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A APPENDIX: Proofs for Theorem 1
In this appendix, we provide proofs for Theorem 1, and derive
Corollary 1.1 and Corollary 1.2. Theorem 1 indicates the link
privacy protection achieved through updating model’s parame-
ters with clipped and noised gradient (latter referred to as DP
learning) for link reconstruction based graph generation mod-
els. Corollary 1.1 and Corollary 1.2 derived from Theorem
1 support us to guarantee (ε, δ)-edge-DP for DPGVAE and
DPGGAN with DP learning in Theorem 1.

The proof for Theorem 1 is divided into three steps. We
first briefly introduce the definition of the moment accountant
privacy analysis and respective properties in Section A.1, for
it being the fundamentals of our proof. Note that in [Abadi
et al., 2016], DPSGD is originally designed for classical ma-
chine learning tasks, such as image classification. Therefore,
in Section A.2, we leverage moment accountant to conduct
the extended privacy analysis of DPSGD for general types of
data and loss functions. Then in Section A.3, we apply the
conclusion from Section A.2 on graph data and the link recon-
struction loss function to derive the theoretical analysis over
edge-DP achieved by link reconstruction based graph genera-
tion models and finish our proof for Theorem 1. Following the
conclusion in Theorem 1, we tune gradient representations to
certain gradient functions leveraged in training DPGVAE de-
coder and DPGGAN generator to derive Corollary 1.1 and
Corollary 1.2, as the theoretical support for the (ε, δ)-edge-DP
held by respective models.

A.1 Moment Accountant
Our proof for Theorem 1 is mainly based on moment accoun-
tant [Abadi et al., 2016]. The definition of moment accountant
and the properties leveraged in our proof are listed below.

Definition 1. LetM : D → R be a randomized mechanism
and d, d′ a pair of adjacent databases. Let aux denote an
auxiliary input. For an outcome o ∈ R, the privacy loss at o
is defined as:

c (o;M, aux, d, d′) , log
Pr[M(aux, d) = o]

Pr [M (aux, d′) = o]
(1)
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The privacy loss random variableC (M, aux, d, d′) is defined
as c (M(d);M, aux, d, d′), i.e.the random variable defined
by evaluating the privacy loss at an outcome sampled from
M(d).
Definition 2. LetM : D → R be a randomized mechanism
and d, d′ a pair of adjacent databases. Let aux denote an
auxiliary input. The moments accountant is defined as:

αM(λ) , max
aux,d,d′

αM (λ; aux, d, d′) (2)

where αM (λ; aux, d, d′) ,
logE [exp (λC (M, aux, d, d′))] is the moment generat-
ing function of the privacy loss random variable.

The following properties of the moments accountant are
proved in [Abadi et al., 2016].
Property 2.1. [Composability] Suppose that a mechanismM
consists of a sequence of adaptive mechanismsM1, . . . ,Mk

where Mi :
∏i−1
j=1Rj × D → Ri. Then, for any output

sequence o1, . . . , ok−1 and any λ, we have

αM (λ; d, d′) =

k∑
i=1

αMi
(λ; o1, . . . , oi−1, d, d

′) (3)

where αM is conditioned onMi ’s output being oi for i < k.
Property 2.2. [Tail bound] For any ε > 0, the mechanism
M is (ε, δ)-DP for

δ = min
λ

exp (αM(λ)− λε) (4)

A.2 The Generalized Privacy Analysis of DPSGD
To achieve (ε, δ)-edge-DP for graph data, we exploit
DPSGD [Abadi et al., 2016] with necessary adaptions ac-
cording to the special nature of graph data compared to other
types of data (e.g., images), for which DPSGD was originally
designed. The original DPSGD only provides DP proof for
gradient function f clipped by C with its `2-norm sensitivity
as ∆2f = 1 · C = C. For classical tasks of machine learning
like image classification, ∆2f = C is obvious. However, in
a more complex task like graph learning, depending on the
chosen measurement, the influence for the output induced by
a minor change in the training dataset varies. To explore the



potential of DPSGD with customized machine learning tasks,
we further prove the privacy performance of DPSGD with a
gradient function f with `2-norm sensitivity ∆2f = s.

Therefore, to prepare for the proof for Theorem 1, we first
leverage moments accountant to derive the upper bound of
privacy loss for a Gaussian Mechanism as below.
Lemma 1. Suppose that f : D → Rp with ‖f(·)‖2 ≤ s. Let
σ ≥ s and let J be a sample from [n] where each i ∈ [n]
is chosen independently with probability q < s

16σ . Then for
any positive integer λ ≤ σ2

s2 ln s
qσ , the Gaussian Mechanism

M(d) =
∑
i∈J f (di) +N

(
0, σ2I

)
satisfies

αM(λ) ≤ s2q2λ(λ+ 1)

(1− q)σ2
+O

(
s3q3λ3/σ3

)
(5)

Proof. Fix d′ and let d = d′∪{dn}. Without loss of generality,
we assume f (dn) = s · e1 and

∑
i∈J\[n] f (di) = 0. Thus

M(d) andM (d′) are distributed identically except for the
first coordinate and hence we have a one-dimensional problem.
Let µ0 denote the pdf of N

(
0, σ2

)
and let µs denote the pdf

of N
(
s, σ2

)
. We have

M (d′) ∼ µ0,

M(d) ∼ µ , (1− q)µ0 + qµs.
(6)

We want to show that

Ez∼µ
[
(µ(z)/µ0(z))

λ
]
≤ α,

and Ez∼µ0

[
(µ0(z)/µ(z))

λ
]
≤ α,

(7)

where α is a value to be determined. We will use the same
method as in [Abadi et al., 2016] to prove both bounds. As-
sume we have two distributions ν0 and νs, and we wish to
bound

Ez∼ν0
[
(ν0(z)/νs(z))

λ
]

= Ez∼νs
[
(ν0(z)/νs(z))

λ+1
]
.

(8)
Leveraging binomial expansion, we obtain

Ez∼νs
[
(ν0(z)/νs(z))

λ+1
]

=Ez∼νs
[
(1 + (ν0(z)− νs(z)) /νs(z))λ+1

]
=Ez∼νs

[
(1 + (ν0(z)− νs(z)) /νs(z))λ+1

]
=

λ+1∑
t=0

(
λ+ 1
t

)
Ez∼νs

[
((ν0(z)− νs(z)) /νs(z))t

]
.

(9)

The first term in Eq. (9) is 1, and the second term is

(λ+ 1)Ez∼νs
[
ν0(z)− νs(z)

νs(z)

]
=

∫ +∞

−∞
νs(z)

ν0(z)− νs(z)
νs(z)

dz

= (λ+ 1)

∫ +∞

−∞
ν0(z)dz −

∫ +∞

−∞
νs(z)dz

= (λ+ 1)(1− 1) = 0.

(10)

Regarding conditions stated in the lemma, for both cases,
where ν0 = µ, ν1 = µ0 and ν0 = µ0, ν1 = µ, the third term is
bounded by q2λ(λ+ 1)/(1− q)σ2 and this bound dominates
the sum of the remaining terms. We provide the proof for the
case of (ν0 = µ0, νs = µ), and the proof of the other case is
similar.

To upper bound the third term in 9, we note that µ(z) ≥
(1− q)µ0(z), and write

Ez∼µ

[(
µ0(z)− µ(z)

µ(z)

)2
]

= q2Ez∼µ

[(
µ0(z)− µs(z)

µ(z)

)2
]

= q2
∫ +∞

−∞

(µ0(z)− µs(z))2

µ(z)
dz

≤ q2

1− q

∫ +∞

−∞

(µ0(z)− µs(z))2

µ0(z)
dz

=
q2

1− q
Ez∼µ0

[(
µ0(z)− µs(z)

µ0(z)

)2
]
.

(11)

Recalling the definition of µ0 and the normal distribution,
we have

Ez∼µ0

[(
µ0(z)− µ1(z)

µ0(z)

)2
]

= Ez∼µ0

[(
1− exp

(
2sz − s2

2σ2

))2
]

= 1− 2Ez∼µ0

[
exp

(
2sz − s2

2σ2

)]
+ Ez∼µ0

[
exp

(
4sz − 2s2

2σ2

)]
.

(12)
For the second term in Eq. (12) Ez∼µ0

[
exp

(
2sz−s2
2σ2

)]
, we

have

Ez∼µ0

[
exp

(
2sz − s2

2σ2

)]
=

∫ +∞

−∞

1

σ
√

2π
exp

(
−(z − s)2

2σ2

)
dz = 1.

(13)

For the third term in Eq. (12), we have

Ez∼µ0

[
exp

(
4sz − 2s2

2σ2

)]
= exp

(
s2

σ2

)∫ +∞

−∞

1

σ
√

2π
exp

(
−(z − 2s)2

2σ2

)
dz

= exp

(
s2

σ2

)
.

(14)

Thus, for Eq. (12), we have

Ez∼µ0

[(
µ0(z)− µ1(z)

µ0(z)

)2
]

= exp
(
s2/σ2

)
− 1. (15)



Hence, the third term in the binomial expansion of Eq. (9)
is

(
1 + λ

2

)
Ez∈µ

[(
µ0(z)− µ(z)

µ(z)

)2
]

≤ λ(λ+ 1)q2

2(1− q)

(
exp(

s2

σ2
)− 1

) (16)

For σ ≥ s, it is easy to get exp( s
2

σ2 )− 1 ≤ 2s2

σ2 . Therefore, we
retrieve that(

1 + λ
2

)
Ez∈µ

[(
µ0(z)− µ(z)

µ(z)

)2
]
≤ λ(λ+ 1)q2s2

(1− q)σ2
.

(17)
By standard calculus, we get |µ0(z)− µs(z)| =∣∣∣∫ zz−s µ′0(z)dz

∣∣∣. Note that µ′0(z) is monotonically decreas-
ing in (−∞,+∞). Thus, to bound the remaining terms, we
derive

∀z ≤ 0 : |µ0(z)− µs(z)| ≤ −s(z − s)µs(z)/σ2

∀z ≥ s : |µ0(z)− µs(z)| ≤ zsµ0(z)/σ2

∀0 ≤ z ≤ s : |µ0(z)− µs(z)| ≤ µ0(z)
(
exp

(
s2/2σ2

)
− 1
)

≤ s2µ0(z)/σ2.
(18)

We can then write

Ez∼µ

[(
µ0(z)− µ(z)

µ(z)

)t]

≤
∫ 0

−∞
µ(z)

∣∣∣∣∣
(
µ0(z)− µ(z)

µ(z)

)t∣∣∣∣∣ dz
+

∫ s

0

µ(z)

∣∣∣∣∣
(
µ0(z)− µ(z)

µ(z)

)t∣∣∣∣∣ dz
+

∫ +∞

s

µ(z)

∣∣∣∣∣
(
µ0(z)− µ(z)

µ(z)

)t∣∣∣∣∣ dz.

(19)

We consider these terms individually. We repeatedly make
use of three observations: (1) µ0 − µ = q (µ0 − µs),(2)µ ≥
(1− q)µ0, (3)µ ≥ qµs, and (4) Eµ0

[|z|t] ≤ σt(t− 1)!!. The
first term can then be bounded by

qt

(1− q)t−1σ2t

∫ 0

−∞
µ0(z)|z − 1|tdz

≤
∫ 0

−∞
qµs

∣∣∣∣∣
(
µ0 − µs
µs

)t∣∣∣∣∣dz
≤ qst

σ2t

∫ 0

−∞
µs

∣∣∣(z − s)t∣∣∣dz
≤ qst(t− 1)!!

2σt
.

(20)

Then the second term is at most

qt

(1− q)t

∫ s

0

µ(z)

∣∣∣∣∣
(
µ0(z)− µ1(z)

µ0(z)

)t∣∣∣∣∣dz
≤ qt

(1− q)t

∫ s

0

µ(z)
∣∣∣(s2/σ2

)t∣∣∣dz
≤ qts2t

(1− q)tσ2t
.

(21)

Similarly, the third term is at most

qtst

(1− q)t−1σ2t

∫ +∞

s

µ0(z)
∣∣zt∣∣dz ≤ qtst(t− 1)!!

(1− q)t−1σt
. (22)

Under the assumptions on q, σ, and λ, it is easy to check
that the three terms, and their sum, drop off geometrically fast
in t for t > 3. Hence the binomial expansion (5) is dominated
by the t = 3 term, which is O

(
s3q3λ3/σ3

)
. Therefore, the

lemma is proved.

With Lemma 1, we retrieve the upper bound of privacy
loss of the Gaussian Mechanism. Hence, based on Lemma 1
and Property 2.1, we provide the generalized privacy analysis
of DPSGD with different learning tasks, which iteratively
performs multiple times of the Gaussian Mechanism.

Lemma 2. Suppose that f : D → Rp with ‖f(·)‖2 ≤ s.
Let J be a sample from [N ] that each i ∈ [N ] is chosen
independently in probability q = |J |/N , given the number
of steps T , for any c0 ∈ (0, 1), there exist explicit constants
c1 and c2 that with any ε < c1q

2T , iteratively computing T
times ofM(d) in Lemma 1 attains it with (ε, δ)-DP for any
δ > 0 if we choose

σ ≥ c2
qs
√
T log(1/δ)

ε
, (23)

where c1 ≥ 1
c0

log s
qσ and c2 ≤ 1√

c0(1−c0)
for any c0 ∈

(0, 1).

Proof. Assume for now that σ, λ satisfy the conditions in
Lemma 1. After T times of iteration, with Property 2.1 we
derive that α(λ) ≤ Tq2s2λ2/σ2. In order to to guarantee the
whole training process to be (ε, δ) -DP, combining α(λ) with
Property 2.2, for any c0 ∈ (0, 1), we choose

Tq2s2λ2/σ2 = c0λε,

exp((c0 − 1)λε) ≤ δ.
(24)

Plugging the condition λ ≤ σ2

s2 log s
qσ into Eq. (24), we

derive the bound for ε as ε < 1
c0

log s
qσ q

2T to accomplish
(ε, δ)-DP by setting

σ =
1√

c0(1− c0)
·
qs
√
T log(1/δ)

ε
, (25)

where c0 ∈ (0, 1).



A.3 Privacy Analysis for the Link Reconstruction
Based Graph Generation Models with DPSGD

In this section, we conduct the theoretical privacy analysis for
link reconstruction based graph generation model based on
Lemma 2 and obtain the conclusion of Theorem 1.

Theorem 1. In training a link reconstruction based graph
generation model on a graph with N nodes with batch size as
B, given the sampling probability q = B/N , and the number
of steps T , there exist explicit constants c1 and c2 that for any
ε < c1q

2T , iteratively updating the model T times with g̃θ,L
attains it with (ε, δ)-edge-DP for any δ > 0 if we choose

σ ≥ c2
q
√
T log(1/δ)

ε
,

where c1 ≥ 1
c0

log 1
qσ , c2 ≤ 1/

√
c0(1− c0) for any c0 ∈

(0, 1).

Proof. Recall the expression of g̃θ,L as

g̃θ,L =
1

N

(
N∑
i=1

(
∇vi,θL/max(1,

‖∇vi,θL‖2
C

)

)
+N (0, σ2C2I)

)
,

(26)
where L is the loss function for a link reconstruction based

graph generation model, C is the clipping hyper-parameter for
the model’s original gradient to bound the influence of each
node, and σ is the noise scale hyper-parameter. According
to the Gaussian Mechanism definition [Dwork et al., 2014]),
g̃θ,L is a Gaussian mechanism. Therefore, we first analyze the
`2-norm sensitivity of the clipped gradient function g̃θ,L, and
then plug the sensitivity value to Lemma 2 and conclude the
privacy cost of training DPGVAE, thus finishing the proof for
Thereom 1.

Following the graph reconstruction procedure in [Si-
monovsky and Komodakis, 2018], a single value in the adja-
cency matrix is sufficient to represent one edge in the respec-
tive graph for both directed and undirected graphs. Referring
to edge-DP definition [Blocki et al., 2012], though changing an
edge in the graph affects 2 nodes for node classification tasks,
for a structural inference task, i.e., graph reconstruction, as our
work targeting at, adding or removing an edge only results to at
most 1 record difference. Together with ∇vi,fL being clipped
as its `2-norm no more than C, we obtain the sensitivity of∑N
i=1∇vi,fL/max(1,

‖∇vi,f
L‖2

C ) as s = 1 ∗ C = C.
With plugging in the clipped ∇vi,fL’s sensitivity (s = C)

into Lemma 2, we derive Theorem 1. We prove that, given the
sampling probability q = B/N and the number of steps T ,
with explicit constants c1 ≥ 1

c0
log 1

qσ and c2 ≤ 1√
c0(1−c0)

,

where c0 ∈ (0, 1), through iteratively updating model T times
with Eq. (26), the outcome generation model achieves (ε, δ)-
edge-DP for any ε < c1q

2T , and δ > 0 when we choose

σ ≥ c2
q
√
T log(1/δ)

ε
. (27)

Specifically, our proof for Theorem 1 serves as a general
DP analysis when DPSGD is considered on graph data, which

covers our problem as a specific instance appearing to be
relatively similar to [Abadi et al., 2016], i.e., obtaining edge-
DP for our link reconstruction based graph generation model.
However, with a similar analysis of the proof for Theorem 1,
we can conduct edge-DP results for other graph models trained
with the same technique. For example, for a generative graph
model solving the node classification task, changing 1 edge in
the input graph affects 2 nodes’ representations. Thus, when
the gradient value is clipped with C, the sensitivity for the node
classification model’s clipped gradient function is now 2*C.
Moreover, regarding node-DP [Kasiviswanathan et al., 2013]
instead of edge-DP, one can also deliver the corresponding
sensitivity analysis following our analysis here. For example,
for the undirected graph with N nodes without duplicated
links nor links starting and ending at the same node, when
1 node in the input graph changes, the respective gradient
function clipped with C for training the link reconstruction
model shows at most (N−1)∗C difference. Therefore, under
our Theorem 1 settings, when it comes to node-DP, following
the analysis in Theorem 1 with substituting the sensitivity as
(N − 1) ∗ C, node-DP of the mechanism can be similarly
concluded.

Recall the training process for the decoder in DPGVAE and
the generator in DPGGAN in Section 3. L in g̃θ,L is substi-
tuted with Lrec and Lrec + λ2Lgan, respectively. For both
Lrec and Lrec + λ2Lgan, their gradients are clipped with C
and adding Gaussian noises during the training process. Based
on Theorem 1, we derive Corollary 1.1 and 1.2 for the decoder
in DPGVAE and the generator in DPGGAN respectively as
below.

Corollary 1.1 (DPGVAE edge-DP). Under the same condi-
tions in Theorem 1,iteratively updating the decoder in DPG-
VAE T times with g̃θ,Lrec

attains it with (ε, δ)-edge-DP.

Corollary 1.2 (DPGGAN edge-DP). Under the same con-
ditions in Theorem 1, iteratively updating the generator in
DPGGAN T times with g̃θ,(Lrec−λ2Lgan) attains it with (ε, δ)-
edge-DP.

With Corollary 1.1 and 1.2, under specified conditions, the
public model (either the decoder in DPGVAE or the gener-
ator in DPGGAN) is guaranteed with (ε, δ)-edge-DP by the
DP training process. For both DPGVAE decoder and DPG-
GAN generator updated with noised and clipped representa-
tions of the sensitive training graph, they only record noised
and partial sensitive information. DPGVAE decoder and DPG-
GAN generator’s link reconstruction procedures, reflecting its
training information, only allude to the desensitize informa-
tion rather than the true sensitive training information. Thus,
DPGVAE decoder and DPGGAN generator not only prevent
privacy leakage from their inner parameters with DP learning
but also preserve the raw private training graphs from being
accurately inferred through the respective outputs.

B APPENDIX: More details of experimental
results

In this work, we define the goals of secure network release
as preserving global network structure while protecting indi-
vidual link privacy. In the main content, we have presented



experimental results to support the effectiveness of DPGGAN
in both perspectives. That is, for global network structure
preservation, we show that the generated graphs of DPGGAN
are competitively similar to the original graphs in comparison
with the DP-free state-of-the-art graph generative models re-
garding a suite of commonly concerned global graph statistics.
For individual link privacy protection, we show that the links
predicted in the generated graphs of DPGGAN are useless
(with low accuracy) when evaluated in the original graphs.

The suite of statistics measures the global network structure
from different perspectives. As can be inferred from TC, CPL,
and GINI, the IMDB networks are in general smaller, tighter,
and likely more structurally complex than the DBLP networks,
which favors link generation models (e.g., GVAE) over se-
quence generation models (e.g., NetGAN, and GraphRNN).
Consequently, DPGGAN also performs better on the IMDB
networks, indicating its advantages in modeling complex link
structures as a whole.

In addition to the graph statistics, we further demonstrate
the data utility of networks generated by DPGGAN with graph
classification, which is the most widely studied graph-level
downstream task. We deem this task important towards evalu-
ating network data utility, especially under our consideration
of global network structure preservation, because correct graph
classification requires the generated graphs to share essential
structural properties with the original graphs. As we can see
from Table 2 in the main paper, the data utilities evaluated
with graph classification are consistent with those evaluated
with global graph statistics, as shown in Table 1 in the main
paper. Our two DP-constrained models yield highly competi-
tive performance compared with the DP-free state-of-the-art
graph generative models.

As for privacy protection, we conduct more detailed inspec-
tions of the performance of individual link prediction. In par-
ticular, we compare DPGGAN in various privacy budget ε to
non-private generative models (GVAE, NetGAN, GraphRNN,
and GGAN) to validate how DP protection is reflected on link
prediction attacks. We implement this experiment using the
node embedding calculated with attri2vec [Zhang et al., 2019].
The results in Figure 3 demonstrate consistency with the rig-
orous theoretical edge-DP protection in Corollary 1.2, i.e.,
larger privacy budgets lead to more privacy leakage, allowing
attackers to infer individual links in the original networks with
higher accuracy.
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