-
members). However, the attack model in our experiment
shows around 60% for unlearning samples on the retrain
model, which is due to the attack power of the attack model.
The high rate on member samples suggests it has reasonable
attack power in recognizing members. We expect stronger
attack methods [Carlini et al., 2022] can better differenti-
ate members and non-members but the comparison of the
methods should stay the same. An unlearning algorithm is
more effective if it exhibits 1) lower member prediction rate
on unlearning samples, and 2) bigger difference in member
prediction rate on unlearning samples and member samples.
For gradient ascent, Fisher, and LCODEC, the member pre-
diction rate for member samples and unlearning samples are
similar, showing ineffective unlearning. For finetune and con-
trastive unlearning, the member prediction rate for unlearning
samples is lower than member samples. However, the differ-
ence is significantly bigger in contrastive unlearning, suggest-
ing stronger discrimination between unlearning samples and
member samples and more effective unlearning.

Efficiency. Table 5 shows the runtime of different algorithms.
It shows contrastive unlearning is the fastest to reach the ter-
mination condition. On average, it needed less than 15 un-
learning rounds, which is computation equivalent to at most
15 × ω passess on unlearning dataset. While gradient as-
cent also iterates only on unlearning dataset, it requires more
than 40 passess to achieve unlearning effects, and requires a
smaller batch size for the better results. Finetune, Fisher, and
LCODEC need longer runtime as they iterate over the entire
set of remaining samples. Moreover, Fisher and LCODEC are
even slower for bigger models as their computation is propor-
tional to model parameters and hardly parallelizable.

Embeddings visualization. Figure 2 is the visualization of



Test accuracy ↑ Unlearn accuracy Unlearn score ↓

Method RN18 RN34 RN50 RN101 ViT RN18 RN34 RN50 RN101 ViT RN18 RN34 RN50 RN101 ViT

Retrain 84.68±0.23 85.48±0.14 86.44±0.57 85.98±0.13 73.28±0.52 85.30±0.6 85.12±0.21 86.86±0.52 86.11±0.27 73.40±0.82 0.62 0.08 0.42 0.31 0.12

Contrastive 81.86±0.33 83.53±0.54 84.80±0.34 86.75±0.87 62.02±0.49 81.69±0.24 81.50±1.4 83.20±0.00 85.34±0.87 59.67±0.90 0.17 2.03 1.6 1.41 2.35
Finetune 81.68±0.29 82.38±0.80 82.60±0.51 83.76±1.16 73.08±2.35 83.65±2.5 82.7±0.89 82.46±1.59 82.23±1.58 96.43±3.23 1.97 0.32 0.14 0.53 23.35
Gradient 67.64±3.41 67.54±3.41 67.70±5.22 76.76±6.71 69.25±3.17 88.65±3.86 88.65±3.86 91.80±1.12 94.18±3.34 95.93±2.59 21.01 12.11 24.10 17.42 26.68
Fisher 76.54±2.34 76.54±2.34 72.03±8.00 82.81±0.83 20.66±3.10 92.83±2.71 92.85±2.73 85.15±12.1 98.30±0.93 24.98±3.30 16.29 16.31 13.12 15.49 4.32
LCODEC 76.20±1.37 81.22±0.85 78.14±1.04 78.62±1.11 84.54±0.78 99.65±0.24 99.53±0.23 99.31±0.45 99.08±0.78 89.23±0.97 23.45 18.31 21.17 20.46 4.69

Table 3: Performance evaluation on sample unlearning on CIFAR-10.

Model
Unlearning Samples ↓ Member-test Samples (Reference)

Retrain (Ref.) Contrastive Finetune Gradient Ascent Fisher LCODEC Retrain (Ref.) Contrastive Finetune Gradient Ascent Fisher LCODEC

RN18 63.28±0.48 60.88±0.78 63.87±0.98 79.85±1.13 85.91±1.26 92.18±1.41 96.08±0.52 91.05±0.59 85.81±1.01 84.62±1.12 89.23±1.31 92.98±0.89
RN34 63.81±0.55 53.51±0.58 66.65±0.87 83.08±0.99 82.59±1.10 95.49±1.13 94.82±0.32 86.44±0.46 86.99±0.84 84.01±1.18 83.74±0.98 97.21±1.21
RN50 63.04±0.29 60.87±0.64 68.47±0.89 85.87±1.08 74.46±1.42 93.98±1.35 97.43±0.47 91.13±0.54 84.03±0.93 89.29±1.29 77.15±1.68 93.59±1.56
RN101 62.49±0.51 60.79±0.78 54.89±0.99 91.98±1.14 84.20±1.86 94.93±1.53 95.74±0.62 86.45±0.92 62.39±1.05 90.47±0.89 84.90±1.77 95.10±1.68
ViT 53.57±0.38 55.49±0.74 84.97±1.04 56.58±1.23 56.18±1.59 83.99±1.48 89.29±0.76 72.87±0.69 85.92±1.18 57.49±1.44 59.86±0.88 87.12±1.43

Table 4: Member prediction rate on unlearning samples and member-test samples (memorized train samples) of MIA on CIFAR-10 dataset.

Method RN18 RN34 RN50 RN101 ViT

Retrain 43.05±2.18 73.22±3.44 134.42±4.72 215.84±4.57 402.15±3.73
Contrastive 2.68±0.64 3.64±0.72 8.46±0.98 12.63±1.02 3.10±0.45

Finetune 16.93±2.24 31.51±2.21 42.93±3.52 103.74±3.05 79.24±3.61
GA 4.89±0.82 7.52±1.21 14.16±1.46 20.21±1.41 35.65±1.19

Fisher 72.31±1.52 115.51±1.98 219.49±1.95 398.87±1.66 218.93±1.48
LCODEC 34.87±1.87 55.50±1.15 152.28±1.64 449.11±1.31 1719.60±3.41

Table 5: Running time of sample unlearning on CIFAR-10 (minutes)

Figure 2: Visualization of the representation space

representation space with Uniform Manifold Approximation
and Projection (UMAP). The colors represent each class. The
circles, crosses and triangles represent embeddings of re-
maining, unlearning and test samples respectively. For sim-
plicity, we only show five classes and 128 unlearning, remain-
ing and test samples. The left figure shows the embeddings
before unlearning, both unlearning and remaining samples
are clustered to their classes. The right figure shows the em-
beddings after termination condition is satisfied. It clearly
shows that representations of unlearning samples are pushed
away from their original clusters and closer to test samples
while remaining samples are intact.

Method Remain test ↑ Unlearn train↓ Unlearn test↓

Contrastive 76.20 0.0 0.0
Gradient Ascent 12.42 0.0 0.0

Finetune 79.87 87.00 68.32

Table 6: Performance evaluation on class unlearning on CLIP

5.4 Generalizability & Scalability

Generalizability. Contrastive unlearning is highly general-
izable across different models due to its nature of optimiz-
ing embeddings to achieve unlearning. It can unlearn mod-
els beyond the standard classifiers such as vision language
models. To demonstrate, we finetune CLIP [Radford et al.,
2021] with CIFAR-100 (top-1 accuracy of 82.3%) and un-
learn entire class of 1 using contrastive unlearning. We com-
pare results only with gradient ascent and finetune as other
baselines are strictly designed for unlearning standard classi-
fiers. Table 6 shows that contrastive unlearning completely
removes knowledge of the class from CLIP with small utility
loss. Meanwhile, baselines experienced ineffective unlearn-
ing or utility loss. Refer to Appendix D.7 for the details.

Scalability. Contrastive unlearning is a general framework
and can leverage more advanced contrastive “learning” algo-
rithms for enhanced scalability and reduced batch size depen-
dence. To demonstrate, we utilize MoCo [He et al., 2020], a
batch-agnostic contrastive learning algorithm as a backbone
and compared the unlearning efficacy and model utility with
the standard one. The results showed that MoCo-based un-
learning significantly outperformed the standard method with
small batch sizes. Refer to Appendix D.8 for the details.

6 Conclusion

In this paper, we proposed a novel contrastive approach for
machine unlearning. It achieves unlearning by effectively op-
timizing embedding space and contrasting unlearning sam-
ples and remaining samples. Through extensive experiments,
we demonstrated that it outperforms state-of-the-art unlearn-
ing algorithms in model performance, unlearning efficacy, ef-
ficiency and scalability. In future work, we will examine the
efficacy of contrastive unlearning in different model archi-
tectures and different unlearning scenarios such as graph un-
learning and correlated sequence unlearning.
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A Appendix / supplemental material
In this appendix, Section B illustrates full algorithm of our
contrastive unlearning. Section C provides details on the im-
plementation of our contrastive unlearning, a link to the im-
plementation (code), and a list of hyperparameters used for
experiments. Section D provides the results of additional ex-
periments on contrastive unlearning. We provide additional
experiments on class unlearning, the efficiency and effective-
ness of the unlearning SVHN and Mini-Imagenet dataset and
an ablation- study on hyperparameters.

B Algorithm

Algorithm 1 Contrastive Unlearning
Input: θ,H (·) , E (·) , Dr

tr, D
u
tr ,Deval

Parameter: iter, λCL, λUL, ω
Output: θ′

1: while termination condition is not satisfied do
2: for each Xu ∈ Du

tr do
3: for 1, · · · , ω do
4: Sample (Xr, Y r) fromDr

tr

5: Determine Pz (xi) , Nz (xi) ∀xi ∈ Xu

6: ℓCE ← LCE (H (Eθ (Xr)) , Y r)
7: ℓUL ← λULLUL (Pz (xi) , Nz (xi)) ∀xi ∈ Xu

8: θ ← θ − η∇ (ℓCE + ℓUL)
9: end for
10: end for
11: θ′ ← θ
12: Evaluate, get termination condition θ′ withDeval

13: end while
14: return θ′

Complete Algorithm. Algorithm 1 shows step-wise
overview of contrastive unlearning. It iterates for all unlearn-
ing batches Xu in Du

tr. For each Xu, it computes unlearning
loss by sampling a random remaining batch Xr for contrast-
ing purposes. For each Xu, sampling and loss derivation are
repeated ω times. Higher ω stabilizes the unlearning proce-
dure by contrasting unlearning samples against multiple sets
of remaining samples. From the experiment, we set ω to be at
most 4 to reduce computational overhead and our algorithm
showed stable unlearning performance.

C Experimental Details
Our implementation is based on PyTorch [Paszke et al.,
2019]. We used one Quadro RTX 8000 with memory
size of 48,600 MB. Our main code is available on Emory-
AIMS/Contrastive-Unlearning. Code for unlearning CLIP
is available on Emory-AIMS/Contrastive-Unlearning-CLIP,
and code for contrastive unlearning with MoCo is available
on Emory-AIMS/Contrastive-Unlearning-MOCO.

For ResNet and ViT models on CIFAR-10 and SVHN
dataset, we used these hyperparamters. We used stochastic
gradient descent for training ResNet models and Adam opti-
mizer for training ViT. Hyperparameters for experiments are
listed on table 7 and 8.

C.1 Details of MIA attack
We assume an adversary with full access to the unlearned
model and training data, simulating an administrator who

conducted unlearning and uses MIA to verify the effective-
ness of unlearning [Thudi et al., 2022; Cotogni et al., 2023].
To train the attack model, we sample DM from remaining
samples Dr

tr (as members) and DN from test samples Dts (as
non-members). An attack model is trained with both mem-
bers and non-members using their output from the unlearned
model {F ′ (x) |x ∈ DM ∪ DN} as features and labels as
{yi|yi = 1 ∀xi ∈ DM ,yi = 0 ∀xi ∈ DN}. We then test the
attack model on the unlearning samples Du

tr and selected test
member samples from remaining samples Dr

tr.

D Additional Experiments
D.1 Performance of Original Models
We use three standard benchmark datasets, CIFAR-10,
SVHN and Mini-imagenet [Cao, 2022]. The original mini-
imagenet is designed for few-shot learning so its distribution
makes training a model from scratch difficult. Instead, we
used a modified version whose distribution is adjusted for
image classification taskFor models, we used ResNet-18, 34,
50, and 101 models and ViT in our experiments. We train
each model with each dataset. For CIFAR-10 and SVHN,
we trained the models without any data augmentation except
normalization. For Mini-Imagenet, we used image augmen-
tation techniques such as RandomRotation and RandomCrop.
The performance of each original model is shown in Table 9.
We then apply unlearning algorithms to the trained models.
We did not train ViT against Mini-Imagenet dataset because
training ViT with small dataset is difficult and often leads
poor performance [Liu et al., 2021].

D.2 Class Unlearning of CIFAR-10 dataset

Unlearning Efficacy and Model Performance. Table 10 de-
picts accuracy of different unlearned models on remain test
(test set of remaining classes), unlearn train (train set of un-
learning class), and unlearn test (test set of unlearning class)
on CIFAR-10 for class 5. The retrain model shows results of
an ideal unlearning with good performance and zero accuracy
for both unlearn train and unlearn test sets. Among all meth-
ods, contrastive unlearning is the only one that achieves zero
accuracy on the unlearning class across all models with small-
est performance loss, indicating complete unlearning while
preserving accuracy of the remaining classes. In fact, the un-
learn test accuracy of contrastive unlearning reached very fast
to zero, and by the time the termination condition (accuracy
below 1/C) was first checked, it had already dropped to zero.
Readers may refer to Appendix D.4 for more details. UN-
SIR is the only baseline achieving 0 accuracy in the unlearn-
ing class, however, it suffers from a significant performance
loss. All other methods fail to completely remove the influ-
ence while also showing a performance loss in the remaining
classes.
Efficiency. Table 11 shows the elapsed time for each unlearn-
ing algorithm. Contrastive unlearning is the fastest compared
to all baselines and across all models because it only requires
running a single pass over unlearning samples and for each
of them, only a small sampled set of remaining samples are
used for contrasting. The speed of UNSIR is second fastest as

https://github.com/Emory-AIMS/Contrastive-Unlearning
https://github.com/Emory-AIMS/Contrastive-Unlearning
https://github.com/Emory-AIMS/Contrastive-Unlearning-CLIP
https://github.com/Emory-AIMS/Contrastive-Unlearning-MOCO


CIFAR-10 SVHN

Hyperparameter Sample Unlearn Class Unlearn Sample Unlearn Class Unlearn

Feature dimension 128 128 128 128
Batch size 128 64 128 64
λCE 1 1 2 1
λUL 3 3 3 3
ω 4 4 4 4
τ 0.7 0.7 0.7 0.7

Learning rate 1e−3 1e−3 1e−3 1e−3

Weight decay 5e−4 5e−4 5e−4 5e−4

Momentum 0.9 0.9 0.9 0.9

Table 7: Hyperparameters for the CIFAR-10 and SVHN datasets.

Hyperparameter ResNet18 ResNet34 ResNet50 ResNet101

Feature dimension 256 256 512 512
Batch size 256 128 128 128
λCE 1 1 2 1
λUL 3 3 3 3
ω 4 4 4 4
τ 0.7 0.7 0.7 0.7

Learning rate 1e−3 1e−3 1e−4 1e−4

Weight decay 5e−4 5e−4 5e−4 5e−4

Momentum 0.9 0.9 0.9 0.9

Table 8: Hyperparameters for Mini-Imagenet dataset. We used same hyperparameter settings for both class and sample unlearning

Dataset RN18 RN34 RN50 RN101 ViT

CIFAR-10 Train 100.0 100.0 100.0 100.0 100.0
Test 85.81 86.62 87.5.0 86.69 72.72

SVHN Train 99.98 99.88 99.99 99.84 100.0
Test 95.32 95.86 95.94 96.14 87.81

Mini-Imagenet Train 96.07 96.07 97.03 97.03 -
Test 68.19 68.18 71.81 72.57 -

Table 9: Performance of original models.



Remain test ↑ Unlearn train ↓ Unlearn test ↓

Method RN18 RN34 RN50 RN101 ViT RN18 RN34 RN50 RN101 ViT RN18 RN34 RN50 RN101 ViT

Retrain (Reference) 86.96 88.01 87.78 87.94 75.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Contrastive 85.79 86.59 87.98 88.69 70.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Boundary Shrink 83.62 84.70 85.52 83.91 69.36 4.54 2.46 2.74 4.91 0.00 4.62 4.60 5.90 7.25 0.00
Boundary Expansion 82.34 83.19 83.39 82.48 40.36 0.00 0.00 0.00 0.00 0.00 6.51 6.81 8.22 8.50 0.00
SCRUB 83.91 82.22 84.44 85.03 68.26 35.42 3.18 7.16 13.46 0.00 9.30 0.80 1.51 4.55 0.00
UNSIR 57.36 47.02 37.41 42.40 24.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 10: Performance of unlearned models from single class unlearning on CIFAR-10

Model Retrain
(Reference)Contrastive Boundary

Shrink
Boundary
Expansion SCRUB UNSIR

RN18 1566.36 48.90 105.22 112.87 150.40 59.98
RN34 2072.76 75.45 181.12 139.90 240.39 90.58
RN50 3820.62 105.41 315.69 240.44 435.49 169.89

RN101 7493.79 139.94 540.21 425.77 747.65 270.38
ViT 22888.08 256.12 2130.60 1950.72 1891.14 1525.92

Table 11: Running time of class unlearning on CIFAR-10 (seconds).

Figure 3: Accuracy on unlearning class vs. number of batches on
Du

tr .

it also runs for a single pass; however, extra time is consumed
computing adequate noise to perturb parameters.

D.3 Unlearning Each Class
For single class unlearning, we reported results for unlearning
class 5 from CIFAR-10 and SVHN dataset. We also exper-
imented with unlearning different classes which verified the
effectiveness of contrastive unlearning. Table 12 and 13 show
accuracy of unlearned models on Dr

ts (test set of remaining
classes), Du

tr (train set of unlearning class), and Du
ts (test set

of unlearning class) on CIFAR-10 and SVHN respectively.
The table clearly shows that contrastive unlearning is capable
of unlearning each class as accuracy of test set and train set
of unlearning class are all zero, indicating that each model is
capable of removing influence completely. At the same time,
the accuracy of test set of remaining classes is preserved and
similar to the original model.

D.4 Efficiency of Class unlearning
Figure 3 shows the progress of the unlearning algorithms in
terms of the accuracy on unlearning class Du

tr vs. the num-
ber of batches in a single epoch. Both contrastive unlearning
and other baselines are designed to run unlearning procedures

multiple times for each batch. However, we fixed the hy-
perparameters of each algorithm so that each batch of Du

tr is
processed only once. Reaching faster to zero accuracy indi-
cates that the algorithm is more efficient, as it needs a smaller
number of batches to achieve unlearning. The figure shows
that contrastive unlearning reaches zero approximately at the
60th batch while boundary shrink and boundary expansion
still show approximately 10% accuracy after the first epoch.
UNSIR shows zero accuracy from the beginning. However,
it computes the proper level of noise by iterating through Du

tr
before running actual optimization. SCRUB, which is based
on knowledge distillation, requires several passes through the
Du

tr and hence does not show any progress after one epoch.
In summary, contrastive unlearning is most efficient as it
achieves unlearning by only requiring 60 batches to achieve
unlearning.

D.5 Unlearning large number of samples
For random sample unlearning, we compared the unlearn effi-
cacy and performance of the model from unlearning 500 ran-
domly selected samples. We also experimented unlearning
randomly selected 250, 500, 1000 and 2000 samples to show
the robustness of contrastive unlearning against the baselines.
Table 14 shows the result of unlearning various number of
samples. It shows that both contrastive unlearning and Fisher
unlearning suffers utility loss as number of unlearning sample
increases. However, contrastive unlearning suffers smaller
performance loss. With unlearning 2000 samples, it suffers
about 8% of test accuracy. On the other hand, fisher unlearn-
ing suffers significant performance loss. Its test accuracy
becomes random guess on unlearning 2000 samples. This
shows that the contrastive unlearning is capable of unlearn-
ing larger number of samples.

200 500 1000 2000

Retrain Test Acc 86.38 86.32 85.71 84.95

Contrastive Test Acc 82.30 82.15 82.15 76.39
Unlearn Acc 76.40 81.60 81.66 76.35

Fisher Test Acc 77.48 77.40 40.78 10.94
Unlearn Acc 98.00 96.00 50.00 15.20

Table 14: Random sample unlearning with various number of un-
learning size

While contrastive unlearning is capable of removing influ-
ence of larger number of unlearning samples, it impairs the
performance of the model. Therefore, the number of unlearn-



Unlearning Class Dr
ts Du

tr Du
ts

0 84.97 0.00 0.00
1 84.62 0.00 0.00
2 85.18 0.00 0.00
3 86.38 0.00 0.00
4 84.73 0.00 0.00
5 85.79 0.00 0.00
6 83.07 0.00 0.00
7 83.71 0.00 0.00
8 83.92 0.00 0.00
9 85.03 0.00 0.00

Table 12: Performance evaluation for unlearning
each class of CIFAR-10 dataset

Unlearning Class Dr
ts Du

tr Du
ts

0 93.98 0.00 0.00
1 94.31 0.00 0.00
2 94.20 0.00 0.00
3 94.57 0.00 0.00
4 94.11 0.00 0.00
5 93.81 0.00 0.00
6 94.09 0.00 0.00
7 94.12 0.00 0.00
8 93.93 0.00 0.00
9 93.91 0.00 0.00

Table 13: Performance evaluation for unlearning
each class of SVHN dataset

ing samples should be limited by the maximum performance
loss the system is able to tolerate.

D.6 Effect of hyperparameter τ

For every experiment, we set τ = 0.7 to follow default set-
ting of supervised contrastive learning [Khosla et al., 2020].
Hence in this section we report the effect of various τ . Ta-
ble 15 shows the unlearn efficacy and model performance on
various τ . It shows that τ does not have a significant impact
on the unlearn and test accuracy. One thing we noticed is that
the smaller τ slightly increases the difference between test
and unlearn accuracy.

τ Test acc. Unlearn acc. Time (seconds)

0.007 82.20 79.40 134.57
0.07 82.12 80.20 121.66
0.7 82.15 81.60 109.32
7 82.15 81.60 111.61
70 82.15 81.60 115.86

Table 15: Test Accuracy, Unlearn Accuracy, and Time for various τ
values

D.7 Unlearning a few-shot vision-language
classifier

Unlike other baseline algorithms, contrastive unlearning
modifies embeddings of unlearning samples to achieve un-
learning. It implies that contrastive unlearning is capable of
unlearning models beyond the standard classification models
such as vision language models learned through contrastive
learning. To verify this claim, we conduct an experiment on
unlearning CLIP model [Radford et al., 2021]. The CLIP is
pretrained with large number of image and text pairs. Since
the original data is publicly unavailable, we first finetune the
pretrained model with CIFAR-100 dataset for 10 epochs. The
finetuned model achieved top-1 accuracy of 82.3%. Then we
attempted to unlearn a class from the finetuned model. Simi-
lar to the class unlearning problem, we unlearned all samples
of a target class until it reaches the accuracy of random guess.
We do not compare the results with other baselines except
for Finetune and Gradient Ascent since they are designed to
only handle standard classification models that provide pre-
diction logits. For Finetune, we further finetune CLIP only
with samples of remaining class to accelerate catastrophic
forgetting of the unlearning samples. For Gradient Ascent,

we conduct gradient ascent for the unlearning samples using
the contrastive loss, and conduct gradient descent for remain-
ing samples with the same loss.

Table 6 shows the result of unlearning class 1 of CIFAR-
100 dataset from CLIP. It shows that contrastive unlearning
effectively unlearns the target class as the model exhibits clas-
sification accuracy below random guess for samples of the
target class. In the same time, the utility loss is small as the
model achieved top-1 accuracy of 76.20. While Gradient As-
cent was able to achieve similar unlearning effect, the perfor-
mance loss is significant compared with contrastive unlearn-
ing. While Finetune was able to preserve the model utility,
the result shows that unlearn efficacy is not good since its
unlearn accuracy is significantly higher than random guess.
The results show that contrastive unlearning is able to achieve
good unlearn efficacy with small performance loss even for
the vision-language model.

D.8 Scalability: Using advanced contrasting
techniques for contrastive unlearning

From section 4, we illustrate the concept of contrastive
unlearning using supervised contrastive learning (Sup-
Con) [Khosla et al., 2020]. Within a batch, contrastive un-
learning pulls unlearning samples’ embeddings towards the
remaining samples with different class and pushes the un-
learning samples’ embeddings away from the remaining sam-
ples with the same class. One of the potential issues of Sup-
Con is that it requires extensive batch size for effectively
learning the representations. When batch size is limited, Sub-
Con shows suboptimal performance. Similarly, contrastive
unlearning shows ineffective unlearning with a small batch
size. As unlearning samples in a batch is only contrasted with
remaining samples within the batch, having smaller batch size
increases bias to directions where each unlearning samples
are optimized. We also observed that unlearning becomes
instable for smaller batch size and reported relevant explana-
tion in Appendix D.11. It implies that contrastive unlearn-
ing might not be effective under an environment with limited
computing resources.

Since our contrastive unlearning framework is generaliz-
able, these problems can be effectively mitigated by lever-
aging more stable contrastive learning techniques. To empiri-
cally show this, we implemented contrastive unlearning using
Momentum Contrast (MoCo) [He et al., 2020]. From MoCo,
the contrastive loss for embeddings of a sample z is defined



as follows:

L = − log
exp (z · z+/τ)∑K
i exp (z · zi/τ)

(10)

The loss is pulling z towards a positive sample z+, and
pushing z away from K negative samples. In MoCo, k neg-
ative samples are stored in a queue to mitigate introducing
bias from the batch size. The size of queue can be signifi-
cantly bigger than the batch and this allows stable learning
under environments with limited computing resources. Intu-
itively, it can be seen as a softmax-based classifier with K+1
classes. By slightly modifying the loss, we can achieve con-
trastive unlearning.

LUL = − log

∑J
i exp

(
z · z+i /τ

)∑K
i exp

(
z · z−i /τ

) (11)

where z+i are embeddings of remaining samples with differ-
ent class, and z−i are the embeddings of samples with same
class. Similar to MoCo, z+i and z−i are stored within a queue.

We compare performance of the original contrastive un-
learning and the contrastive unlearning based on MoCo un-
der limited resources. To simulate the environment with lim-
ited computing resource, we set batch size to 32 and 64 for
both algorithms. We set ω=1, λCE and λUL to 0.5 to com-
pare affects of different contrasting techniques. We conduct
unlearning of 500 randomly selected samples of CIFAR-10
dataset from ResNet-18 model.

Batch size 32 64

Test accuracy ↑ SubCon 72.90±0.26 78.27±0.10
MoCo 82.75±0.03 83.38±0.09

Unlearn accuracy SubCon 62.33±0.23 76.13±0.11
MoCo 79.86±0.11 82.73±0.57

Unlearn score ↓ SubCon 10.57 2.13
MoCo 2.89 0.65

Table 16: Performance evaluation of Sample Unlearning using Mo-
mentum Contrastive algorithm

Table 16 shows the result of MoCo based contrastive un-
learning. SupCon referes to the default contrastive unlearning
and MoCo refers to the contrastive unlearning using MoCo as
its backbone. The result shows significant utility loss (lower
test accuracy) and higher unlearn score (ineffective unlearn-
ing) of the SupCon compare to the Table 3. It shows the per-
formance and unlearn effectiveness of the default contrastive
unlearning is highly susceptible to the batch size. On the
other hand, MoCo is showing higher accuracy and low un-
learn score even with the small batch size. It clearly shows
that advantage of MoCo helps preserving utility of the model
while successfully unlearning the unlearning samples.

While MoCo showed robust unlearning effectiveness on
smaller batch size, we experienced inefficient unlearning with
bigger batch size (128). We conjecture that a larger batch size
for MoCo based unlearning results in redundant optimization
than what is necessary. Since the MoCo-based contrastive
unlearning contrasts each unlearning sample with remaining

samples in the queue, number of remaining samples whose
embeddings are affected is significantly higher than SupCon-
based contrastive unlearning. To this end, MoCo-based con-
trastive unlearning overly impairs decision boundary, result-
ing in more ineffective unlearning. However, we deem that
the problem is not intrinsic to the framework, but because
of the relationship between batch size and complexity of the
dataset. For training a model, the right batch size for effec-
tive learning is determined by the complexity of the dataset
and the model [McCandlish et al., 2018]. Therefore, for un-
learning more complex datasets, MoCo-based contrastive un-
learning can utilize a larger batch size to achieve better utility
and unlearning efficacy.

D.9 SVHN Dataset
Single Class Unlearning on SVHN Dataset
Table 17 illustrates accuracy of unlearned models on SVHN
dataset. It shows a similar trend as the CIFAR-10 dataset.
UNSIR provides better performance on the SVHN dataset be-
cause features of SVHN are easier to learn thus the model suf-
fers less utility loss than CIFAR-10. However, it still suffers
a significantly higher utility loss than contrastive unlearning.
All other baselines show a high accuracy on the unlearning
class in many cases, indicating they failed to remove the in-
fluence of the unlearning class. Contrastive unlearning con-
sistently removed all influence of unlearning class with a neg-
ligibly small loss of performance.

Sample Unlearning on SVHN Dataset
Table 18 presents test and unlearning accuracy on the SVHN
dataset. LCODEC and Fisher show similar test accuracy with
the retrain model on some models. However, their unlearn-
ing accuracy is very high, at almost 100%, indicating a sig-
nificant residual of the influence. Both Finetune and gradi-
ent ascent show significant performance loss in test accuracy.
Contrastive unlearning is more consistent in achieving simi-
lar unlearning accuracy as the retrain model with a relatively
small performance loss in test accuracy.

Efficiency of Class Unlearning on SVHN Dataset
We reported efficiency of class unlearning on CIFAR-10
dataset to show contrastive unlearning is the most efficient
framework. Similarly, here we provide efficiency analysis
of class unlearning on SVHN dataset. Table 19 shows the
time required to unlearn each class using each framework.
For a smaller model, SCRUB and UNSIR require less time;
however, the effectiveness and performance of SCRUB and
UNSIR are inferior to those of contrastive unlearning. With
more complex models, baseline unlearning frameworks show
sluggish computation. For ResNet101, the fastest baseline is
UNSIR, which requires 990 seconds to run, while contrastive
unlearning only requires 599 seconds.

Efficiency of Sample Unlearning on SVHN Dataset
Table 20 shows the time required to unlearn randomly se-
lected samples using each framework. Contrastive unlearn-
ing requires the lowest computation time. Finetune is faster
than contrastive unlearning on ResNet34, and it is because of
randomness within the algorithm. Fisher and LCODEC re-
quire extensive computation. LCODEC, specifically, is even
slower than retraining.



Model Evaluation Retrain
(reference) Contrastive Boundary

Shrink
Boundary
Expansion SCRUB UNSIR

RN18
Remain test↑ 95.43 93.91 94.84 93.71 93.88 90.3

Unlearn train↓ 0.00 0.00 29.79 80.25 88.67 0.00
Unlearn test↓ 0.00 0.00 37.46 2.61 77.39 0.00

RN34
Remain test↑ 95.46 94.33 95.12 94.50 94.57 85.82

Unlearn train↓ 0.00 0.00 34.69 63.92 0.96 0.00
Unlearn test↓ 0.00 0.00 41.99 4.27 0.42 0.00

RN50
Remain test↑ 95.83 94.87 95.47 95.01 93.75 70.56

Unlearn train↓ 0.00 0.00 40.01 3.92 2.68 0.00
Unlearn test↓ 0.00 0.00 42.37 8.74 9.64 0.00

RN101
Remain test↑ 96.16 94.90 95.65 95.07 94.65 83.90

Unlearn train↓ 0.00 0.00 42.77 51.53 0.00 0.00
Unlearn test↓ 0.00 0.00 45.39 3.94 0.00 0.00

ViT
Remain test↑ 87.78 77.45 65.33 14.63 21.99 87.66

Unlearn train↓ 0.00 0.00 0.00 0.00 0.00 6.16
Unlearn test↓ 0.00 0.00 2.14 0.00 0.00 0.00

Table 17: Performance evaluation for single class unlearning on SVHN.

Model Evaluation Retrain Contrastive Finetune Gradient
Ascent Fisher LCODEC

RN18
Test acc↑ 94.89±0.21 91.67±0.29 91.66±0.35 67.80±16.8 88.76±1.64 93.49±1.09

Unlearn acc 94.20±0.13 90.35±0.57 90.85±0.1 96.9±2.14 97.55±2.04 99.63±0.49
Unlearn score↓ 0.69 0.82 0.81 29.1 8.79 6.14

RN34
Test acc↑ 95.39±0.32 93.01±0.15 92.52±0.58 84.03±7.91 91.25±0.59 94.95±1.19

Unlearn acc 94.12±0.14 91.50±0.60 90.90±0.90 97.65±1.45 97.00±0.84 99.48±0.49
Unlearn score↓ 1.27 1.51 1.60 12.72 5.75 4.53

RN50
Test acc↑ 95.86±0.25 93.50±0.25 93.01±0.81 71.47±20.8 91.46±0.05 94.46±0.71

Unlearn acc 95.12±0.47 92.75±0.41 92.00±1.12 96.73±3.66 97.80±0.00 99.48±0.53
Unlearn score↓ 0.74 0.75 1.01 25.26 6.34 5.02

RN101
Test acc↑ 95.88±0.22 92.89±0.46 91.98±0.39 78.35±8.23 94.25±0.81 82.42±1.03

Unlearn acc 93.45±0.78 91.29±0.87 91.00±0.1 97.30±5.27 99.80±0.00 92.87±0.66
Unlearn score↓ 2.21 1.60 0.98 18.95 5.55 10.45

ViT
Test acc↑ 86.45±0.18 73.28±0.39 86.23±0.79 21.42±8.24 6.29±0.52 86.28±0.97

Unlearn acc 85.35±0.62 72.20±0.72 98.92±0.58 68.12±6.28 8.87±0.13 99.82±0.42
Unlearn score↓ 1.10 1.08 12.69 46.7 2.58 13.54

Table 18: Performance evaluation on sample unlearning on SVHN.

Effectiveness (MIA) of Sample Unlearning on SVHN
Dataset
Table 21 shows the member prediction rate of the MIA on
unlearning samples and test member samples. Contrast un-
learning shows the lowest member prediction rate on unlearn-
ing samples and the biggest difference between the member
prediction rate on unlearning samples and test member sam-
ples. While some baselines show a lower member prediction
rate on unlearning samples, they present a very small differ-
ence between two member prediction rates. Some baselines
show a low member prediction rate on test member samples.
This does not directly indicate the corresponding unlearning
framework is effective in unlearning. Instead, this is due to
the technical limitations of the membership inference attack,
and we aim to investigate more powerful MIA frameworks in
future work.

D.10 Mini-Imagenet Dataset
Single Class Unlearning on Mini-Imagenet Dataset
Sample Unlearning on Mini-Imagenet Dataset
Table 22 shows the results of sample unlearning on Mini-
Imagenet dataset. We did not report results of LCODEC be-

cause it requires excessive computation time. Goal of ma-
chine unlearning is to remove influence of unlearning samples
efficiently than re-training the model. However, LCODEC on
Mini-imagenet requires at least two times of computational
time than re-training the model.

Contrastive unlearning shows the low unlearn score, mean-
ing it successfully altered embeddings of unlearning samples
similar to test samples. Finetune is ineffective as it failed to
reduce unlearn accuracy similar to the test accuracy. Gradient
ascent has significant reduction in the test accuracy. Overall,
contrastive unlearning is the only unlearning method that was
able to properly reduce influence of unlearning samples.

D.11 Hyperparameter Study
We explore how batch size (B) and ω affect contrastive un-
learning. Figure 7 and 11 show accuracy on test set (test ac-
curacy, solid line) and test accuracy on unlearning samples
(unlearn accuracy, dotted line) of random sample unlearning
on CIFAR-10 dataset. Dots in each plot indicate where the al-
gorithm determined its stopping point. As each figure shows,
running the unlearning algorithm beyond the stopping point
is not desired because it decreases model performance (low



Model Retrain Contrastive Boundary
Shrink

Boundary
Expansion SCRUB UNSIR

RN18 59007.60 519.44 1665.27 1620.27 480.39 407.28
RN34 55404.20 568.37 1710.33 1646.22 604.56 810.42
RN50 57276.10 597.95 1860.27 1665.30 900.42 901.02

RN101 56822.40 599.42 2090.16 1695.30 1372.14 990.48
ViT 12201.84 1348.92 1650.60 1244.4 1374.36 701.1

Table 19: Processing time of class unlearning algorithms on SVHN dataset (in seconds).

Model Retrain Contrastive Finetune Gradient
Ascent Fisher LCODEC

RN18 515.83±0.87 43.48±0.24 199.28±1.98 51.69±1.25 121.16±0.03 418.01±0.77
RN34 526.72±0.68 43.52±0.13 39.57±1.73 60.84±0.97 183.06±0.11 522.34±0.91
RN50 538.14±0.59 41.09±0.28 368.03±1.49 82.68±0.99 301.57±0.14 938.39±0.86

RN101 549.45±0.59 38.57±0.33 327.46±1.61 68.19±1.13 542.91±0.16 1918.87±0.91
ViT 192.54±0.34 2.05±0.41 35.03±0.99 4.08±1.18 203±0.14 1371.53±0.65

Table 20: Processing time of sample unlearning algorithms on SVHN dataset (in minutes).

test accuracy), and unlearning samples show very different
behavior than test data (bad unlearning effectiveness). The
figures show that batch size heavily affects the performance
of unlearning. This aligns with [Graf et al., 2021]. Con-
trastive unlearning loss is a batched process, and directions to
pull and push are chosen based on the samples in the batch.

Figure 7 shows effects of different ω on unlearning process.
ω is a hyperparameter that determines the number of contrasts
for each batch of unlearning samples against batches of retain
samples. Higher ω means each batch of unlearning samples
is contrasted with many batches of retain samples. Higher ω
stabilizes the unlearning procedure, however, which is com-
putationally inefficient. All figures in figure 7 shows the al-
gorithm achieves higher performance with a higher ω. This
shows higher ω stabilizes the unlearning process by reducing
bias.

Figure 11 shows the effects of different batch sizes on the
unlearning process. A larger batch offers better stabilization
as it reduces bias. When batch size is small, each unlearning
sample in a batch is contrasted only with a small number of
retain samples. On the other hand, if the batch size is larger,
each unlearning sample is contrasted with more retain sam-
ples; hence, the directions to pull and push are less biased
by retain samples. This leads to better model performance.
However, a bigger batch is not always better as it requires
more computation. Figure 8, 9, and 10 show that a batch size
of 256 needs three times more passes than a batch size of 64,
while the test accuracy of two models from each plot is not
much different.



Model Evaluation Retrain Contrastive Finetune Gradient
Ascent Fisher LCODEC

RN18 unlearning↓ 76.29±0.24 56.01±0.48 64.12±0.98 69.05±1.13 52.28± 53.86±0.67
member-test 83.10±0.39 74.14±0.37 64.78±0.82 75.01±1.22 59.86± 59.43±0.86

RN34 unlearning↓ 57.82±0.33 60.85±0.72 63.39±1.01 74.23±0.87 64.25± 83.22±0.75
member-test 63.27±0.41 76.83±0.68 63.98±0.96 77.83±1.05 66.34± 81.71±0.88

RN50 unlearning↓ 55.98±0.48 51.97±0.66 59.98±1.07 60.67±0.87 59.24± 64.21±0.94
member-test 64.97±0.58 61.49±0.59 63.94±0.93 64.18±1.25 60.62± 68.49±0.98

RN101 unlearning↓ 52.04±0.37 58.24±0.45 54.22±1.11 59.51±0.97 58.31± 65.62±1.12
member-test 57.99±0.51 73.66±0.56 60.17±1.02 58.89±1.33 55.61± 64.72±1.33

Table 21: Member prediction rate on unlearning samples and member-test samples of MIA on SVHN dataset.

Model Evaluation Retrain Contrastive Finetune Gradient
Ascent Fisher

RN18
Test acc↑ 66.17 54.40 69.53 45.61 11.67

Unlearn acc 65.40 51.20 96.20 86.60 10.00
Unlearn score↓ 1.87 3.2 26.67 40.99 1.67

RN34
Test acc↑ 68.93 38.37 69.83 42.61 10.61

Unlearn acc 66.60 37.20 96.20 86.60 18.00
Unlearn score↓ 2.33 1.17 26.37 43.99 7.39

RN50
Test acc↑ 71.26 55.71 72.69 52.05 11.67

Unlearn acc 68.20 55.80 97.00 83.60 18.00
Unlearn score↓ 3.06 0.09 24.31 31.55 6.33

RN101
Test acc↑ 71.57 54.49 74.85 59.62 11.67

Unlearn acc 68.20 56.00 97.00 85.40 18.00
Unlearn score↓ 3.37 1.51 22.15 25.78 6.33

Table 22: Performance evaluation on sample unlearning on Mini-Imagenet dataset.
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Figure 4: Batch size 16
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Figure 5: Batch size 64
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Figure 6: Batch size 256

Figure 7: Test accuracy (solid line) and unlearn accuracy (dotted
line) of contrastive unlearning on CIFAR-10 dataset from ResNet18.
Each figure plots experiments on fixed batch size with different ω.
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Figure 8: ω = 2
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Figure 9: ω = 4
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Figure 10: ω = 6

Figure 11: Test accuracy (solid line) and unlearn accuracy (dot-
ted line) of contrastive unlearning on the CIFAR-10 dataset from
ResNet18. Each figure plots experiments on a fixed ω and different
batch sizes.
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