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ABSTRACT
Concept maps provide concise structured representations for doc-
uments regarding their important concepts and interaction links,
which have been widely used for document summarization and
downstream tasks. However, the construction of concept maps of-
ten relies heavily on heuristic design and auxiliary tools. Recent
popular neural network models, on the other hand, are shown
effective in tasks across various domains, but are short in inter-
pretability and prone to overfitting. In this work, we bridge the gap
between concept map construction and neural network models,
by designing doc2graph, a novel weakly-supervised text-to-graph
neural network, which generates concept maps in the middle and is
trained towards document-level tasks like document classification.
In our experiments, doc2graph outperforms both its traditional base-
lines and neural counterparts by significant margins in document
classification, while producing high-quality interpretable concept
maps as document structured summarization.
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1 INTRODUCTION
Structured knowledge has been studied for information extrac-
tion and retrieval for a long time [2, 15]. Among various types of
structures, concept maps stand out as natural interpretable repre-
sentations of texts (i.e., single documents [18], multi-documents
[3, 4]), and have been shown effective for document summarization
[7, 8] and various text-related downstream tasks [6, 11]. A concept
map as we discuss in this work is a graphical representation of
important knowledge distilled from the source document, where
each node in the graph is a concept, and each link indicates the
interaction between two concepts. Figure 1 gives two toy examples
of short documents and their corresponding concept maps.
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Figure 1: Toy examples of documents and concept maps.

Existing research.To construct concept maps from documents, ex-
isting works mostly follow the multiple steps of concept extraction,
relation extraction, scoring and assembling. They assume various
a-priori knowledge and leverage ad hoc approaches for each step,
such as auxiliary data like rules, dictionaries, ontologies, and addi-
tional tools like lexical parsing, POS tagging, term disambiguation,
which are not always available and effective, and can hardly gen-
eralize across tasks, domains and languages [1, 4, 18]. Moreover,
the multiple steps are often conducted separately, blocking possible
mutual enhancement and can hardly lead to optimal performance
towards any particular downstream task.

On the other hand, recent extensive research on neural network
(NN) models has demonstrated superior performance in various
domains. In particular, neural generative models like VAEs and
GANs can generate high-quality images, texts and graphs [16, 17].
However, no previous work has considered the direct generation
of graphs from texts with NN models. Moreover, NN models have
been constantly criticized for their shortage in interpretability and
vulnerability towards overfitting, due to the common brute increase
of model complexity and lack of proper regularization.

Present work. For the first time, we propose to learn to generate
concept maps within an end-to-end NN model. In particular, we
design a novel autoencoder framework to generate concept maps
(i.e., concept nodes and their interaction links) from text data (i.e.,
documents), and train it with weak supervision from text-related
downstream tasks (e.g., document classification). In the meantime,
the generated concept maps as intermediate results serve as proper
regularization against overfitting to improve the downstream task
and can be readily used as structured summarization of the source
documents with valuable interpretability.

Through experiments on three real-world text corpora with a
primitive configuration of the neural architectures, we demonstrate
that our proposed doc2graph framework can effectively improve
document classification regarding its non-neural traditional con-
cept map generation baselines, as well as its neural non-graph-
generation counterparts. Since it is hard to quantitatively evaluate
the quality of concept maps [3, 18], we also conduct multiple real
case studies to showcase that doc2graph generates plausible concept
maps as interpretable document structured summarizations.
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Figure 2: Overview of our proposed doc2graph neural framework: A neural text model encodes the content of each document d into
an embedding vector h. A concept generator and an interaction generator use h to generate concepts C and weighted linksM in parallel,
which are directly combined as a concept map g. A graph classifier predicts a document label ŷ based on g, which can be directly trained
towards the ground-truth document label y, while providing weak supervision to the intermediate generation of g.

2 DOC2GRAPH
2.1 Problem Definition
Our input is a text corpus D with some labels Y of certain down-
stream text-related tasks, such as document classification, rank-
ing, pairwise link prediction, etc. For simplicity, we focus on doc-
ument classification in this work. Available document labels Y
partitions D into a set of labeled documents Dl and unlabeled
documents Du . Each document di ∈ D is a sequence of words, i.e.,
di = (wi

1,w
i
2, · · · ,w

i
li
), where li is the length of di .

Our first output is the predicted class labels Ŷ for unlabeled
documents Du , which conforms to the standard task of supervised
document classification. Our second output is the generated con-
cept maps G for all documents D in the corpus, which is our novel
contribution. Ideally, G should concisely distill and represent the
key knowledge in D, so as to serve as document structured sum-
marization. In particular, we focus on the main concepts and their
interactions in the single-document level. That is, we aim to gener-
ate a graph дi = {C

i ,Mi } ∈ G for each document di ∈ D, where
Ci is a set of ni concepts (e.g., words, phrases) andMi ⊂ R+ni×ni0
denotes the interaction strength among concepts in Ci .

For simplicity, we only care about the concept interaction strength
in this work, while our proposed neural framework is flexible
enough to also generate and associate relation words or phrases to
the concept links in the future.

2.2 Model Details
Figure 2 and its caption give an overview of our proposed frame-
work. In this work, we do not focus on competing with the state-of-
the-art complicated NLP models either for document classification
or summarization. Instead, we aim to highlight the novel design of
our proposed overall neural framework and show a possibility of (1)
improving neural document classification by using concept maps
as intermediate regularization; (2) enabling automatic document
structured summarization under the weak supervision of classifi-
cation. For simplicity concern, we intentionally design the most
straightforward yet effective neural architectures for each module
in our framework, which can be further improved in the future.
Neural text encoder. We implement the text encoder with bidi-
rectional Long Short-Term Memory networks (bi-LSTM), which has
been widely used to encode sequential data including texts, due
to its known ability of capturing long-term dependencies between
tokens in source text. It converts each variable-length input se-
quence d = (w1,w2, · · · ,wl ) into a sequence of encoded hidden

states ht through the modeling of sequentially organized inputwt ,
output ot , forget gate ft and memory cell ct . For the connection to
subsequent modules as well as the training and evaluation of this
base model, we compute the final text embedding vector of d as
h = (1/l )∑lt=1 ht . We follow the standard design of bi-LSTM and
omit the detailed structure here.
Concept generator. Our concept generator aims to select a set of
n concepts C in terms of keywords or keyphrases based on each
document d (we fix n as a small value like 10 across all documents,
while it can be also made flexible in the future). Since this task
is essentially similar to keyword based summarization, we sim-
plify the widely used pointer networks [13] to our setting of no
predefined dictionaries, by only allowing its copying mechanism to
select informative tokens from the source document. In particular,
a one-directional LSTM takes h as the first input and sequentially
generate n tokens as concepts in C based on the following attention
mechanism

eti = wT tanh(Whhi +Ws st + b), at = softmax(et ), (1)
where w,Wh ,Ws , b are learnable parameters. hi ’s are the hidden
states corresponding to tokens in the source document computed
by the bi-LSTM encoder, st ’s are the hidden states of the LSTM
concept generator corresponding to each generated token ct . Each
attention distribution at is used to select a token from the source
document as the next generated token ct+1. For training and eval-
uation purposes, we compute the context vector h∗t =

∑l
i=1 a

t
i hi

of each generated token and compute the overall embedding of
generated tokens (concepts) as h∗ = (1/n)∑nt=1 h∗t . To alleviate
the common repetition problem for sequence-to-sequence models,
we also adapt the coverage model proposed in [12], by maintaining
a coverage vector c∗ to both inform the concept generator of its
previous decisions and penalize repetitive selections.
Interaction generator. Our interaction generator aims to con-
struct a weighted none-negative matrixM ⊂ R+(n×n)0 that captures
the interaction strengths among the n concepts in C. To this end,
we get inspired by recent works on neural graph generation, and in
particular, we choose the straightforward design of a simple 2-layer
multi-layer perceptron (MLP) to directly computeM from the output
of text encoder h. In particular, we aim to generate undirected links
among the n concepts and thus compute only n(n − 1)/2 elements
to construct a symmetric matrixM without self-loops

m = sigmoid
(
W(2)

m ReLU(W(1)
m h + b(1)m ) + b(2)m

)
, (2)

where Wm , bm are learnable parameters in the two layers of MLP,
and the last layer is of size n(n − 1)/2.



Graph classifier. After generating the n concepts C and n × n
interaction matrixM, we directly combine them into a concept map
д. For training and evaluation purposes, we adopt the popular graph
convolutional network (GCN) [5] with themean read-out function for
graph-level classification [14], which is briefly described as follows

Q(k+1) = ReLU
(
D̃−

1
2 M̃D̃−

1
2Q(k )W(k )

q

)
, (3)

where W(k )
q is the learnable parameter in the kth layer of GCN. M̃

is the generated link matrixMwith additional self-connections, and
D̃ii =

∑
j M̃i j . We use the context vectors of generated concepts

as the input node features of GCN, i.e., Q(0) = H∗. We compute
a graph-level embedding by averaging all node-level embedding
output by GCN as q∗ = (1/n)∑nt=1 qt , and attach a two-layer MLP
to produce a predicted label ŷ.
(Weakly) supervised training. Our whole model is trained in a
supervised fashion, by computing the following cross-entropy loss
between predicted label ŷ and ground-truth label y

L = −
∑
di ∈D

p (ŷi ) logp (yi ). (4)

In this way, our whole model is trained in an end-to-end fashion
towards the particular downstream task, while the text encoder,
concept generator and interaction generator can mutually enhance
each other in a closed loop. In particularly, through the graph clas-
sifier that integrates the generated concepts and interactions, the
concept generation process is regularized by the interaction gener-
ation process, while the generated interactions learn to properly
organize the generated concepts. Moreover, both generation pro-
cesses are weakly supervised by the downstream task loss.

3 EXPERIMENTS
In this work, we provide primitive experimental evaluations to-
wards our proposed doc2graph framework. We first train doc2graph
w.r.t. the standard document classification task in an end-to-end
fashion, to show its effectiveness in improving downstream tasks.
Since there is no gold ground-truth for structured document sum-
marization in terms of concept maps, we provide various case study
results to reveal the quality of our generated graphs. In the fu-
ture, we aim to conduct more comprehensive evaluations over
doc2graph with more advanced neural configurations, across a
richer set of downstream tasks, as well as by recruiting both offline
and online human evaluators (e.g., Amazon Mechanical Turk).
Datasets. To conduct comprehensive evaluations at this stage, we
use three real-world text corpora from different domains: (1) 13,081
news articles (average length 88.64) from 5 categories fromNYTimes,
(2) 21,688 paper abstracts (average length 87.27) from 6 venues from
AMiner, and (3) 25,357 reviews (average length 71.59) with 1-5 star
ratings from Yelp.1

We do not use the benchmark concept map datasets proposed
in [3, 18] and other works, because they do not include down-
stream task labels like document classes for our model training and
evaluation. Moreover, we believe there is essentially no absolute
gold concept map and the only way to really evaluate its quality is
through downstream tasks or careful manual checking.

1Data sources: (1) http://developer.nytimes.com, (2) http://www.aminer.cn/citation, (3)
https://www.yelp.com/dataset

Compared Algorithms. We compare doc2graph to two sets of
baselines described as follows:
• Non-neural traditional methods:

– AutoPhrase:We use AutoPhrase [10], a popular phrase min-
ing algorithm, to first find high-quality phrases from thewhole
corpus and use them as concepts. Then we compute interac-
tion weights among concepts asmi j = 1 − e−xi j , where xi j
counts how many times concepts ci and c j co-occur in a sen-
tence in the corresponding document.

– TextRank: In contrary to AutoPhrase, TextRank [9] first con-
structs a co-occurrence based interaction network among all
words in the corpus and then run the PageRank algorithm to
select the most ‘influential’ words. We use these words with
the highest PageRank scores as concepts, and connect them
by their original interaction links generated by TextRank.

– CMB-MDS: We follow [4] to implement this state-of-the-art
automatic concept-map construction pipeline, and get single-
document concept maps by filtering on concepts that occur
in the corresponding document.

• Neural non-graph-generation methods:
– Base: The two-layer classification MLP is directly attached
to the text embedding vector h output by the text encoder.

– Concept-only: The classification MLP is attached to the av-
erage context embedding of all concepts h∗ output by the
concept generator.

– Link-only: The classification MLP is attached to the average
node embedding q∗ output by the GCN graph encoder in the
same way as doc2graph. However, we remove the concept
generator and sample random vectors from a multinomial
Gaussian distribution N (0, I) to replace H∗ as the input node
features to GCN, thus only generating links from source doc-
uments with the interaction generator.

The training complexity of all neural variants is roughly the same,
although our full doc2graph model does include more learnable
parameters that lead to slightly longer training time (e.g., ×1.3
compared with the base model). All models are randomly initialized
and trained with standard SGD in PyTorch2. Full implementations
of all models will be made public after the acceptance of this work.
Quantitative evaluations. We randomly split labeled data into
80% for training, 10% for validation, and 10% for testing. We run
the traditional baselines on all documents and construct a graph
for each document without supervision, then we train a separate
GCN on the graphs constructed for the documents in the training
set and test with graphs constructed for the testing set to evaluate
each traditional baseline. Since the baselines construct graphs with
words/phrases, we look up their pre-computed word embeddings3
to use as input node features for GCN. We train all neural models
on the training set and directly evaluate them on the testing set.
We fix the size of generated graphs (n) to be 10 for all algorithms.
All other hyperparameters of all algorithms are slightly tuned on
the validation set. In particular, we set the dimensions of all hidden
layers in the LSTM, MLP and GCN models to 100, and the numbers
of layers in all GCNmodels to 2. We fix the batch size to 64, learning
rate to 1e-3, and max epoch to 200 with patience-based early stop.

2https://pytorch.org/docs/stable/_modules/torch/optim/sgd.html
3https://nlp.stanford.edu/projects/glove/



Algorithm NYTimes AMiner Yelp
Acc. ratio Acc. ratio Acc. ratio

AutoPhrase 34.41 1.11 45.60 1.19 43.18 0.99
TextRank 83.27 1.47 59.55 1.31 48.16 1.13
CMB-MDS 76.98 1.42 45.40 1.38 50.60 1.32

Base 74.93 4.63 58.04 2.43 52.44 2.34
Concept-only 82.38 3.09 63.52 2.14 56.68 1.52
Link-only 26.04 0.99 26.04 0.99 44.78 0.98

doc2graph 85.77 2.91 66.29 1.59 62.21 1.48

Table 1: Doc. class. accuracy (%) and test/train loss ratio.
Table 1 shows the classification performance of compared algo-

rithms. On Acc., we observe doc2graph to constantly outperform all
baselines by significant margins (3% to 29% over the best traditional
baseline and 4% to 10% over the best neural baseline). Among the
traditional baselines, TextRank often achieves the best performance,
as selecting the informative keywords is really important for cor-
rect document classification; the other two methods focus more on
entity extraction, but entity names do not necessarily indicate class
labels (e.g., in NYTimes, Chase Center might be a high-quality entity
name, but the simple word basketball has a stronger indication
towards the sports class). Among the neural variants, due to the
same reason, Concept-only has the most competitive performance,
because it can explicitly select informative words, whereas Link-
only has the worst performance, because it totally ignores words;
by considering concept interactions, doc2graph can further improve
over Concept-only, demonstrating the advantage of concept maps
as informative document representations. Finally, we also compute
the ratio between testing loss and training loss for all algorithms,
high values of which is a signal towards overfitting. Although all
neural models except for Link-only can often outperform traditional
algorithms due to end-to-end supervised training, they are indeed
more prone to overfitting, especially on the smaller dataset of NY-
Times where the ratios reach the highest. doc2graph always reaches
the lowest ratios, indicating its effectiveness in leveraging concept
map generation as regularization to avoid overfitting.
Case Studies. Figure 3 shows concept maps constructed by differ-
ent algorithms, with meaningless concepts and weak links removed
for clear visualization. In general,AutoPhrase can discover meaning-
ful concepts especially in terms of phrases, but they are sometimes
not properly connected, resulting in counter-factual semantics (e.g.,
in the NYTimes example, based on sentence-level co-occurrence,
interaction links are constructed among “researchers”, “claim” and
“soul mate”, which does not make much sense). TextRank is effective
in selecting word-level concepts that are important in the whole
corpus (e.g., “evidence” inNYTimes, “model” inAMiner, and “service”,
“return” in Yelp), but the selected concepts are often densely con-
nected, making the results messy and less interpretable. CMB-MDS
is good at extracting entities and relations frommultiple documents,
but the single-document results are often rather sparse and less
useful. doc2graph, by attentively selecting tokens from the source
document and jointly learning interactions under weak supervision,
is effective in generating both high-quality concepts and meaning-
ful links. For instance, from the NYTimes news, doc2graph clearly
distills the concise and accurate knowledge that a “questionnaire”
mentions love “match” through “mathematical” “algorithm”, which
is “criticized” by “academic” “researchers”.

Figure 3: Case studies on three real-world text corpora.
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