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Abstract—Networks are widely used to model objects with
interactions and have enabled various downstream applications.
However, in the real world, network mining is often done on
particular query sets of objects, which does not require the
construction and computation of networks including all objects
in the datasets. In this work, for the first time, we propose
to address the problem of query-specific network construction,
to break the efficiency bottlenecks of existing network mining
algorithms and facilitate various downstream tasks. To deal
with real-world massive networks with complex attributes, we
propose to leverage the well-developed data cube technology to
organize network objects w.r.t. their essential attributes. An
efficient reinforcement learning algorithm is then developed to
automatically explore the data cube structures and construct the
optimal query-specific networks. With extensive experiments of
two classic network mining tasks on different real-world large
datasets, we show that our proposed cube2net pipeline is general,
and much more effective and efficient in query-specific network
construction, compared with other methods without the leverage
of data cube or reinforcement learning.

I. INTRODUCTION

Networks provide a natural and generic way for modeling
the interactions of objects, upon which various tasks can
be performed, such as node classification [1], community
detection [2] and link prediction [3], [4] However, as real-
world networks are becoming larger and more complex every
day, various network mining algorithms need to be frequently
developed or improved to scale up, but such innovations are
often non-trivial, if not impossible. Moreover, the quality of
networks taken by these algorithms is often questionable: Do
the networks include all necessary information, and is every
piece of information in the networks useful?

While existing network mining algorithms mostly focus on
more complex models for better capturing of the given network
structures [5], [6], [7], in this work, for the first time, we
draw attention to the fact that network mining tasks are often
specified on particular sets of objects of interest, which we call
queries, and advocate for query-specific network construction,
where the goal is to construct networks that are most relevant
to the queries.

Under the philosophy of the well-developed technology of
data cube for large-scale data management, massive real-world
networks can be partitioned into small subnetworks residing in
fine-grained multi-dimensional cube cells w.r.t. their essential
node properties [8], [9]. Assuming the proper data cubes can
be efficiently constructed for particular networks automatically

Fig. 1. cube2net: A running example on DBLP.

[10], [11], [12], [13], we can then clearly formulate the
problem of of this work as follows.

Definition I.1. Cube-Based Query-Specific Network Construc-
tion. Given a massive network with objects organized in a data
cube and a query set of objects, find a set of cells, so that
objects in the cells are the most relevant to the query.

Figure 1 gives a toy example of query-specific network
construction. Consider the massive author network of DBLP1.
The task is to find pairs of close collaborators within a
particular research group. Only retaining the co-author links
within the group and ignoring all outside collaborations clearly
leads to significant information loss, while incorporating all
co-author links in the whole network is too costly and brings in
lots of useless data. Based on the fact that the whole network
can be partitioned into fine-grained multi-dimensional cube
cells like <200X, KDD, Graph mining>, <201X, ACL, Text
mining>, we can look for a few subnetworks that are the
most relevant to the considered group (e.g., by looking at their
overlap with the group), and leverage the union of them to
serve as the query-specific network.

To identify the set of cells that contain subnetworks most
relevant to the query, a straightforward method is exhaustive
greedy search, by expanding the network with the most
relevant cell incrementally. However, this method suffers from
the following two drawbacks:

1) Since nodes in the real-networks can have various prop-
erties, there can be thousands or millions of cells, which
makes exhaustive search very costly.

1http://dblp.uni-trier.de/



2) The problem of looking for a set of most relevant cells is
essentially a combinatorial problem over all cells, which
can not be optimally solved by the greedy algorithm.

In this work, we propose and design cube2net, a simple and
effective reinforcement learning algorithm over the data cube
structures, to efficiently find a near optimal solution for the
combinatorial problem of cube-based query-specific network
construction. In our reinforcement learning framework, the
state is represented by our novelly designed continuous cell
embedding vectors which capture the semantic proximities
among cells in multiple dimensions, whereas the reward is
designed to optimize the overall relevance between the set
of selected subnetworks and the query set of objects. In this
way, cube2net efficiently improves the utility estimation of
various related cells regarding the relevance to the query
by exploring each single cell, thus effectively approaching
the optimal combination of relevant cells while avoiding the
enumeration of all possible combinations.

The main contributions of this work are as follows:
• For real-world large-scale network data mining, we empha-

size the lack of properly constructed networks and highlight
the urge of query-specific network construction.

• We develop cube2net, based on the well-developed data
cube technology and a novel simple reinforcement learning
framework, to efficiently find the most relevant set of sub-
networks from the cube structure for query-specific network
construction.

• We conduct extensive experiments using two classic data
mining tasks on different real-world massive networks to
demonstrate the generality, effectiveness, and efficiency of
cube2net.

II. PROBLEM FORMULATION

A. Preliminaries

1) Data Cube Basics: Data cube is widely used to or-
ganize multi-dimensional data, such as records in relational
databases and documents in text collections [13], [9], [11],
[12]. With well-designed cube structures, it can largely boost
various downstream data analytics, mining and summarization
tasks [8]. In the data cube, each object is assigned into a
multi-dimensional cell which characterizes its properties from
multiple aspects. We call each aspect as a cube dimension (to
differentiate from vector dimension when necessary), which is
formally defined as follows.

Definition II.1. Cube Dimension. A dimension in a data cube
is defined as Lp = {lp1, l

p
2, . . . , l

p
|Lp|}, where lpi ∈ Lp is a label

in this dimension. For each particular dimension, labels are
organized in either a flat or a hierarchical way.

For simplicity, we focus on flat labels in this work. Based
on the notion of cube dimension, we formally define a data
cube in the following.

Definition II.2. Data cube. A data cube is defined as C =
{L1, . . . , LP ,D}, where Lp is the p-th dimension, and D is
a collection of objects assigned to the cube cells. Each object

d ∈ D can be represented as {l1d, . . . , lPd }, where lpd is the
label of d in dimension Lp. lpd can also be a set of labels,
allowing objects to reside in multiple cells at the same time.

Without loss of generality, we give a simple example of
cube construction with the DBLP data, aiming to demonstrate
the power of data cube for efficient data organization and
exploration, which further facilitates query-specific network
construction. In the meantime, we are aware that by no means
this is the unique or best way of constructing a DBLP data
cube, while we leave the exploration of more cube design
choices as future work. A reasonable belief is that better
cube designs can lead to more efficient and effective data
organization and exploration.

Following the design of [12], we can create three cube di-
mensions based on paper attributes in DBLP: Ldecade derived
from the numerical attribute publication year, Lvenue derived
from the categorical attribute publication venue, and Ltopic
derived from textual attributes like paper titles and abstracts.
We assign labels of the venue dimension by publication
years; venue labels are assigned by conference or journal
names like KDD, TKDE; topic labels are assigned according
to a latent phrase-based topic model by labels like Neural
networks, Feature selection. To compute a useful topic
model, we first apply the popular AutoPhrase tool [14] to
extract quality phrases from the whole corpus and represent
each paper as a bag of those quality phrases. Then we apply
standard LDA and assign each paper with the highest weighted
topic label. As a consequence, each paper is arranged into
multi-dimensional cells like <201X, KDD, Graph mining>.

Each object (e.g., author) can belong to multiple cells at
the same time. The co-author links may also cross different
cells. To enable fast network construction, we store all links
on both end objects, and add them to the network only
when both end objects are selected. As a consequence, a data
cube does not partition the network into isolated parts, but
rather provides a fine-grained multi-dimensional index over
particular subnetworks w.r.t. the essential properties of objects
in the dataset for efficient exploration and selection.

B. Problem Definitions
In this work, given a massive real-world network N =
{V, E ,A}, where V is the set of objects (e.g., millions of
authors on DBLP), E is the set of links (e.g., co-author links
on DBLP), and A is the set of object properties (e.g., favorate
venues, active years, research topics for authors on DBLP), we
assume a proper data cube C can be well constructed either
automatically or by domain knowledge. Then the input and
output of query-specific network construction can be defined
as follows.

Input: A data cube C that organizes and stores a massive
real-world network N w.r.t. its essential node properties A;
a query set of objects Q ∈ V .

Output: A set of cube cells S, which includes the most
relevant subnetwork M∈ N regarding Q.

There are many possible ways to mathematically define the
relevance between M and Q. For simplicity, in this work, we



intuitively require M to be (1) small so that the downstream
tasks can be solved efficiently, and (2) complete so that
knowledge mining over Q can be accurate and effective. Based
on such philosophies, we formulate the relevance function as

rel(M,Q) =
|M ∩Q|
|M ∪Q|

, (1)

where |M∩Q| is large whenM is complete by covering more
objects in Q, and |M∪Q| is small whenM is small and also
overlaps much with Q. r(M,Q)) reaches the optimal value
1 when the M exactly covers all objects in Q, which only
happens when the union of objects in a certain set of cells are
exactly the same as Q.

III. CUBE2NET

A. Motivations

The combinatorial property of query-specific network con-
struction lies in the process of selecting a particular set of
objects from the very large set of all objects to construct
the query-relevant subnetwork. Without the guidance of node
properties, such a process can only be done by link-based
heuristic search algorithms [15], [16].

In this work, however, by leveraging the powerful technique
of data cube, we can organize the massive network w.r.t. its
essential node properties and search over the cube cells instead
of individual objects to construct the query-specific network.
However, even with such efficient data organization, we are
still facing the challenge of selecting over a large number of
cube cells. For example, on DBLP, after removing the empty
ones, we still have about 80K cells, which leads to a total
number of 280K possible combinations.

Reinforcement learning has been intensively studied for
solving complex planning problems with consecutive decision
makings, such as robot control and human-computer games
[17], [18]. Recently, there are several approaches to tackle
the combinatorial optimization problems over network data by
reinforcement learning [19], [20], which are shown even more
efficient than other advanced neural network models [21].
Motivated by their success, we aim to leverage reinforcement
learning to efficiently approximate the optimal combinatorial
solution for query-specific network construction.

B. Framework Formulation

In this subsection, we demonstrate our reinforcement learn-
ing framework. Given a data cube C with n cells, a partial
solution is represented as S = (c1, . . . , c|S|), ci ∈ C; S = C\S
is the set of candidates to be selected conditional on S.

In [20], an approximate solution is proposed by using a
popular heuristic, namely a greedy algorithm. Their algorithm
constructs a solution by sequentially and greedily adding nodes
that maximize the evaluation function of a partial solution.
The evaluation function is trained on small instances (e.g., 50
nodes) with deep Q-learning and the solution is tested on larger
instances (e.g., 1000 nodes) for the performance of general-
ization. Despite their success on several graph combinatorial
optimization tasks, this heuristic does not scale to our problem.
In our scenario, the action space is of the size |C|, which means

in every step of the deep Q-learning, thousands of selections
over the cells need to be explored and exploited, making the
learning process computationally intractable.

Motivated by [19], our neural network architecture models a
stochastic policy π(a | S, C), where a is the action of selecting
the next cell to be added from the candidate set S = C \S and
S is the state of the current partial solution S. Our target is to
learn the parameters of the policy network such that p(S | C)
assigns a high probability to S that has high quality q(S) given
all cells C. We use the chain rule to factorize the probability
of a solution as follows:

p(S | C) =

m∏
i=1

π(S(i) | S(< i), C), (2)

where m is the size of the solution. Note that, we refer π(a |
S) to πΘ(a | S, C), where Θ is the set of parameters inside
the policy π.

1) Representation: As we just discussed, the number of
possible states is exponential to the number of cells (i.e., 2n).
It is impossible to model the states discretely with a look-
up table. Therefore, we propose the novel technique of cell
embedding, which captures the semantic proximities among
cells. Particularly, for each cell c ∈ C, a κ-dimensional embed-
ding vector uc is computed to capture c’s multi-dimensional
semantics regarding the essential properties of the objects it
contains (more details are in Appendix B).

Now we study how to naturally leverage such cell em-
bedding for the design of a reinforcement learning algorithm
that efficiently explores the cube structures. Specifically, we
need to design an appropriate reinforcement learning state
representation to encode the currently selected cells in the
subset S . For model simplicity and easy optimization, we
directly compute the state representation as a summation of
the embeddings of selected cells in S, i.e., S =

∑
c∈S uc.

With this simple form, we theoretically show that we allow
the reinforcement learning agent to efficiently explore the
cube structures, by simultaneously estimating the utility of
semantically close cells at each state. Particularly, we prove
the following theorem.

Theorem III.1. Given our particular way of state representa-
tion, at each state S, the effect of the reinforcement learning
agent in exploring a particular cell c ∈ C is similar to that
of exploring any cell c′ ∈ Nξ(c), when ξ is sufficiently small,
in the sense that the output of the actor (critic) network is
similar, i.e., |f(S, c) − f(S, c′)| ≤ ηξ, and the gradients are
similar too, i.e., ||∇f(S, c)−∇f(S, c′)||22 ≤ ζξ, where f = µ
or ν.

Moreover, according to Theorem III.1, it is easy to arrive
at the following Corollary.

Corollary III.2. Given our particular way of state represen-
tation, the effect of the reinforcement agent of exploring a
particular cell c ∈ C in a particular state S is similar to that
of exploring any cell c′ ∈ Nξ1(c) at any state S′ ∈ Nξ2(S),
when both ξ1 and ξ2 are sufficiently small.



For detailed proofs, please refer to Appendix A.
Continue with our toy example on DBLP, where the deeply

colored cells are directly sampled and estimated by the rein-
forcement learning agent during the exploration. According
to Theorem III.1 and Corollary III.2, assuming the lightly
colored cells are those semantically close to the deeply colored
ones, their utilities regarding the quality function in similar
states are also implicitly explored and evaluated. In this
way, the reinforcement learning algorithm efficiently avoids
the exhaustive search over all cube cells and their possible
combinations.

In practice, we find that long trajectories leading to large
constructed networks usually do not result in efficient model
inference and satisfactory task performance. Therefore, we set
δ(S) = {|S| <= m}, which terminates the selection of more
cells if the number of selected cells reaches m. In Section
IV, we will study the impact of m on the performance of our
algorithm.

2) Reinforcement Learning Formulation: The components
in our reinforcement learning framework are defined as fol-
lows.
1) State: A state S corresponds to a set of cells S we

have selected. Based on previous discussion, a state is
represented by a κ-dimensional vector S =

∑
c∈S uc.

2) Action: An action a is a cell c in S = C \S . We will cast
the details of the actions later.

3) Reward: The reward r of taking action a at state S is
r(S, a) = q(S′)− q(S), (3)

where S′ := (S, c). Given Eq. 3, maximizing the cumula-
tive reward

∑n−1
i=1 r(Si, ci) is the same as maximizing the

quality function q(S).
4) Transition: The transition is deterministic by simply

adding the cell c we have selected according to action a
to the current state S. Thus, the next state S′ := (S, c).

According to our discussion in Section II.2, the quality
function q is set to q(S) = rel(M,Q), where M is the set of
objects in the selected cells S at state S.

Continue with our toy example in Figure 1, where Q is the
query set of authors including two data mining researchers,e.g.,
Y. Sun and J. Pei. Assume the two authors are in the
same cube cell <201X, KDD, Data mining>. Consider other
authors in DBLP like X. Yan, who is also in the cell <201X,
KDD, Data mining>, and Q. Gu, who is in another cell
<201X, NIPS, Optimization>. Our quality function q(S)
will prefer to include X. Yan into the constructed network, who
is indeed more relevant to both Y. Sun and J. Pei, and such
inclusion will likely benefit the proximity modeling among the
particular authors in Q.

Note that, although the toy example looks simple, when
we consider Q including thousands of objects distributed in
multiple cells, as well as their relevant objects distributed in
thousands of cells, the selection of the most relevant cells
becomes a complex combinatorial problem. We stress that
the main contribution of this work is to provide a general
framework for efficient network construction, and it is trivial

to plug in different quality functions when certain properties of
the constructed networks are required or preferred. In Section
IV, we show the power of our framework for multiple network
mining tasks with the simple quality function q, and we leave
the exploration of more theoretically sound or task-specific
ones to future work.

C. Learning Algorithm

We illustrate how reinforcement learning is used to learn
the policy parameters Θ. It is impossible to directly apply the
commonly used Q-learning to our task because finding the
greedy policy requires optimization over at at every timestep
t, which is too slow to be practical with large action spaces
[22]. To this end, we adopt continuous policy gradient as
our learning algorithm. We design our actions to be in the
continuous cell embedding space. At each time, the policy
outputs a continuous action vector and then we retrieve the
closest cell by comparing the action vector with the cell
embeddings.

Fig. 2. The overall learning paradigm of cube2net.

Figure 2 illustrates our learning algorithm. More formally,
our policy π(a | S) takes the state representation S as the
input and produces an action as the output. Instead of using
Boltzmann exploration (e.g., softmax) to choose a discrete
action a = c from S, we project the actions to the κ-
dimensional cell embedding space. Based on the property that
semantically similar cells are close in the embedding space,
a Gaussian exploration with mean µ ∈ Rκ and covariance
matrix Σ ∈ Rκ×κ is used in our policy [22] as follows.

π(a | S, {µ,Σ}) =
1√

2π |Σ|
exp

(
−1

2
(a− µ)TΣ−1(a− µ)

)
,

(4)

∇µ log π(a | S, {µ,Σ}) = (a− µ)TΣ−1, (5)

∇Σ log π(a | S, {µ,Σ}) =
1

2

(
Σ−1(a− µ)(a− µ)TΣ−1 − Σ−1

)
.

(6)
A neural network µΘ(S) is used as our actor network to
produce a Gaussian mean vector µ as part of the action. A
learnable parameter σ is used to model the Gaussian variance
vector as Σ = σ2I .

1) Policy Gradient: Since our goal is to find a high-quality
solution S, our training objective is

U(Θ | C) = Eτ∼πΘ(S|C)R(τ), (7)
where τ denotes a state-action trajectory, i.e.,
S0, a0, · · · , ST , aT . Each τ corresponds to a selected
set of cube cells. T (= m) is the length of the trajectory, and



R(τ) =
∑T
t=0 r(St, at) is the reward. Then we derive the

gradient estimator based on policy gradient as

∇ΘU =
1

α

α∑
i=1

T−1∑
t=0

∇ log πΘ(a
(i)
t | S

(i)
t )

(
T−1∑
k=t

r(S
(i)
k , a

(i)
k )− νΘ(S

(i)
k )

)
,

(8)
where α is the number of trajectories, νΘ(S) is the value
function.

In a general form, we have the gradient estimator as
ĝ = Êt[∇Θ log πΘ(at | St)Ât], (9)

where Ât is the advantage function at timestep t. Êt denotes
the empirical average over a mini-batch of samples in the
algorithm that alternates between sampling and optimization
using the proximal policy gradient algorithm [23].

To compute the advantage function Ât, we use a T-step
advantage function estimator as

Ât = −νΘ(St) + r(St, at) + γr(St+1, at+1) + · · ·
+γT−t+1r(ST−1, aT−1) + γT−tνΘ(ST ),

where γ is a clipping parameter. νΘ(S) is learned by minimiz-
ing the loss LVF(Θ) = ‖νΘ(St) − ν target(St)‖22, where V target

is the advantage function minus the value function.
2) Neural Architecture: Our actor network (policy network)

µΘ(S) and critic network (value function) νΘ(S) shown in
Figure 2 are both fully connected feedforward neural networks,
each containing four layers including two hidden layers of size
H , as well as the input and output layers. Sigmoid is used
as the activation function for each layer, and the first hidden
layer is shared between two networks. Both networks’ inputs
are κ-dimensional cell embeddings. The output of the actor
network µΘ(S) is a κ-dimensional vector Rκ and the output
of critic network νΘ(S) is a real number.

As for model learning, in each iteration, our algorithm
samples a set Φ of α trajectories (series of cells) of length
T using the current policy πΘ(a | S), and constructs the
surrogate loss and value function loss based on Φ. Mini-batch
SGD is then used to optimize the objectives for β epochs,
where the model parameters in Θ are updated by Adam [24].

D. Computational Complexity

We theoretically analyze the complexity of our algorithm.
Consider the problem of selecting m cells from a data cube
C with n cells (m� n). During each step of model training,
cube2net generates a target mean µΘ in constant time and
then selects a cell from C that is the closest to µΘ. Since
computing the quality function and updating the neural net-
work model based on particular trajectories take constant time
and argmax takes logarithm time when parallelized on GPU,
the overall complexity of training and planning with cube2net
is O(αβcm log n). α, β are number of trajectories and epochs,
which are both set to 40 in our experiments; c is the constant
time in computing the quality function. The time for model
inference is ignorable compared with model training.

As a comparison, a random algorithm takes O(1) time to
select each cell and has an overall complexity of O(m). A
greedy algorithm at each of the m steps needs to consider all
n actions and run the quality function on each of them to get
the maximum, which has an overall complexity of O(cmn). In
practice, computing the quality function cannot be parallelized
on GPU and always takes the most significant time. Also, the
time is not truly constant– it largely favors cube2net as it
constructs small networks by looking for the globally optimal
combinations of relevant cells.

Note that, the novelty of our reinforcement learning al-
gorithm lies in its unique leverage of cube structures and
cell embedding, as well as the efficient Gaussian exploration
policy. However, the training of it is rather routine, which as
we will also show in Section IV, is very efficient and does not
require heavy parameter tuning.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness and efficiency
of our proposed cube2net pipeline on two large real-world
datasets from very different domains, i.e., DBLP, an academic
publication collection and Yelp2, a business review platform.
We compare different network construction methods for two
well-studied tasks on each of them– author clustering on
DBLP and business-user link prediction on Yelp, to show the
power and generality of cube2net.

A. Author Clustering on DBLP

We first study the author networks of DBLP, which we have
been using as the running example throughout this paper. Par-
ticularly, we focus on the problem of author clustering, since
it is a well-studied problem with two sets of public standard
evaluation labels [25], which are not directly captured by the
network structures or attributes. Since the essential challenge
of network mining is to capture object proximities (e.g., using
embeddings), we take an embedding-clustering approach and
provide a comprehensive evaluation of the embedding quality
regarding clustering. As shown in the experimental results
of various embedding techniques [26], [27], [28], the quality
of network embeddings are often consistent across different
network mining tasks. Therefore, superior performances on
author clustering with embedding can be a good indicator
to the general high quality of constructed networks towards
various network mining tasks.

1) Experimental Settings:

Dataset. We use the public DBLP dataset V103 collected by
[29]. The basic statistics of the dataset are shown in Table I.

Dataset #papers #authors #links
DBLP 3,079,007 534,407 28,347,138

Dataset #businesses #customers #links
Yelp 174,567 1,326,101 5,261,669

TABLE I
STATISTICS OF THE TWO PUBLIC DATASETS WE USE.

2https://www.yelp.com/
3https://aminer.org/citation



The DBLP dataset contains semi-structured scientific pub-
lications, with their corresponding authors, years, venues and
textual contents. As discussed in Section II, a simple data
cube with dimensions year, venue and topic is constructed,
with each cell holding the corresponding authors.

For evaluating the task of author clustering, we use two sets
of authors with ground-truth labels regarding research groups
and research areas published by [25]. They are commonly
used as ground-truth author labels for evaluating network
classification and clustering algorithms on DBLP. The smaller
set includes 4 labels of research groups on 116 authors, and the
larger set includes 4 labels of research areas on 4,236 authors.
We separately use them as the query sets of objects Q in two
sets of experiments.

Baselines. We aim to improve network mining by constructing
the proper network that contains only the query set of objects
Q and the most relevant additional objects Q+. Since we
are the first to study the problem of query-specific network
construction, we design a comprehensive group of baselines
that can potentially choose a relevant set of objects Q+ to add
to Q in the following.
• NoCube: Without a data cube, this method adds no addi-

tional object to the smallest network with only Q as nodes.
• NoCube+: Without a data cube, this method adds all

objects that are directly linked with Q to the network.
• NoCube++: Without a data cube, this method adds all

objects that are within two steps away from Q to the
network.

• MaxDisc [15]: Without a data cube, this method leverages
a heuristic search algorithm to find the largest network
connected component that contains Q.

• CubeRandom: With a proper data cube, this method adds
objects in m random cells to the network.

• CubeGreedy: With the same data cube, this method
searches through all cells for m times, and greedily add
the objects in one cell at each time to optimize the quality
function of Eq. 1.

Parameter settings. When comparing cube2net with the base-
line methods, we set its parameters to the following default
values: For cube construction, we set the number of topics in
LDA to 100 and we filter out cells with less than 10 objects; for
reinforcement learning, we empirically set the size of hidden
layers H to 256, the length of trajectories T (i.e., the number
of added cells m) to 20, the sample size α and the number
of epochs β both to 40, and the clipping parameter of value
function γ to 0.99. In addition to these default values, we also
evaluate the effects of different parameters such as the length
of trajectories T to study their impact on the performance of
the three cube-based algorithms.

Evaluation protocols. We aim to show that cube2net is a gen-
eral pipeline that breaks the bottleneck of network mining by
constructing query-specific networks. Therefore, we evaluate
the compared algorithms for network construction through two
perspectives: effectiveness and efficiency.

We study the effectiveness by measuring the performance
of downstream applications on the constructed network G. For
author clustering, we firstly compute a network embedding E
on G, which converts the network structure into distributed
node representations. To provide a comprehensive evaluation,
we use three popular algorithms, i.e., DeepWalk [26], LINE
[27] and node2vec [28] for this step. We then feed E into the
standard K-means.

To evaluate the clustering results, we compute the F1
similarity (F1), Jaccard similarity (JC) and Normalized Mutual
Information (NMI) w.r.t. ground-truth labels. Detailed defini-
tions of the three metrics can be found in [30].

The efficiency of network construction is reflected by the
time spent on constructing the network, as well as the size
of the constructed network (in terms of #nodes and #edges),
which can further influence the runtime of the network mining
algorithms. All runtimes are measured on a server with one
GeForce GTX TITAN X GPU and two Intel Xeon E5-2650V3
10-core 2.3GHz CPUs.

2) Performance Comparison with Baselines: We quantita-
tively evaluate cube2net against all baselines on clustering the
query set of authors. Tables II and III comprehensively show
the effectiveness and efficiency of compared algorithms.

The scores are deterministic for most algorithms and have
very small standard deviations on the others except for Cu-
beRandom. We run CubeRandom and cube2net for 10 times
to take the average. The improvements of cube2net over other
algorithms all passed the paired t-tests with significance value
p < 0.01.

As for effectiveness, the network constructed by cube2net
is able to best facilitate network mining around the query, par-
ticularly, author network clustering in this experiment, under
the three metrics computed on standard K-means clustering
results after network embedding. As can be observed, (1)
blindly adding neighbors into the network without a cube
organization or randomly adding cells can hurt the task per-
formance; (2) with a proper cube structure, greedily adding
cells w.r.t. our quality function can significantly boost the task
performance; however, (3) the performance of CubeGreedy is
still inferior to cube2net, which confirms our arguments that
the task of network construction is essentially a combinatorial
problem, which requires a globally optimal solution that can
be efficiently achieved only by reinforcement learning.

Note that, we observe that blindly enriching the network
with neighbor nodes does not always hurt the performance. To
better understand it, we look into the data and find that links
among the 116 labeled authors are much denser than the 4,236
authors (i.e., 4.77% v.s. 0.05%). It indicates adding neighbors
are more helpful when the existing interactions among the
query set itself are more sparse. Particularly, we find that
among the 4,236 authors, 930 were dangling in the original
network, but can be bridged into the constructed network with
other queried authors by adding their direct neighbors.

As for efficiency, (1) without cube organization, the network
can easily get too large, which requires significant network
construction time, and leads to long runtimes of network



Net. Con.
Algorithm

Effectiveness on the smaller set of authors
F1 JC NMI

DeepWalk LINE node2vec DeepWalk LINE node2vec DeepWalk LINE node2vec
NoCube 0.7034 0.5620 0.6195 0.4828 0.4621 0.5179 0.4013 0.3642 0.3976

NoCube+ 0.6559 0.5263 0.5812 0.4359 0.4178 0.4763 0.2928 0.2814 0.3058
NoCube++ 0.6794 0.5247 0.5874 0.4678 0.4155 0.4616 0.3799 0.3152 0.3654
MaxDisc 0.7162 0.5423 0.6299 0.4983 0.4437 0.5305 0.4052 0.3246 0.4122

CubeRandom 0.5839 0.5087 0.5748 0.4681 0.4194 0.5069 0.3693 0.3105 0.3930
CubeGreedy 0.7445 0.5988 0.6432 0.5492 0.4850 0.5343 0.3981 0.3369 0.4086

cube2net 0.7628 0.6295 0.6913 0.5720 0.5312 0.5834 0.4196 0.3784 0.4517

Net. Con.
Algorithm

Effectiveness on the larger set of authors
F1 JC NMI

DeepWalk LINE node2vec DeepWalk LINE node2vec DeepWalk LINE node2vec
NoCube 0.4336 0.3044 0.3708 0.2541 0.1759 0.2195 0.0809 0.0426 0.0439

NoCube+ 0.5207 0.3212 0.5113 0.3022 0.1773 0.3362 0.1105 0.0454 0.0996
NoCube++ 0.5515 0.3261 0.4984 0.3989 0.1725 0.3465 0.2174 0.0436 0.1086
MaxDisc 0.5859 0.3282 0.5619 0.4249 0.1950 0.4071 0.2120 0.0484 0.2278

CubeRandom 0.4018 0.2972 0.3416 0.2158 0.1543 0.1766 0.0620 0.4021 0.0376
CubeGreedy 0.6125 0.3509 0.5768 0.4526 0.1954 0.4186 0.2513 0.0595 0.2224

cube2net 0.6447 0.3718 0.6214 0.4865 0.2288 0.4623 0.2597 0.0646 0.2418
TABLE II

EFFECTIVENESS OF QUERY-SPECIFIC NETWORK CONSTRUCTION FOR CLUSTERING QUERY SET OF AUTHORS.

Net. Con.
Algorithm

Efficiency on the smaller set of authors
Computation Time Network Size

DeepWalk LINE node2vec Net. Con. #nodes #edges
NoCube 1s 1s 1s 2s 116 318

NoCube+ 25s 58s 65s 5s 3,853 32,882
NoCube++ 732s 652s 904s 62s 55,724 540,780
MaxDisc 1s 2s 3s 794s 140 440

CubeRandom 56s 59s 62s 4s 2,512 24,578
CubeGreedy 28s 43s 32s 3,082s 1,464 14,892

cube2net 7s 11s 10s 296s 526 2,953

Net. Con.
Algorithm

Efficiency on the larger set of authors
Computation Time Network Size

DeepWalk LINE node2vec Net. Con. #nodes #edges
NoCube 11s 74s 23s 3s 4,236 4,678

NoCube+ 270s 127s 2,147s 84s 74,459 120,803
NoCube++ 2,450s 1,514s 8,485s 1,128s 434,941 1,372,892
MaxDisc 18s 78s 113s 3,390s 4,718 7,004

CubeRandom 104s 108s 430s 4s 21,126 31,481
CubeGreedy 62s 96s 208s 4,194s 10,046 16,259

cube2net 23s 83s 92s 314s 6,842 12,497
TABLE III

EFFICIENCY OF QUERY-SPECIFIC NETWORK CONSTRUCTION FOR CLUSTERING QUERY SET OF AUTHORS.

mining algorithms; (2) the sizes of constructed networks are
much more controllable with a proper cube organization,
because we can easily set the number of cells to add; (3) even
with a proper cube, greedily searching the cube at each step
to select the proper cells is extremely time-consuming– on the
contrary, cube2net efficiently explores the cube structures with
reinforcement learning and is able to find the particular set of
cells to construct the most relevant subnetwork, which also
makes the downstream network mining more efficient.

Comparing the results on the two sets of query objects of
different sizes, we further find that, (1) as the query set of
authors becomes larger, blindly bringing in neighbors leads to
much larger networks, and subsequently much longer runtimes
of network mining algorithms. Such low efficiency is exactly
what we want to avoid by aiming at query-specific network
construction in this work; (2) when the query set becomes
much larger, the runtimes of the cube-based algorithms only
increase a little, since they still work on the same well
organized cube structure by evaluating the utility of cells rather
than individual nodes, indicating the power of the data cube
organization.

Note that, since cube2net needs to learn the policy every
time given a new set of objects, the network construction time
we report for cube2net is a sum of three runtimes: model

training, model inference and network link retrieval. In this
case, the comparison to other algorithms is fair, whose network
construction time is a sum of node selection and link retrieval.

(a) DeepWalk - F1 (b) node2vec - F1

Fig. 3. Comparing different trajectory lengths.

In Figure 3, we also show the performances of the three
cube-based algorithms as we consider different numbers of
cells to add into the network with the small set of 116 labeled
authors. Although particular network mining algorithms might
prefer different network structures, the performances of three
compared network construction algorithms vary in very similar
trends: (1) cube2net maintains the best and most robust
performance in all cases; (2) CubeGreedy performs closely
with cube2net when the number of added cells is small, but
gets worse as more cells are considered and the combinatorial
property of the problem emerges; (3) CubeRandom keeps



getting worse as more random cells are added into the network.

Authors Cells selected for the given set of authors

J. Han
D. Blei
D. Roth

J. Leskovec
...

Rank Decade Venue Topic
1 200X KDD Recommender systems
2 200X AAAI Knowledge discovery
3 200X ICIC Multi-task learning
4 200X ICML Statistic models
5 200X EMNLP Language models

TABLE IV
EXAMPLE CELLS SELECTED BY cube2net ON DBLP.

(a) Increasing Proximity (b) Decreasing Proximity

Fig. 4. Close-ups of the networks constructed by cube2net (better viewed
with zoom-in).

3) Case Study: As a side product of cube2net, we are able
to gain valuable insight into the query set of objects by looking
at the selected cells. Table IV shows the first few cells selected
by cube2net on DBLP for the small set of 116 authors from
four well-known research groups led by authors in the left
column. In the table, the rows are intentionally misaligned
because there exists no one-to-one correspondence between
individual authors and cells. However, all cells selected by
cube2net are indeed highly relevant to the given set of authors,
and they together provide a multi-dimensional view of the
whole query set. By looking at the decade dimension, we can
see that the majority authors in the set are most active in the
2000s, and cube2net does select the most relevant cells in this
dimension. However, since the authors have quite different
research focuses, the selected labels in the venue dimension
are quite heterogeneous, which helps drag away authors from
different research groups, such as those active in data mining
v.s. machine learning. The topic dimension further describes
the exact research problems that mostly appeal as well as
differentiate authors in Q.

In Figure 4, we focus on particular parts of the network
constructed around the small set of 116 labeled authors to gain
insight into how cube2net can construct high-quality networks
that facilitate downstream tasks. Colored nodes are those in Q,
where different colors denote the ground-truth research group
labels, and white nodes are those within the cells selected by
cube2net. The links among nodes in the given set are thicker
than those between them and the added nodes. As we can
see, in Figure 4 (a), some authors in the same research groups
do not have direct co-authorships, but they are drawn closer
by the additional authors who co-author with both of them.
Moreover, in Figure 4 (b), some authors in different research
groups have co-authorships, but they are drawn further away
by their different other co-authors. cube2net can efficiently
find those helpful additional authors, and adding them into the

network can effectively improve modeling of the proximities
among the query set of authors.

B. Link Prediction On Yelp

Although we focus on the author networks of DBLP when
developing cube2net, the concepts and techniques are general
and applicable to various real-world networks. To demonstrate
this, we conduct experiments on the widely used Yelp dataset.
Instead of clustering, we focus on the more popular and well-
studied problem of place recommendation. Moreover, since
the constructed networks are business-user bipartite networks,
instead of the homogeneous network embedding algorithms,
we apply standard matrix completion algorithms to evaluate
their quality towards link prediction. Superior performance in
these experiments can further indicate the general and robust
advantages of cube2net across different datasets and tasks.

1) Experimental Settings:

Dataset. We use the public Yelp dataset from the Yelp
Challenge Round 114. Its basic statistics are also in Table I.

The dataset contains semi-structured data around businesses
and users, such as locations, reviews, check-ins, etc. To orga-
nize the complex multi-dimensional data, we leverage quality
attributes of businesses like city and category, and aggregate
the review texts of each business to model them similarly as
for paper contents in DBLP. Thus, we are able to build a simple
data cube with dimensions city, catetory and topic, with each
cell holding the corresponding businesses and users. For cell
embedding, since all labels are common phrases, we leverage
the same pre-trained word embedding table and general cell
embedding approach as used for DBLP.

To further demonstrate the power of cube2net, we focus
on the well studied task of place recommendation on Yelp,
which is essentially a link prediction problem on a bipartite
network of businesses and users as objects, and reviews as
links between them. Based on additional attributes of the
businesses, we generate two different query sets of objects
and hide some of the links among them for performance
evaluation. Specifically, the first set (ILKID) includes 198
businesses randomly selected from the total 414 that are within
the state of Illinois and are Good For Kids, and the second set
(NVOUT) includes 2,982 businesses randomly selected from
the total 6,020 that are within the state of Nevada and offer
Takeouts. Both sets also include 80% of all users that have
left reviews for the corresponding businesses (i.e., 528 users
for ILKID and 20,968 users for NVOUT). 20% of the links
generated by the latest reviews are hidden for evaluation (i.e.,
161 for ILKID and 6,269 for NVOUT). For each Q of the
two query sets, our task is thus to efficiently bring in relevant
businesses and users from the large remaining part of the data,
to construct a bipartite network around Q, and improve the
performance of link prediction in Q.

Evaluation protocols. To evaluate the quality of constructed
networks on the particular task of business-user link prediction

4https://www.yelp.com/dataset



on Yelp, we chose a popular low-rank matrix completion
algorithm called Soft-Impute [31] with open source implemen-
tations5, due to its relatively high and stable performance and
efficiency. Upon the bipartite networks constructed by different
algorithms in comparison, Soft-Impute is applied to recover the
missing links, which are then evaluated on the held out links
in the query sets.

To evaluate the link prediction performance, we compute
precision and recall at K, as commonly done in related works
[32]. We also record the runtime of network construction and
Soft-Impute on the same server, as well as the size of the
constructed networks.

Parameter settings. Since the textual contents in reviews are
simpler than in papers, we set the number of topics to 50,
and we also filter out cells with less than 10 objects. For
the reinforcement learning model, we use all the same default
parameter settings as in Section IV.1, except for the length of
trajectories m: We use 50 for ILKID and 100 for NVOUT.
This also confirms that cube2net is not sensitive to parameter
settings and can easily maintain robust performance across
domains, datasets, and tasks.

2) Performance Comparison with Baselines: Figure 5
demonstrates the quality of constructed query-specific net-
works on Yelp.

In the figures, similar merits of cube2net as discussed on
DBLP can be observed, i.e., it is able to construct networks
that facilitate downstream tasks with both effectiveness and
efficiency. Particularly, the networks constructed by cube2net
lead to the best precision and recall for business-user link
prediction among all compared algorithms. Moreover, the
networks constructed by cube2net have the smallest size,
except for MaxDisc, which only considers the connected
network components. To compute such a dense and connected
network component, MaxDisc spends a lot of time searching
over the node neighborhoods, but still leaves a lot of nodes
dangling outside of the constructed network, resulting in
quite poor performance. While NVOUT (2,982 businesses +
20,968 users) is much larger than ILKID (198 businesses
+ 161 users), the results follow quite similar trends. Such
results strongly indicate the general and robust advantages of
cube2net. Finally, for different queries on the corresponding
datasets, we use almost the same parameters (except for the
trajectory lengths), which confirms the generalization and easy
training of cube2net.

Note that, compared with DBLP, on Yelp, the node at-
tributes, network properties, downstream tasks and evaluation
protocols are all quite different. Therefore, the consistent and
significant gains of cube2net over all compared algorithms
clearly indicate its general power in query-specific network
construction to facilitate various network mining algorithms
towards different downstream tasks.

5https://github.com/iskandr/fancyimpute

V. RELATED WORK

A. Network Mining

Various network mining algorithms have been developed
in the past decade, such as information propagation models
[33], stochastic block models [34] and generative probabilistic
models [35]. Recently, unsupervised network embedding based
on the advances in neural language models like [36] has been
extremely popular [26], [27], [28]. The idea is to compute
a distributed representation of nodes, which captures their
network proximities, regarding both neighborhood similarity
and structural similarity [5], [7], [6], [37], [38].

However, almost all existing network mining methods are
limited to a fixed set of objects. Among them, most methods
assume the network structures to be given [39], [40], [41],
[42], [43], [44], while some others try to infer links among
fixed sets of objects [45], [46], [47]. Some recent methods
consider dynamic networks with changing sets of objects [48],
[49], [50], but they do not actively choose which objects
to include into the network. For the particular problem of
subnetwork construction, some heuristic search algorithms
have been developed to find interesting subnetworks from seed
nodes, but they only work for particular network properties and
do not consider node attributes [15], [16]. Regarding scalabil-
ity, commercial graph databases like neo4j [51] can handle
massive networks efficiently, but they only support fixed sets
of operations and do not provide seamless combination to
arbitrary graph mining algorithms.

In this work, we consider a more realistic situation where
each network mining task is performed on a relatively small
query set of objects [10], and focus on efficiently leveraging
the appropriate portion of the whole massive network to
facilitate query-specific knowledge discovery. To the best of
our knowledge, this is first research effort to tackle network
mining through this novel perspective.

B. Reinforcement Learning

Reinforcement learning studies the problem of automated
decision making by learning policies to take actions and
maximize a reward signal from the environment. Some recent
significant progress has been made by combining advances
in deep learning for sensory processing with reinforcement
learning [52], resulting in the super-human performance on
high-dimensional game controls [17].

As close to our work, several approaches have been pro-
posed to solve the combinatorial optimization problems with
reinforcement learning. [21] blends an attention mechanism
into a sequence-to-sequence structure, in order to learn a
conditional probability as a solution to graph mining tasks
such as the TSP (Traveling Salesman Problem). They rely on
significant training data and can hardly generalize to different
tasks or larger networks. Policy gradient [18] is used to learn
the conditional probability policy in [19], while [20] learns a
greedy heuristic using deep Q-learning [53]. In general, they
aim to learn policies that generalize to unseen instances from a
certain data distribution. These methods have achieved notable



(a) Precision (b) Recall (c) Runtime / log(s) (d) Network Size / log(#)

Fig. 5. Performance of network construction for link prediction on the ILKID Yelp subset.

successes on some classical graph combinatorial optimization
problems. However, when it comes to our scenario of network
construction with large action spaces, these algorithms are no
longer applicable.

In this work, we connect continuous control policy gradient
with powerful data cube organization through novel cell em-
bedding. To the best of our knowledge, this is the first research
effort to leverage reinforcement learning for efficient data cube
exploration and quality network construction.

VI. CONCLUSIONS

Network mining has been intensively studied by a wide
research community. In this work, we stress on the novel
angle of query-specific network construction, which aims to
break the efficiency bottleneck of existing network mining
algorithms and facilitate various downstream applications on
particular query sets of objects. To achieve this goal, we
propose to leverage the power of data cube, which signif-
icantly benefits the organization of massive real-world net-
works. Upon that, a novel reinforcement learning framework
is designed to automatically explore the data cube structures
and construct the most relevant query-specific networks. We
demonstrate the effectiveness and efficiency of cube2net as
a universal network data preprocessor in improving various
network mining algorithms for different tasks, with a simple
design of data cube and reinforcement learning, while many
potential improvements can be explored in future works.

ACKNOWLEDGEMENTS

Research was sponsored in part by U.S. Army Research
Lab. under Cooperative Agreement No. W911NF-09-2-0053
(NSCTA), DARPA under Agreement No. W911NF-17-C-
0099, National Science Foundation IIS 16-18481, IIS 17-
04532, and IIS-17-41317, DTRA HDTRA11810026, and grant
1U54GM114838 awarded by NIGMS through funds provided
by the trans-NIH Big Data to Knowledge (BD2K) initiative
(www.bd2k.nih.gov).

APPENDIX A: Proof of Theorem III.1

The ξ neighborhood Nξ(c) of cell c is a κ-dimensional ball
around uc. We firstly write out our actor function f(S, c) =
µ(S, c) for the current particular state S and cell c being
explored. The situation for the critic function ν(S, c) is exactly

the same. According to our neural architecture described in
Section III, we have

f(S, c) =g(S + uc)

=hQ(hQ−1(. . .h1(S + uc) . . .)), (10)
where

hq(u) = Sigmoid(Wqhq−1(u) + bq). (11)
Q is the number of layers in the value function, Wq and bq

are the parameters of the q-th layer. The output of the last
layer hQ is a κ-dimensional vector for the actor network µ (a
single number for the critic network ν), and h0(u) = u.

Now we prove the first property, i.e., ∀c′ ∈
Nξ(c), ||f(S, c)− f(S, c′)||22 ≤ ηξ.

Proof. Since c′ ∈ Nξ(c), we have
||(S + uc)− (S + uc′)||22 = ||uc′ − uc||22 ≤ ξ. (12)

According to Eq. 10 and 11, g(·) is smooth, i.e., g ∈ C∞ (this
conclusion is actually non-trivial, but its proof is beyond the
scope of this work). Based on the smoothness of g, we have

∀ξ,S,uc,uc′ ,||g(S + uc)− g(S + uc′)||22
≤||∇g||22||uc′ − uc||22, (13)

where
||∇g||22 = supu∈Ω||∇g(u)||22,

Ω = {S + λuc + (1− λ)uc′}λ∈[0,1]. (14)
Therefore, we have

∀ξ, S, c,c′ ∈ Nξ(c),∃η <∞, s.t.

|f(S, c)− f(S, c′)| ≤ ηξ.

Now we prove the second property, i.e., ∀c′ ∈ Nξ(c),
||∇f(S, c)−∇f(S, c′)||22 ≤ ζξ.

Proof. Similarly as in Eq. 13, based on the smoothness of g
(therefore, the smoothness of ∇g), we have

∀ξ,S,uc,uc′ ,||∇g(S + uc)−∇g(S + uc′)||2

≤||H||22||uc′ − uc||22, (15)
where H is the Hessian matrix of g, and

||H||22 = supu∈Ω||H(u)||22,
Ω = {S + λuc + (1− λ)uc′}λ∈[0,1]. (16)

Therefore, similarly to f , we have
∀ξ, S, c,c′ ∈ Nξ(c),∃ζ <∞, s.t.

||∇f(S, c)−∇f(S, c′)||22 ≤ ζξ.



APPENDIX B: Details of Cell Embedding

To enable efficient Gaussian exploration in a continuous
space to fully leverage the data cube structure, we propose
and design the novel process of cell embedding upon exist-
ing data cube technology. Particularly, we aim to compute
a distributional representation for each cell, which captures
their semantics w.r.t. the corresponding multi-dimensional
labels. As we show in Section III, since such continuous cell
representations can facilitate the utility estimation of close-
by cells efficiently by avoiding the need of exhaustive search,
they are critical to the success of an efficient reinforcement
learning algorithm for efficient cube exploration and network
construction.

We introduce a straightforward way of computing the cell
embedding, based on the recent success of word embedding
techniques, and theoretically show the effectiveness of it in
capturing the semantics of cells. Following is a summarization
of our cell embedding approach:

• Step 1: For each cell c ∈ C, we firstly decompose it
into the corresponding set of labels in the multiple cube
dimensions, i.e., c = {l1c , l2c , . . . , lPc }, where each lpc ∈ Lp
is the label of c in the p-th dimension. The embedding
of c is then computed as uc = [ul1c ,ul2c , . . . ,ulPc ], where
ulpc is the label embedding of label lpc and [. . .] is the
vector concatenation operator.

• Step 2: For each label l ∈ L (L = ∪Pp=1Lp), we firstly
split it into single words, i.e., l = {w1

l , w
2
l , . . .}. The

embedding of l is then computed as ul =
∑
i uwi

l
.

• Step 3: For each word w ∈ W , whereW is an assumably
complete vocabulary, look up the embedding of w, i.e.,
uw, from a pre-trained word embedding table. For gener-
ality, we use the popular GloVe table6. Additionally, we
assign the zero vector to all stop words and unmatched
words.

Let us still take DBLP data as an example. Consider a
cell c, e.g., c =<200X, SIGMOD, data mining>, which has
three dimensions, i.e., decade, venue and topic. For the decade
dimension, the label 200X is actually an aggregation of 10
words (2000-2009). Therefore, we can directly look up the 10
words from the embedding table and add them up as the label
representation of 200X. For the texual dimensions like topic,
we firstly split the phrase data mining into two words, i.e.,
data and mining, then look up their embeddings in the table,
and finally add them up. The venue label SIGMOD is firstly
mapped back to its full name Sig on management of data
and then processed in the same way as topic. After getting the
embeddings of all three labels, the cell embedding is computed
as a κ-dimensional vector concatenation of the corresponding
label embeddings.

Although this approach of generating cell embedding is
straightforward, we theoretically show that in this way, we
can actually capture the semantic proximities among cells.
Specifically, we prove the following theorem.

6https://nlp.stanford.edu/projects/glove/

Theorem VI.1. Given our particular cell embedding ap-
proach, ∀ci, cj ∈ C, ||uci − ucj ||22 ≤ εS(ci, cj), where ε is
a constant and S(ci, cj) is the semantic gap between ci, cj .

Proof. This proof is based on the assumption that the pre-
trained word embedding UW has captured word semantics in
the vocabulary W , so that ∀wi, wj ∈ W, ||uwi

− uwj
||22 <

εS(wi, wj), where S(wi, wj) is the semantic gap between wi
and wj .

We further define the semantic gaps among labels. Specif-
ically, ∀li, lj ∈ Lp, where p ∈ P is any cube dimension,
suppose li = {w1

i , w
2
i , . . . , w

Ki
i }, where Ki is the number of

words in li; lj = {w1
j , w

2
j , . . . , w

Kj

j }, where Kj is the number
of words in lj , the semantic gap S(li, lj) can then be defined
as S(li, lj) =

∑Ki

ki=1

∑Kj

kj=1 S(wkii , w
kj
j ).

Now we first prove that the label embedding UL captures the
label semantics, so that ∀li, lj ∈ Lp, ||uli−ulj ||22 ≤ εS(li, lj).
For the label embeddings UL, (∀ul ∈ UL,ul =

∑K
k=1 uwk

l
),

Ki∑
ki=1

Kj∑
kj=1

||u
w

ki
i

− u
w

kj
j

||22 − ||uli − ulj ||22

=(Kj − 1)

Ki∑
ki=1

uT
w

ki
i

u
w

ki
i

+ (Ki − 1)

Kj∑
kj=1

uT
w

kj
j

u
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j

− 2
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i 6=k2

i ;k1
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2
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k2
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+
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+
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||22 ≥ 0. (17)

Therefore, we have

||uli − ulj ||22 ≤
Ki∑
ki=1

Kj∑
kj=1

||u
w

k1
i

i

− u
w

k1
j

j

||22

≤ε
Ki∑
ki=1

Kj∑
kj=1

S(wkii , w
kj
j ) = εS(li, lj) (18)

Moreover, ∀ci, cj ∈ C, suppose ci = {l1i , l2i , . . . , lPi },
and cj = {l1j , l2j , . . . , lPj }, where P is the number of cube
dimensions, we then define the semantic gap S(ci, cj) as

S(ci, cj) =

P∑
p=1

S(lpi , l
p
j ). (19)

Now we prove that the cell embedding UC captures the cell
semantics, so that ∀ci, cj ∈ C, ||uci − ucj ||22 ≤ εS(ci, cj).

For the cell embeddings UC , (∀uc ∈ UC ,uc =
[ul1c , . . . ,ulPc ], where [. . .] denotes vector concatenation), the



proof is trivial because the norm of a concatenated vector
equals to the sum of the norms of its components, i.e.,

||uci − ucj ||22

=

P∑
p=1

||ulpi − ulpj ||
2
2

≤ε
P∑
p=1

S(lpi , l
p
j ) = εS(ci, cj).
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