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ABSTRACT
Thanks to the advancing mobile location services, people nowa-
days can post about places to share visiting experience on-the-go.
A large place graph not only helps users explore interesting des-
tinations, but also provides opportunities for understanding and
modeling the real world. To improve coverage and flexibility of
the place graph, many platforms import places data from multiple
sources, which unfortunately leads to the emergence of numerous
duplicated places that severely hinder subsequent location-related
services. In this work, we take the anonymous place graph from
Facebook as an example to systematically study the problem of
place deduplication: We carefully formulate the problem, study its
connections to various related tasks that lead to several promis-
ing basic models, and arrive at a systematic two-step data-driven
pipeline based on place embedding with multiple novel techniques
that works significantly better than the state-of-the-art.
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1 INTRODUCTION
With the prevalence of mobile devices and online social platforms,
maps and location related apps have become an integral part of peo-
ple’s everyday life. It has encouraged the development of various
location-oriented infrastructures and services [13, 23–25, 36, 52, 53].
For most of them, one key task is the maintenance of a high-quality
map database (a.k.a. place graph), which consists of various real-
world places and their attributes. On one hand, such a database
can support various map-based activities like search, like, check-in
and post. Improving the efficiency and quality of such activities
is beneficial to various stakeholders including business owners,
advertisement agencies, and common users. On the other hand, the
frequent location-based activity data generated by users provide
an invaluable opportunity to improve the representation and un-
derstanding of the real world, and may further shed light on the
capturing and modeling of various real-world activities.
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However, since place pages are usually created from multiple
sources whose qualities are hard to verify upon creation, the place
graphs are often subject to large amounts of duplications, which
hurts the quality of subsequent location-based services. For exam-
ple, when a user touring in New York City wants to make a post at
Times Square, if the system returns a list of places like “New York
Time Square” “Manhattan, Time Square” “TimeSquare, NYC”, the
user will get confused about which one to post on. Worse still, if the
user also wants to explore restaurants or shopping malls around
Times Square, then she/he may need to manually combine multiple
lists of stores to get a full picture of all available choices.

Such user experiences are mainly due to the problem of dupli-
cated places. To ease users’ exploration of places and sharing of
experiences, in this work, we take the massive anonymous place
graph from Facebook as an example to systematically study the
problem of place deduplication, and comprehensively evaluate the
performance of different methods through extensive experiments
on duplication candidate fetch and pair-wise duplication prediction.

Specifically, we start with large-scale unsupervised feature gener-
ation to encode various ad-hoc place attributes through embedding
learning and network-based embedding smoothing. Upon that, we de-
velop an effective supervised metric learning framework to find the
most useful features indicating place duplications. To fully leverage
the noisy labeled data, we novelly pack the model with a series of
techniques including batch-wise hard sampling, source-oriented at-
tentive training, and soft clustering-based label denoising. Extensive
experiments on real-world place data show that our pipeline can
outperform state-of-the-art industry-level baselines by significant
margins, while each of our novel model components effectively
pushes the limit of the overall pipeline.

Note that, although we focus on the example of Facebook data,
our place deduplication pipeline is general and ready to be applied
to any online platform with place data or other deduplication tasks.
Full implementation of our place embedding pipeline based on
PyTorch will be released after the acceptance of this work.

2 PROBLEM FORMULATION
Nowadays, many online platforms maintain a place graph to map
the real world. The building blocks of such place graphs, however,
instead of actual places, are usually online place pages that cap-
ture certain attributes of actual places, as illustrated in Figure 1.
Since such online places can be created by users, imported from
third-party companies or scraped from the Web, many of them are
duplicated, as they in fact describe the same real-world places. In
this work, to improve the quality of place graphs, we aim at the
following novel but emergent problem.

Definition 2.1. Place Deduplication. Given a large set of online
place pages, find those describing the same real-world places.
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Input. Given a set of online places P, we represent the attributes
of each place pi ∈ P as ai ∈ A. Such attributes can be ad-hoc, for
example, place names, addresses, phone numbers, visitor histories,
images, relevant posts and so on, which are essentially combinations
of numerical, categorical, textual and even visual features. Moreover,
due to the reality, many attributes can be missing and inaccurate.

Figure 1: Example input with ad-hoc page features.

Output. For each place pi ∈ P, we aim to compute a unique fixed-
sized low-dimensional vector (a.k.a. embedding) ui ∈ U , to encode
its ad-hoc attributes ai ∈ A. After getting such embeddings, vari-
ous related tasks can be efficiently addressed through off-the-shelf
machine learning algorithms. For example, duplication candidate
fetch (find places that may be potentially duplicated) can be done
through fast k-NN search [14, 20], pair-wise duplication prediction
(decide if two places are duplications) simply involves the computa-
tion of pair-wise Euclidean distances, andmeta-page discovery (find
common actual places among all online places) can be achieved
using clustering techniques such as k-means [17].

Labels. To learn the proper place embedding U that facilitates
place deduplication, besides place attributes A, we also aim to
leverage some labeled data L, which are mainly from curation,
crowdsourcing, and feedbacks. The labels are usually in the form
of place pairs like l = {(a,b),yl }, where a and b are two probe
places. yl = 1 denotes a positive pair, meaning a and b are labeled
as duplications, and yl = 0 denotes a negative pair. Labels from
different sources can have varying qualities and biases.

Present work. Taking the ad-hoc raw place attributesA, we firstly
transform them into fixed-sized numerical vectors X with unsu-
pervised learning techniques, which captures the key information
in A and can be easily processed by subsequent machine learning
algorithms. Guided by labeled place pairs in L, we then explore the
feature representation X through supervised learning techniques
and learn the final place embeddings F as vectors in a metric space
where labeled duplicated places are close and non-duplicated places
lie far apart. While we focus on place deduplication, the concepts
and methods developed in this work are not bounded to the partic-
ular problem, but can be generally useful for deduplicating various
objects like texts and users with similar types of attributes.

3 RELATEDWORK AND MOTIVATIONS
We find the place deduplication problem closely related to several
key tasks that heavily rely on advanced machine learning tech-
niques, especially in the domains of computer vision (CV) and
natural language processing (NLP).

3.1 CV: Person Re-Identification
One of the key tasks in CV is person re-identification [4–6, 12, 38,
46], also referred to as face recognition [37, 41, 42]. Given a large
number of human images, the task is to find images of the same
person. In concept, this task is quite close to ours as defined in
Section 2.

In CV, mainstream algorithms often tackle re-identification by
projecting the images into a latent embedding space, while tuning
the embedding space based on labeled data with a triplet loss to
enforce the correct order for each probe image. Their conceptual
optimization objective can be expressed as follows.

Jtr =
∑

t=(a,p,n)

max(0,d (ua , up ) − d (ua , un ) + α ), (1)

where u = f (x) and d (ui , uj ) = de (ui , uj ) = | |ui − vj | |22 . x is
the original image features (e.g., 96 × 96 pixels), f (·) denotes the
embedding projection function (e.g., a deep CNN), α is the margin
hyper-parameter, and | | · | |22 denotes the Frobenius norm.

However, while images naturally come with rich visual features
that can be well explored by the CNN models, the attributes of
our places are much more ad-hoc and hard to capture. Another
limitation of their models is the requirement of training data to be
accurate and in the form of triplets, i.e., t = (a,p,n), where a is the
probe image, p is the positive image and n is the negative image. In
person re-identification, the labels are often generated from image
collections taken of the same persons. Therefore, while the quality
of input images may be different, the labels are often accurate, and
the triplet requirement is easy to be satisfied.

In our scenario of place deduplication, labels are generated from
different sources like curation and crowdsource based on samples
of all possible place pairs, and are thus prone to varying qualities
and biases. Moreover, instead of triplets, the training data naturally
come as pairs, in the form of l = {(a,b),yl }, as defined in Section 2.
Finally, place duplication labels are extremely sparse– in our case,
only about 10−5 percent of place pairs are labeled. It requires non-
trivial adaptions of the CV models to work for place deduplication,
which we will talk about in Section 5 and 6.

3.2 NLP: Entity Resolution
If we only consider place names, the problem is close to synonym
detection. However, as most algorithms leverage sentence-level
contexts to learn word similarities [32, 33, 35, 39, 43, 47], they are
not directly applicable to place deduplication where such contexts
are often not available. Instead, we may consider direct matching
of place names, which can be done using deep neural networks
[3, 15, 19, 30, 40, 45, 49]. However, these models are known to be
more suitable for longer sentences with more complex structures,
rather than the short simple place names, and they require large
amounts of training data, which is extremely hard to acquire for
place deduplication [7, 9, 31]. Finally, by considering additional
place attributes like location, ad-hoc models have been developed
based on heuristic feature engineering [8, 10, 22], but their flexibility
is limited to take more different place attributes, such as address and
category. Thus, it is desirable for us to develop our own systematic
and flexible place deduplication pipeline beyond the existing works
on entity resolution, as we will discuss in Section 5 and 6.



Interestingly, another particular trend of entity resolution is to
construct the word networks from search engine query logs and
compute network clustering to detect synonym sets [2, 18, 34]. Since
it is non-trivial to put everything we have into a single network,
their methods are not directly applicable. Nonetheless, we find the
ideas of network construction and clustering intriguing, and are
able to leverage both of them in Section 5 and 6, respectively.

4 DATA AND EXPERIMENTAL SETUPS
In this section, we describe the massive dataset we use, upon which
place deduplication is desired. It is a subset of the anonymous real-
world place graph from Facebook including a total of 730M online
place pages. In this work, we take the Facebook place graph as an
example to show the effectiveness and efficiency of the methods we
develop, while they are generally applicable to any online platforms
with place data or other deduplication tasks.

4.1 Data Preparation
As we discussed in Section 2, places can have various ad-hoc at-
tributes with varying qualities and incompleteness, which need
to be leveraged through specifically designed methods, as we will
show in Section 5.

We process and generate training data of about 4.6M pairs of
places from 19 different sources, including curation, crowdsourc-
ing, feedbacks and so on. Labels from curation are generally of
higher qualities, while most of the others like feedbacks generated
through surveys and crowdsourcing produced by cheap labors may
be rather noisy. They cover a total of about 4M places. Among
them, about 1.1M pages are labeled with duplications and 3M pages
with non-duplications. The average number of duplications is 0.35,
whereas the maximum number of duplications is 297. The aver-
age number of non-duplications is 1.98, and the maximum number
of non-duplications is over 1K. Therefore, the training data are
sparse and biased, and such sparsity and bias are different across the
sources. In Section 6, we will discuss how to leverage such training
data with varying noise, sparsity, and bias.

4.2 Evaluation Methods
The testing data we use is a golden set of 47K pages completely
separate from the training data, which is deliberately curated for
place quality evaluation for production. It contains different place
pages from the training data.

To compare different embedding models, we firstly compute the
vector representationsU of all places in the testing set. For the set
of places labeled with both duplications and non-duplications (i.e.,
a ∈ Ω), we compute the average pair-wise accuracy as follows:

ACC =
1
|Ω |

∑
a∈Ω

1
|Φa | |Ψa |

∑
p∈Φa,n∈Ψa

I( | |ua − up | |22 < | |ua − un | |
2
2 ),

where Φa and Ψa are the sets of labeled duplications and non-
duplications of placea, respectively. This metric measures the utility
of the embedding for the task of pair-wise duplication prediction.

Besides ACC, we also compute the nearest neighbors of each
place through fast k-NN [20], and compute the precision and recall
atK based on the set of places labeled with duplications (i.e., a ∈ Θ),
to measure the utility of the embedding for the task of point-wise
duplication candidate fetch.

5 UNSUPERVISED FEATURE GENERATION
The key place attributes we aim to leverage in this work are name,
address, coordinate and category, while other attributes can also be
easily incorporated in the future. Among them, name and address
are textual, coordinate is numerical, and category is categorical,
which need to be handled differently. Moreover, many of them are
noisy and incomplete, requiring the model to be robust and flexible.

5.1 Encoding Name
We start with place name, because it is often the primary and most
indicative feature towards deduplication(e.g., “Metropolitan Mu-
seum of Art” and “The MET”). Motivated by the success of word
embedding in NLP, we propose to capture the place name semantics
through embedding. The idea is to leverage the distributional infor-
mation about words and infer word semantic similarities based on
the context, so as to recognize common misspellings (e.g., “capitol”
as “capital”, “corner” as “conner”), acronyms (e.g., “street” as “st”),
synonyms (e.g., “plaza” and “square”) and etc.

Method 1: Skip-gram + place name corpus. We firstly train a
simple word embedding model on all place names we have, which
include 730M short texts. For preprocessing, we prune all place
names into the shortest name variants by removing all location
prefixes and suffixes in the names (e.g., remove “New York” from
“Time Square New York”); we also normalize all place names by
replacing special characters with spaces (e.g., replace “$” or emojis
with a single space) and change all letters to lower cases.

Since place names are often quite short (on average only 3.11
words after preprocessing), we directly apply the Skip-gram model
[28] by sampling word-context pairs from place names. Place em-
bedding is then computed as the average of word embedding.

This method, while efficiently providing numerical place name
representations that can be processed by subsequent machine learn-
ing algorithms, has quite a few drawbacks as listed below.
• Limited distributional information: The training corpus, although
is quite large, provides rather limited statistics around words and
their contexts, since the corpus is chunked into short texts.
• Biased samples: Unlike sampling word-context pairs from fixed-
sized sliding windows, when sampling from the place names, it
is hard to avoid the bias towards either shorter or longer names.
• Ignorance of word internal structure: Standard word vectors
ignore word internal structure that contains rich information,
which might be especially useful for rare or misspelled words.

Method 2: Fast-text + Facebook post corpus. To ameliorate the
above limitations, we adopt the advanced Fast-text method [27],
with strategies including position-dependent weighting, phrase
generation and subword enrichment [1, 21]. Moreover, to capture
more casual languages used by social network users who frequently
create the place pages, instead of training the Fast-text model on
standard NLP corpus like Wikipedia1, we use anonymized word
embeddings derived from the public posts on Facebook in 10 years.
The corpus has around 1.9T words in total, which is about 3 times
bigger than the massive Common Crawl data2 used to train the
state-of-the-art public word embedding [27].
1https://dumps.wikimedia.org/enwiki/latest/
2https://commoncrawl.org/2017/06



5.2 Incorporating Address
In our place graph, about two-thirds of the places have address
information. It is especially useful in differentiating branches of
the same stores (e.g., the different Starbucks in a city). Compared
with names, addresses are more often incomplete, but less noisy,
because most of them are validated and filtered before recorded.
Therefore, we observe much fewer misspellings and abbreviations.
Moreover, addresses are often longer than names, which naturally
provides richer distributional information and allows less biased
samples. Finally, in addresses, we do not really want semantically
similar words to be close– for example, different words like “street”,
“avenue” and “boulevard” in the address should indicate different
places although their semantic meanings are similar. We use the
same two approaches for place names to embed place addresses.

5.3 Leveraging Coordinate and Category
Place coordinates and categories provide additional information
about duplications. Coordinates are just 2-dim numerical vectors,
whereas categories can be converted to 0-1 dummy variables. In this
work, we focus on 19 common ones such as Shopping and Restau-
rant, while the algorithm can generalize to any other appropriate
subsets of categories.

A simple way to leverage place coordinate and category is to
concatenate the 2-dim numerical coordinate and 19-dim 0-1 dummy
vector of category to the place embedding. However, in practice,
we find such concatenation not helpful and even lead to worse
performance as can be seen later, probably because such variables
are not compatible with the word embeddings.

Motivated by a recent work on place recommendation [50], we re-
fine the place embedding through unsupervised embedding smooth-
ing on a place network. The idea is to require the embeddings of
places that have similar coordinates or same categories to be close.

Specifically, we construct a place network N = {P, E}, where
P is the set of all places. We then construct two types of edges
E = E1 ∪ E2 based on coordinates and categories, respectively.
Following the grid-based binning approach in [51], we group places
into squared bins based on coordinates, and add a coordinate edge
ei ∈ E1 between places in the same bins; a category edge ej ∈ E2
is added between places belonging to the same categories.

Following [50], we derive the loss that enforces smoothness
among places that are close on the place network as

Jsm = −
∑

(pi ,pc )

logp (pc |pi )

= −
∑

(pi ,pc )

log[ϕTc g(ai ) − log
∑
p′c ∈P

exp(ϕTc ′g(ai ))]

= − E(pi ,pc ,γ ) logσ (γϕ
T
c g(ai )). (2)

In the first line, we firstly formulate the standard Skip-gram
objective adapted to predict the correct graph context of place
based on coordinates and categories, which is then decomposed
into the second line, where ϕc is the learnable context embedding
of place pc , g(·) is a learnable smoothing function (e.g., a single
layer perceptron with the same input and output sizes) that maps
the original place embedding ai to the smoothed embedding space.
This objective is hard to estimate due to the summation over all
contexts in P in the second term, so we write it into an equivalent

Method avg. PRE avg. REC ACC
NS .03794 ± .00010 .5334 ± .0034 .6212 ± .0325
NF .04553 ± .00018 .5708 ± .0052 .6718 ± .0107

NF+AS .05216 ± .00030 .6162 ± .0067 .6917 ± .0181
NF+AF .05008 ± .00018 .5866 ± .0061 .6424 ± .0324

NF+AS+CC .05026 ± .00034 .6036 ± .0083 .6716 ± .0297
NF+AS+CS .05508 ± .00024 .6476 ± .0058 .6989 ± .0135

Table 1: Performance of feature generation methods.

expectation over the distribution of p (pi ,pc ,γ ) in the third line,
where σ (x ) = 1/(1 + e−x ), and approximate it by applying the
popular negative sampling approach [28].

5.4 Experimental Evaluations
We compare the following combinations to comprehensively show
the overall effectiveness of our framework as well as how each of
the model components helps in improving the embedding quality.
• NS: 50-dim place Name embedding produced by the Skip-gram
model trained on the place name corpus.
• NF: 300-dim place Name embedding produced by the Fast-text
model trained on the Facebook post corpus.
• NF+AS: NF concatenated with the 50-dim place Address em-
bedding produced by the Skip-gram model trained on the place
address corpus.
• NF+AF: NF concatenated with the 300-dim place Address embed-
ding produced by the Fast-text model trained on the Facebook
post corpus.
• NF+AS+CC: NF+AS Concatenated with the 21-dim place Coordi-
nate and category vectors.
• NF+AS+CS: NF+AS Smoothed on the place network constructed
w.r.t. place Coordinate and category.

(a) PRE@K (b) REC@K

Figure 2: Performance of feature generation methods.
Figure 2 and Table 1 show the performance of different feature

generation methods. As can be clearly observed: 1) When we only
consider the place name, NF performs significantly better than
NS regarding all metrics, which supports our idea of training the
advanced Fast-text model on the massive Facebook post corpus; 2)
Incorporating place address is generally helpful, but the simple AS
model we advocate for produces more significant improvements
than the heavy AF model, which tells the importance of choosing
the proper model rather than the complex one; 3) To leverage place
coordinate and category, our proposed network-based embedding
smoothing method (CS) is much more effective than the direct
vector concatenation (CC).

The avg. PRE and avg. REC are taken over the 100 measures
of PRE@K and REC@K when K varies from 1 to 100, to directly
compare and reveal the relative effectiveness of different methods.
The absolute values of avg. PRE are pretty low because the numbers
of labeled duplications are low in our testing data. Based on such



results, we will use NF+AS+CS as our feature generation model
and use its output X as the input of subsequent supervised metric
learning models. Note that, other than places with the particular
attributes as we focus on in this work, the methods developed here
can be combined in different ways to capture textual, categorical
and numerical attributes of various real-world objects.

6 SUPERVISED METRIC LEARNING
Besides place attributes, we also aim to leverage labeled place pairs
through supervisedmetric learning. The idea is to learn a non-linear
projection function F , which transforms the place featuresX into a
metric space, where duplicated places are close and non-duplicated
places are far apart. Therefore, the model should be able to explore
and stress the important features that indicate duplications.

6.1 Basic Models
We construct the basic metric learning models by applying simple
MLP upon the place embedding X. However, since direct leverage
of standard triplet loss commonly used in person re-identification
[37] and entity resolution [33] in Eq. 1 requires the sampling of the
third place based on our pair-wise place labels, which can introduce
a lot of non-relevant and trivial training data, we propose to replace
the triplet loss with a pair-wise contrastive loss as
Jpr =

∑
l={(a,b ),yl }

[yld (ua , ub ) + (1 − yl ) max(0,α − d (ua , ub ))],

where d = de is the same as in Eq. 1. Besides the Euclidean distance
function, we also tried various other distance functions including
cosine similarity and learnable bilinear distance [33].

We comprehensively evaluated the performance of various ba-
sic models, and found that the PE (Pair-wise loss with Euclidean
distance function) constantly performs the best, indicating the ef-
fectiveness of replacing the standard triplet loss in traditional CV
and NLP tasks. Based on such observation, we will focus on further
improving the PE model in the rest of this work.

6.2 Hard Sampling
Training the model with our massive noisy labeled place pairs
can take quite significant time, most of which is wasted on trivial
samples. To this end, we design the following novel criteria for
dynamic batch-wise hard sampling towards our pair-wise loss.

Cl=(a,b ) = I [yld (ua , ub ) − (1 − yl )d (ua , ub ) >
β

|B |

∑
l ′∈B

yl ′d (ua′ , ub′ ) − (1 − yl ′ )d (ua′ , ub′ )], (3)

where B denotes the set of samples in a batch, β is the slack hyper-
parameter controlling the amount of hard samples, and d (·) can be
implemented with either df (·) or db (·). A sample pair l is selected
to contribute to the loss for gradient computation when Cl = 1.
The idea is to only focus on the hard samples where the model fails
to put the labeled duplications close enough or non-duplications
far away, compared with the average distances.

6.3 Attentive Training
Our labeled data are from different sources, whichmay have varying
quality and bias. For example, data curated by a particular team
at a certain time might be biased towards specific metrics. This

often happens when people recognize the ignorance of particular
situations and aim to improve themupon iterating to the next period
of curation. Moreover, data labeled by the professional curation
teams and rookie crowdsourcing workers can have quite different
qualities. Therefore, it is intuitive to automatically assign different
weights to the samples from different sources during training.

To deal with the varying quality and bias of training samples
from multiple sources, we design a novel source-oriented attentive
training technique based on the idea of self-attention [11, 44], which
has shown to be effective in various deep learning scenarios.

For each place pi , rather than learning a single embedding vec-
tor f (xi ), we learn two embedding vectors k(xi ) and v(xi ), which
we call the key embedding and value embedding, respectively. In
practice, we can implement both k(·) and v(·) as FNNs and let them
share a few layers. Besides, we also learn a global source embedding
q(sj ) for each training source sj , which can be implemented as an
embedding look-up table. The size of q(·) is twice as k(·). Subse-
quently, we design the weight of the training sample l = (a,b) from
source s as

wls =
exp([k(xa ), k(xb )]T q(s ))∑
s ′ exp([k(xa ), k(xb )]T q(s ′))

, (4)

where [·] denotes vector concatenation.WithW defined, we rewrite
our loss function in Eq. 3 into

J ′pr =
∑
s

∑
l={(a,b ),yl }∈Ts

wls [yld (v(xa ), v(xb ))

+ (1 − yl ) max(0,α − d (v(xa ), v(xb )))], (5)
where Ts denotes the set of training samples from source s .

Training with Eq. 5 allows the model to learn a source-oriented
self-attention weight for each training pair. To be specific, if similar
samples keep appearing in a certain source, they are likely redun-
dant and less useful, and the model will automatically reduce their
contribution to the loss. However, if similar samples appear across
different sources, the model will put more trust on their correctness
by relatively increasing their attention weights. Finally, unseen
samples will likely get higher attention.

6.4 Label Denoising
Place deduplication can be essentially regarded as a semi-supervised
clustering problem, where pages of the same places should naturally
form clusters in the embedding space. This is true mainly because
the duplication relationship is transitive. While such clusters are
ideal for duplication detection, they can also help reduce the noise
within training data, i.e., labels that conflict with the cluster struc-
tures are likely noisy. To leverage this insight, we design a novel
soft clustering-based label denoising module based on the idea of
self-training neural networks [16, 29, 48]. Particularly, we introduce
a loss based on the KL-divergence

Jdn = ρ KL(C||D) = ρ
∑
i

∑
k

cik log
cik
dik
, (6)

where ρ is a hyper-parameter. dik ∈ D is the probability of assign-
ing place pi to the kth cluster, under the assumption of Student’s
t-distribution with degree of freedom set to 1 [26], i.e.,

dik =
(1 + | |f (xi ) − uk | |2)−1∑
j (1 + | |f (xi ) − uj | |2)−1

. (7)



Method LR SVM RF GBDT PEHAD
ACC 0.7514 0.7699 0.7786 0.7828 0.9279

Table 2: Performance of state-of-the-art algorithms.

It is basically a kernel function that measures the similarity between
the embedding of placepi and the cluster centeruk . C is an auxiliary
target distribution defined as

cik =
d2ik/дk∑
k ′ d

2
ik ′/дk ′

, (8)

where дk =
∑
i dik is the total number of places softly assigned to

the kth cluster. Raising D to the second power and then dividing
by the number of places per cluster allows the target distribution C
to improve cluster purity and leverage the confident assignments
to help reduce the influence of noisy labels.

6.5 Experimental Evaluations
We compare the followingmethods to demonstrate the effectiveness
of our proposed supervised metric learning techniques.
• NF+AS+CS: The best place features we got through unsuper-
vised feature generation in Section 5, which is also the input of
the following metric learning methods.
• PE: The best basic metric learning method adapted from CV and
NLP with the Pair-wise contrastive loss and Euclidean distance
function, as discussed in Section 6.1.
• PEH: PE improved with batch-wise hard sampling.
• PEHA: PEH improved with our novel source-oriented attentive
training technique.
• PEHAD: PEHA improved with our novel soft clustering-based
label denoising technique.

We also compare our models with several state-of-the-art classifi-
cation algorithms that can be applied for pair-wise duplication pre-
diction, i.e., logistic regression (LR), support vector machine (SVM),
random forest (RF ) and gradient boosting decision tree (GBDT ).
These algorithms do not produce place embeddings and thus can-
not be efficiently evaluated through fast k-NN in datasets with
hundreds of millions of places. Therefore, we only compute their
standard classification accuracy of duplication prediction on the
testing data, as shown in Table 2.

(a) PRE@K (b) REC@K

Figure 3: Performance of our metric learning methods.
Figure 3 and Table 3 show the performance of compared mod-

els. As we can see, our supervised metric learning framework can
significantly improve the place embedding quality, because labeled
data allow the models to pick out the more important features that
differentiate duplication pairs from non-duplications. Moreover,
each of our proposed model components further boosts the over-
all model performance, and their coherent combination (PEHAD)

Method avg. PRE avg. REC ACC
NF+AS+CS .05508 ± .00024 .6476 ± .0058 .6989 ± .0135

PE .07533 ± .00034 .7534 ± .0083 .7926 ± .0297
PEH .08970 ± .00039 .8434 ± .0102 .8580 ± .0238
PEHA .09274 ± .00019 .8554 ± .0047 .8815 ± .0100
PEHAD .10780 ± .00021 .9119 ± .0062 .9279 ± .0104

Table 3: Performance of our metric learning methods.

(a) PRE@K (b) REC@K

Figure 4: Training loss and testing accuracy curves.

has the best performance regarding all metrics in the evaluation.
Our models also significantly outperform all of the state-of-the-art
non-embedding algorithms in Table 2– PEHAD achieves over 18%
relative improvement on GBDT (the strongest baseline).

To better understand how each of the components contributes
to the overall model, we also closely observe the training loss and
testing accuracy during the training of different models. As we can
see in Figure 4: 1) Hard sampling is effective in speeding up the
convergence of training loss, and allows the model to keep learning
after the loss seems to converge; 2) Attentive training leads to lower
losses due to the additional weights. It does not lead to significant
performance gain on top of the basic PE model with hard sampling,
but it does make the training process more stable and reduce the
performance variance across different trains of the same model;
3) Label denoising empowers the model to rapidly remove the
influence of noisy labels and achieve the peak performance after
a small number of training iterations, which may further allow
efficient model training with early stop.

Finally, all techniques here are also not bounded to the problem
of place deduplication, but can rather be combined to leverage noisy
pair-wise labels from multiple sources in various other domains.

7 CONCLUSIONS
In this paper, we collect data from the real-world place graph of Face-
book as an example to systematically study the novel problem of
place deduplication and comprehensively evaluate the effectiveness
of our proposed place embedding pipeline. The concepts and meth-
ods developed, although do not provide an end-solution for place
deduplication, successfully improve the quality of place embedding
for intermediate tasks like duplication prediction and candidate
fetch, which largely facilitates further place deduplication.

As for future work, it is interesting to further improve both
the unsupervised feature generation model to incorporate more
attributes, and the supervised metric learning model to leverage
various training signals with efficiency. It is also interesting to
apply the learned place embedding to facilitate other tasks related
to place graph quality such as junk place prediction and common
place clustering, as well as downstream applications including next
destination recommendation and location-based ads ranking.
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