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Abstract

Predicting users’ future locations has become an important
task in various aspects, such as ride-sharing, tourism recom-
mendation and urban planning. However, existing methods
disregard that users’ interest over next location is dynamic.
The dynamic preference over next location involves two as-
pects: First, preference over distance is dynamic when users
move; Second, preference over related terms vary on differ-
ent target times. Hence, directly predicting next location with
static network would result in unsatisfactory accuracies. Dy-
namic attention location prediction problem is still open now.
We propose a multilayer recurrent attention model DAPred
to solve the problem. The effectiveness of DAPred is under-
pinned by the following reasons: (1) An embedding recurrent
module to map history movements into latent place, which
helps build the attention module for the following layers; (2)
A historical attention module that detects multiple distance
preference from dynamic movement history; (3) A predic-
tion module for learning different weights on different time
gaps. Compared to the state-of-art baselines, DAPred reaches
49.8% improvement in hitting ratio accuracy, and 18.5% im-
provement in average distance predictor error on three real-
life datasets.

Introduction
Location prediction is a task on predicting users’ movements
based on their preceding GPS trace. Location prediction has
many applications in real life. For example, in car-pool ser-
vices, location prediction is helpful in selecting the pick up
locations and destination based on the time user report, us-
ing an optimized strategy and planning. Another example is
logistic planning and location-aware recommendation. The
advertisements are precisely-targeted for individuals based
on their past movements. Location prediction is also bene-
ficial for urban planning and traffic jam prediction for gov-
ernments. In the past, the obstacle in location prediction is
the lack of data source. Recent years, with the burst of geo-
annotated social media data, such as Foursquare, Facebook,
Twitter(Yuan et al. 2017; Cho, Myers, and Leskovec 2011;
Yuan et al. 2013; Zhang et al. 2016; Yao et al. 2017;
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Zhao et al. 2016), location prediction has been made pos-
sible.

Existing studies predict locations in a static way without
realizing that people’s preferences may change with time
and their past movements. To begin with, when involved
in time, both users’ long-term and short-term preferences
should be considered for location prediction. Most studies
only consider long-term preferences for location prediction
(Yao et al. 2017; Zhang et al. 2016; Feng et al. 2018). As
short-term preferences indicate users’ current interest, stud-
ies which lack short-term preference modeling fail to cap-
ture users’ current interest, resulting in unsatisfactory pre-
diction accuracies. Although some works proposed to pre-
dict location with both long and short-term preferences by
introducing long trajectories and short trajectories (Yang
et al. 2017; Feng et al. 2018), they still failed to realize
that users preferences would change dynamically when they
move.

We study the problem of DALP(Dynamic Attention Loca-
tion Prediction) by discussing users’ dynamic preferences.
Figure 1 shows an example. Given a user, we aim to predict
his or her location at different target times. In contrast to
previous studies, we predict users’ future locations through
a dynamic attention model. For example, the user’s distance
preference would change when he or she moves. At different
times and locations, user’s would show various sensitivity to
distance. Additionally, for different target times, the infllu-
ence of previous movements differ. When it is 6pm, user
would rely more on the short-term preference at 3pm, while
for 10pm, long-term preference would take an advantage.

We propose DAPred (Dynamic Attention Location
Prediction) to solve DALP problem. While the idea of
DALP is intuitive by itself, three key challenges need to
be addressed. First, integrating diverse types of user pref-
erences. Users’ movement preferences involves multiple
terms: long-term preference and short-term preference. Be-
fore mining the users’ dynamic preferences, exploiting the
difference and correlation between users’ long-term/short-
term preferences and effectively integrating them are chal-
lenging. Second, the dynamic influence of past movements
over distance preference. Users’ past movements may have
an influence on the distance selection of next movement. For



example, if users keep moving in a long time, they would
feel tired to visit a place far away. Extracting the dynamic
influence of records over next movement distance is nontriv-
ial. Third, the influence of target time over user’s preference
over terms. The target time could not be considered as a sim-
ple factor, it should interact with other factors. For example,
if the gap time between current time and target time is short
(e.g., 15 min), users tends to visit nearby locations that can
meet their short-term interests, while if the gap time is long
(e.g., 5 hours), a user’s next visit is influenced more by their
long-term interests.

DAPred adopts three modules to tackle the above chal-
lenges. The first module is an embedding-recurrent module
to integrate terms into latent place and capture transitions.
Then, DAPred employs the historical attention module to
discover the movement influence over distance preference.
Finally, DAPred set the prediction module to capture differ-
ent interests over terms on different time gaps.

Figure 1: A comparison between next location prediction
and dynamic attention location prediction

In summary, our major contributions are summarized as
follows:

1. We propose dynamic attention location prediction(DALP)
problem, where users’ location preferences would change
dynamically when they move.

2. We propose a long-short memory enriched attention re-
current model DAPred to solve the DALP problem.
DAPred learns the users’ dynamic preferences in two
terms: first, users’ preferences over distance is dynamic
when they move; second, users’ long/short-term prefer-
ences are dynamic when target times are different.

3. We have tested our algorithm on three large-scale geo-
tagged tweet datasets: Foursquare, Gowalla New York
and Gowalla Los Angeles. Comparing with other algo-
rithms, DAPred improves the accuracy significantly.

Related Work
In this section, we review existing works related to our
problem, including: (1) Long-term movement prediction; (2)
Short-term movement prediction; (3) Long-term and short-
term movement prediction.

Long-term location prediction
Most studies (Noulas et al. 2012; Cheng et al. 2013; Lian et
al. 2015; Monreale et al. 2009; Yang et al. 2017; Yao et al.
2017; Liu et al. 2017) predict locations based on users’ long-
term behavior. For those who use only long-term behavior,
we call them long-term location prediction.

Generally, existing model-based long-term location pre-
diction could be classified into two categories: HMM model
and RNN model. HMM model use the Hidden Markov
Model to predict users’ locations(Chen, Liu, and Yu 2014;

Killijian 2012; Mathew, Raposo, and Martins 2012). Their
transition matrices consist of different factors: location type
(Cheng, Ye, and Zhu 2013), personalized point-of-interest
locations(Cheng et al. 2013), social/geo-distance knowledge
for unvisited location prediction(Lian et al. 2015), grouping
information(Zhang et al. 2016).

RNN model uses the recurrent network to model trajecto-
ries. By introducing recurrent network, these methods are
able to capture the sequential characters for each move-
ment(Du et al. 2016; Liu et al. 2016; Yao et al. 2017; 2018;
Mei and Eisner 2016; Yao et al. 2016). Liu et al. (Liu
et al. 2016) construct a temporal recurrent network with
distance/time-specific transition matrices; Yao et al. (Yao et
al. 2017) introduce textual information into recurrent net-
work to improve the performance; Yao et al. (Yao et al.
2016) introduce a unified deep learning framework for mo-
bile sensing data.

The above methods are all designed for discovering the
long-term preference of users. However, there exists long-
term preference and short-term preference for a user. For
example, a user prefers to go to the gym from home at 6 pm,
which is his or her long-term preference. When there is a
mid-term exam to prepare, he or she would go to the library
instead, which is the short-term preference. Hence, users’
short-term preference is also an important factor which
should be applied separately.

Short-term location prediction
Lots of studies separate long-term movements into pieces
to fully investigate the short-term preference of users. (Choi
and Hebert 2006) segment long-term trajectories into short
ones and concat them again to find the noisy movements.
However, this method only works in short trajectory predic-
tion and unable to predict the next location in a wide time
range. Besse et al.(Besse et al. 2017) also use the segmen-
tation trajectories for their next location prediction. By clus-
tering the short trajectories, they are able to predict the next
location.

Although the above studies take short-term movements
into consideration, they fail in integrating long-term move-
ments together. Short-term movement and long-term move-
ment indicate the short and long-term interest respectively.
The lack of either of them would result in an unconformity
with real life. Hence, the results of methods with only short-
term location prediction stay unsatisfactory.

Long-term and Short-term location prediction
For long-term and short-term location prediction, most mod-
els adopt recurrent network(RNN) to model trajectories,
e.g. long-term and short-term trajectories recurrent network
(Yang et al. 2017), attention periodicity (Feng et al. 2018).
Although they are all designed with both long-term and
short-term, but they still fail to solve this problem: how to
predict the locations at different target time? While many
studies take the history timestamp as an important feature
for location prediction, they neglect the future target time as
an important input. They could only predict next location in
the future but unable to predict future locations with differ-
ent target time stamps(e.g. 8 pm at the library and 6 pm at



the restaurant). Here we propose the problem as target-time
location prediction, which is designed for predicting multi-
ple future locations at different time stamps.

Preliminaries
In this section, we formulate the dynamic attention location
prediction problem, and explore its characteristics, which
motivate the design of DAPred.

Problem Definition
For users’ check-ins, we denote them as Ru. Let Ru =
(r1, r2, ...rn) be sequential records in chronological order
for user u. Each record ri is a tuple of < lri , tri , u >,
where lri is the geo-location, tri is the post time and u is
the user id. Given records Ru, we aim to predict the loca-
tions users u would be at multiple future time stamps with a
dynamic framework. To construct the dynmaic framework,
we transform Ru into long trajectory and short trajectory to
represent user’s long-term and short-term interests relatively
(Yang et al. 2017).
Definition 0.1 (Long Trajectory) For a user u, long tra-
jectory Lu is his or her whole movement history. Here,

Lu = [lr1 lr2 ... lrn ] (1)
where lrk represents the location of the k-th record.
Definition 0.2 (Short Trajectories) For a user u, short tra-
jectories Su are his or her fragmented movements. We split
long trajectory into a sequence of short ones if the gap time
between consecutive visits is greater than a threshold(e.g., 6
hours), then we would cut them into different group.

Formally,

Su =

{
[lr1 lr2 ... lri−1

]
[lri lri+2

... lrj ]
[... ... ... ...]

}
(2)

Note that, the length of each short trajectory could be differ-
ent.

Definition 0.3 (Time) Given a user u with records Ru, the
time stamps for each records are Tu = [tr1 , tr2 , ...trn ].

The Overall Architecture
In a nutshell, DAPred embeds all terms into a latent space,
and uses recurrent network to capture the sequential in-
formation. By using attention mechanism, DAPred chooses
what to pay attention with based on different timestamps.

The intuition behind our architecture is: Users’ interests
over next location are dynamic in two terms: 1) Users’ pref-
erences over distance vary when users move. Comparing to
the users move in a relatively short route, those who move a
long route would be more sensitive to distance. 2) The next
locations users would visit differ with target times. Differ-
ent target times would influence the users’ preference over
long/short-term memory and distance. For example, when
the time gap between target time and current time is small,
users tend to make their decision based on distance and
short-term memory, otherwise, their preference would be
more on long-term memory.

To construct our model, our steps are as following: Given
a user u, we transform the records Ru into Lu,Su and Tu.

As mentioned earlier, dynamic attention location prediction
still poses several challenges: 1) How to introduce long-term
and short-term interests for dynamic attention location pre-
diction? 2) How to detect the dynamic attention over dis-
tance preferences when users move? 3) For different tar-
get times, how to apply dynamic preferences over multiple
terms? In the following, we introduce embedding-recurrent,
historical attention and prediction modules to address the
three challenges above respectively. Figure 2 shows a con-
cise architecture of our model.

Proposed Method
DAPred aims to predict users’ location dynamically. To this
end, we exploit users’ movements and spatial-temporal fea-
tures in a unified framework, which consists of embedding-
recurrent module, historical attention module and prediction
module.

Embedding-Recurrent Module
Embedding-recurrent network has been investigated in lots
of studies. In this section, we would not introduce the de-
tailed procedures about how and why embedding-recurrent
network works, instead, we discuss how long-term/short-
term interests work in dynamic attention location predic-
tion(Yang et al. 2017).

Multimodal embedding jointly maps all the features into
latent space. To represent users’ mobility, exisiting algo-
rithms only embed three terms: long trajectory Lu, time
stamps Tu and user u, which represent movements, time and
user’s personal preferences respectively. Nevertheless, this
strategy is problematic because long trajectories Lu could
not reveal the user’s short-term preference over mobility.
Motivated by (Yang et al. 2017), we add short trajectories
Su, which are fragmented from long trajectory Lu, to un-
cover the short-term preferences of users. To help model the
transitional relationship between the above four features, we
design the multimodal embedding module to jointly embed
them. Then, we get est, elt, et and eu as the embedding
results of short trajectories, long trajectory, times and user.

Given est, elt, we then capture their sequential informa-
tion through GRU and RNN respectively and obtain the hid-
den states of each step i, denoting hl(i) and hs(i). Moti-
vated by previous work on long/short-term location predic-
tion(Yang et al. 2017), our choice of GRU for long-term is
by its effectiveness of memorizing and learning long-term
hidden state dependencies. Similarly, the adoption of RNN
for short-term trajectories is based on its to model sequential
data in a short time window .

Historical Attention Module
The historical attention module helps learn users’ dynamic
interest over locations. Instead of keeping a static interest
over time (Yao et al. 2017; Zhang et al. 2016; Feng et al.
2018), we model users’ dynamic preferences over distance
when they move. The key idea is to find the attention of
distance preference on previous records (Luong, Pham, and
Manning 2015; Sutskever, Vinyals, and Le 2014). However,
it would be too expensive to directly iterate over all pos-
sible locations. To alleviate this problem, for each location



Figure 2: The overall architecture. The inputs consist of users and all their check-ins. The outputs are the probability lists
of locations for different target time. (a) Embedding-Recurrent Module uses embedding and RNN/GRU to encode inputs for
other modules. (b) Historical Attention Module leverages embedding-recurrent results of trajectories and time to learn users’
preference over distance. (c) Prediction Module learn the locations’ possiblities by capturing all previous modules’ results.
lri , we generate the next-location candidate list zlri

from
the whole location set based on geo-distance and previous
records. That is, we first estimate the probablity of locations
to be chosen as candidates:

dis(lk|lri) =
e−d(lk,lri )∑n
k=1 e

−d(lk,lri )
(3)

pop(lk|lri) =
f(lk ∧ lri)
f(lri)

(4)

In which d(lk, lri) is the distance between lk and lri , n is the
total number of locations, f(·) is the frequency.

After we select candidates for lri , we introduce the
distance-aware attention module to find the correlation be-
tween mobility and distance preferences. When involved
with distance, previous studies usually concat distance fac-
tors with others(Liu et al. 2016). However, users’ preference
over distance may change when they move. Thus, directly
concating these factors lacks in discovering the intrinsic in-
teraction between distance and other factors.

Inspired by human attention mechanism, we develop a
distance-aware attention module to solve the problem. The
detailed flow of this layer is shown in Figure 3. The at-

Figure 3: The detailed architecture of Distance-aware Atten-
tion Module
tention model aims at summarizing the influence of move-
ment history over users’ distance preference. To begin with,
the influence containing two parts: 1) Trajectory and time.
2) Distance. For trajectory and time, we adopt the results
from embedding-recurrent network. For distance, we se-
lect the geo-distance between next location and other lo-

cations in trajectory to measure the influence. Let f (i) =

[R(hl(i)),R(hs(i)),R(e(i)t )] be the concatenation of em-
bedding result e(i)t , long-term GRU result hl(i) and short-
term RNN result hs(i) at i−th step, in which,R(·) indicates
the ReLU funct(i)on:R(x) = x+.

Formally, for record ri, given the embedding-recurrent
feature f (i) at a time step ti and location li, to capture its
attentional score, we consider the correlations between its
previous step and all movement history. Then we define the
attentional score as:

Fri = f (i+1) ·
[
f (1) f (2) ... f (n)

]T
(5)

Dri = [d(lri+1
, lr1) d(lri+1

, lr2) ... d(lri+1
, lrn)]

(6)
Then we encode Fri and Dri to get the attentional vector
over distance.

ari = Wa · Fri +Wb ·Dri +C (7)
where Wa,Wb,C respectively represent the weight for past
history, geo-distance and bias.

After obtaining the attentional vector ari , our goal is
to optimize the distance scores of next-location candidates
such that we could predict users next target-time location
based on their movement history and the geo-distance be-
tween locations. Suppose the current location is lri , for a
location candidate lc in the candidates list zlri

, we define
its distance score Slc

d as:
Slc
d = σ(ari) · [e−d(lc,lr1 ) e−d(lc,lr2 ) · · · e−d(lc,lrn )]T (8)

where, σ(·) is a normalization. The intuition behind this for-
mula is that: the likelihood of a candidate to be chosen is
based on two aspects: 1) The attention vector, which repre-
sents the history preference over next location. 2) The dis-
tance between this candidate and the locations user visits.
We apply attention vector on distance preference to indicate
the possibility of this candidate to be chosen.

Prediction Module
The prediction module aims to predict the next locations at
different target times. By using a linear feed-forward neural



network, we concatenate embedding-recurrent scores above
and distance score together. Note that, for different time
gaps, we train different weights over feed-forward neural
network (Yuan et al. 2017). Here, we set 1 hour as the small-
est unit to deal with underfit. For those with decimal, we
adopt the following strategy: Given a gap time gt, suppose
its upper bound is gtu = ceil(gt) and its lower bound is
gtl = floor(gt) the weight wgt of its linear network would
be:

wgt = wgtu · (gtu − gt) + wgtl · (gtl − gt) (9)
where wgtu is the weight at gtu and wgtl is the weight at gtl.

Finally, for different time gap, we obtain their own pref-
erences over the terms by:

Sl = [St Su Shs Shl Sd]
T ·

n∑
1

wgtL(WL,bL) (10)

where St, Su, Shs, Shl, Sd indicate the prediction score for
time, user, short trajectories, long trajectories and distance,
L(WL,bL) refers to the linear network for a time gap, WL

and bl are the weight and bias for this network.

Experiment
Experiment Setting
Datasets Our experiments are based on three datasets:
Foursquare, Gowalla New York and Gowalla Los Angeles.
The source of Foursquare dataset is the same as (Yao et
al. 2017; Zhang et al. 2014). Gowalla dataset is a location-
based social networking website similar to Facebook, the
source of this dataset is the same as (Cho, Myers, and
Leskovec 2011). For foursquare dataset, it consists of 1.4
million check-ins from 2009-01 to 2012-01 in New York
City. For Gowalla dataset, it consists of 1.95 million check-
ins in New York and 3.33 million check-ins in Los Ange-
les from 2009-01 to 2012-01. For each dataset, we firstly
merge records with the same user to set trajectories for
users. Then, we remove the users with less than 5 records
and the locations with less than 10 records(Yao et al. 2017;
Feng et al. 2018). This operation guarantees that each trajec-
tory is long enough to be cut into the training set and testing
set.

After such preprocessing, for Foursquare dataset, we ob-
tain 500 users, 3555 locations and 9968 trajectories in train-
ing set, 2829 trajectories in the testing set. For Gowalla
dataset at New York, we obtain 500 users, 5670 locations
and 5019 trajectories in training set, 22851 trajectories in the
testing set. For Gowalla dataset at Los Angeles, we obtain
404 users, 777 locations and 18405 trajectories in training
set, 5202 trajectories in the testing set.1

Experimental Protocol For each dataset, we randomly
select 70% records of users for training, 10% for tunning
and the remaining records for testing. To evaluate the per-
formance of each method, we use the hitting ratio @k
and average distance error δd. Hitting ratio is the percent-
age of the ground-truth location appears in our top-k lo-
cation result list, average distance error is the average dis-
tance between our top-1 prediction and ground-truth. These

1The data and code will be publicly available if accepted.
We could share it privately if reviewers ask for.

two evaluation methods are the same as (Feng et al. 2018;
Yao et al. 2017).
Parameter Settings DAPred owns the following major
parameters: (1) For the embedding layer, the latent dimen-
sion Dv for both long and short trajectories, Dt for time and
Du for users. (2) For the recurrent layer, the recurrent di-
mensionDh for both RNN and GRU. (3) For attention layer,
the number of candidates N . (4) The dropout probability O
(5) The batch size of minibatch M . After tuning, we set Dv

as 16, Dt as 8, Du as 32, Dh as 16, N as 16, O as 0.5, and
M as 50. We tested on various parameter settings and did
not find much difference, the details of our tuning process
would be discussed in .
Metrics As aforementioned, we use the ground truth loca-
tions in the remaining 20% testing data to evaluate all meth-
ods. To quantify the performance of all the methods, we use
the hitting ratio @k as our criteria. Here, hitting ratio refers
to the percentage of ground truth appears in our top-k list.
Here, we present the hitting ratio of top 1, top 5 and top 10.
The other criterion is δd, which is the average geographi-
cal distance between the ground-truth location and the top-1
prediction. The metrics we adopt are same as previous work
(Yao et al. 2017; Feng et al. 2018).
Comparisons to the State-of-the-Art We compare
DAPred with the following methods: (1)DSSM(Huang et
al. 2013) (2)JNTM(Yang et al. 2017) (3)ST-RNN(Liu et al.
2016) (4)SERM*(Yao et al. 2017) (5)DeepMove(Feng et al.
2018).

Quantitative Results

Table 1: Performance Comparison between DAPred and
STRNN, DSSM, JNTM, SERM*, DeepMove. HR is the hit-
ting ratio, δd is the average distance predictor error.

Data Method HR@1 HR@5 HR@10 δd(
◦)

4SQ

STRNN 0.016 0.054 0.083 0.058
DSSM 0.128 0.245 0.286 1.010
JNTM 0.060 0.121 0.156 1.099

SERM* 0.137 0.353 0.486 0.046
DeepMove 0.148 0.306 0.352 0.060

DAPred 0.191 0.524 0.801 0.040

GNY

STRNN 0.000 0.004 0.008 0.061
DSSM 0.052 0.110 0.141 0.995
JNTM 0.038 0.092 0.126 1.063

SERM* 0.098 0.185 0.306 0.057
DeepMove 0.100 0.248 0.313 0.053

DAPred 0.146 0.362 0.678 0.030

GLA

STRNN 0.000 0.004 0.008 0.128
DSSM 0.066 0.145 0.188 1.133
JNTM 0.020 0.061 0.086 1.158

SERM* 0.126 0.223 0.440 0.086
DeepMove 0.198 0.262 0.565 0.090

DAPred 0.182 0.289 0.619 0.088
Table 1 reports the performance comparison of our

methods and the State-of-the-Art algorithms on our three
datasets. In Foursquare(4SQ) dataset, compared to the best
baseline DeepMove, DAPred yields around 29.1% improve-
ment in top 1 hitting ratio, 71.2% improvement in top 5 hit-
ting ratio and 127.6% improvement in top 10 hitting ratio.



In Gowalla New York(GNY) dataset, compared to the best
baseline DeepMove, DAPred yields around 46.0% improve-
ment in top1 and top 5 hitting ratio and 116.6% improve-
ment in top 10 hitting ratio. In Gowalla Los Angeles(GLA)
dataset, DAPred yields around 10.3% improvement in top
5 hitting ratio and 9.6% improvement in top 10 hitting ra-
tio. For the distance predictor error δd, DAPred outperfroms
the best baseline SERM* by 13% in Foursquare and Deep-
Move by 43.3% in Gowalla at New York. Compared to
the strongest baseline DeepMove, the huge improvements
in DAPred are mainly attributed to two main reasons: (1)
The dynamic preferences over distance when users move;
(2) The introduction of various interests over all terms on
different target times. Related results for these two conclu-
sions would be shown in Figure 5 and Figure 6.

Illustrative Cases

(a) Location Prediction at New
York

(b) Los Angeles

Figure 4: Visualization of dynamic attention location pre-
diction with different interest over long-term and short-term
prefernce.

In this section, we present several illustrative cases for our
algorithm. Figure 4 shows the location prediction for three
different users from Foursquare dataset, GowallaNY dataset,
and GowallaLA dataset. In these figures, the red markers in-
dicate the ground truth of next location and the blue lines are
users’ trajectories. The blue markers indicate the start points
and the green markers indicate the endpoints. Black circles
in the figures refer to the results of our predictions. A larger
circle indicates a higher ranking of the prediction.

The movements in figure 4(b) are based at Los Angeles
with single target time. The prediction results of this figure
show a preference of users on long-term preference. Here,
we predict BurBank to be the location user would visit. Nei-
ther does BurBank appear in past trajectory, nor does it close
to the visited locations, which indicate a long-term prefer-
ence.

The movements in figure 4(a) are based at New York with
multiple target time. In which, the red marker is the true lo-
cation of the first target time, the black circles are the first
target time predicting results; the pink marker and brown
circles are for the second target time; the purple marker and
green circles are for the third target time. To further under-
stand the influence of gap time over the preference for long-
term and short-term memory, we may look at figure 4(a)
again. For the first target time with black circles indicate our
prediction, we find the black circles are almost around the
short trajectory, showing a preference for short-term mem-
ory. For the second target time with green circles, they are

almost around the endpoint, indicating a preference over lo-
cations in the neighborhood. While for the third target time
with brown circles, most of the predicted locations are far
away, showing a preference on long-term memory.

Figure 5: The change of weights with gap times on
Foursquare

Effect of dynamic attention mechanism
As we discussed above, we attribute our improvements to
two aspects. In this section, we would further discuss the
effects of these two parts.

To begin with, in Figure 5, we present the change of
weights on different time gaps (from 1 hour to 6 hours).
When the time gap becomes larger, the weight of distance
tends to grow, and the weight of short-term preference tend
to decrease. Such a phenomenon further validates the change
of users’ preference over target time. Due to limitations of
space, we don’t present the results for all datasets

We discussed the influence of past movements over dis-
tance preference in Figure 6. Since there are no previous
works analyze the influence of past movements over dis-
tance preference, we are interested in how DAPred could
improve the performance in this aspect. In Figure 6, we com-
pare the accuracy among model with only time, model with
the time and long/short trajectory, model with the attentional
effects of time over distance, and the proposed DAPred (the
attentional effects of time and long/short preference over
distance). From the figure, we could find draw the conclu-
sion that the introduction of dynamic attentional preference
improves the prediction accuracy in all three datasets.

Parameter Tuning
As mentioned above, there are three main parameters of
DAPred: the embedding demension for long-term and short-
term trajectory Ev , the embedding demension for time Et

and the embedding demension for user Eu.
We first study the effects of Et and Ev . In Figure 7, the

orange bar implies the accuracy of HR@10, the blue bar im-
plies the accuracy of HR@5, while the red bar implies the
accuracy of HR@1. From the figure, we could find that the
when Et = 16 and Ev = 16, we could reach the highest ac-
curacy. We could also draw the conclusion that the effects of
parameters of Et and Ev are limited on accuracy. Then we
study the effects of Eu. Comparing to the parameters above,
the value of Eu influence the accuracy a lot. Based on the
figure, we select Eu = 32.



(a) Test on Foursquare (b) Test on Gowalla.NY (c) Test on Gowalla.LA

Figure 6: Comparison among variation of DAPred: The blue one is DAPred with only time, orange one is DAPred with time
and long/short trajectories, the green one is DAPred with distance, the red one is final DAPred.

(a) Time dimension (b) Trajectory dimension (c) User dimension

Figure 7: Hyperparameter Tuning
Conclusion

In this paper, we studied the problem of dynamic attention
location prediction problem with a new algorithm DAPred.
To the best of our knowledge, DAPred is the first method
to predict next location with multiple target time. To solve
the target-time aware location prediction problem, DAPred
enjoys two novel characteristics: 1) An attentional module
to model the temporal and historical movements influence
over next movement selection 2) Various target time prefer-
ence over multiple factors. Our extensive experiments with
three real-life datasets have proved that DAPred owns a sig-
nificant improvement over the accuracy of the state-of-the-
art method in terms of HR@1, HR@5, HR@10 and aver-
age distance predictor error. Further more, we also conduct
comparison between different models origined from our al-
gorithm, which further proved the significance of dynamic
attention on time.

As part of our future work, we plan to discuss more
on the dynamic attention location prediction problem. We
would incorporate our dynamic location prediction with
inner-purpose in time cycle (e.g. habits, travels, etc).
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