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ABSTRACT
Heterogeneous information networks consist of multiple types of
edges and nodes, which have a strong ability to represent the rich
semantics underpinning network structures. Recently, the dynam-
ics of networks has been studied in many tasks such as social media
analysis and recommender systems. However, existing methods
mainly focus on the static networks or dynamic homogeneous
networks, which are incapable or inefficient in modeling dynamic
heterogeneous information networks. In this paper, we propose
a method named Dynamic Heterogeneous Information Network
Embedding (DyHINE), which can update embeddings when the
network evolves. The method contains two key designs: (1) A dy-
namic time-series embedding module which employs a hierarchical
attention mechanism to aggregate neighbor features and temporal
random walks to capture dynamic interactions; (2) An online real-
time updating module which efficiently updates the computed em-
beddings via a dynamic operator. Experiments on three real-world
datasets demonstrate the effectiveness of our model compared with
state-of-the-art methods on the task of temporal link prediction.

CCS CONCEPTS
• Information systems→ Social networks; •Networks→Net-
work dynamics; • Computer systems organization → Neural
networks.
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1 INTRODUCTION
Many real-world applications are built on networks [31] such as
biomolecular networks, social networks, and information networks.
In order to better represent networks, many researchers study var-
ious kinds of network embedding methods, which aim to learn
vertex representation in a low-dimensional space while preserving
the network structure. These embeddings can benefit many down-
stream network learning tasks such as recommendation [21, 29],
link prediction [13, 26], node classification [33], and community de-
tection [28]. However, most real-world networks like e-commerce
or social network are heterogeneous and they evolve constantly.
Intuitively, the use of temporal information is helpful to learn net-
work embedding, and rapid embedding updates can serve many
downstream tasks in real-time. Therefore, dynamic heterogeneous
network embedding becomes an urgent problem worth studying.

In the past years, lots of network embeddingmethods [2, 5, 18, 21,
24, 27, 34, 37] have emerged. Based on whether or not to consider
temporal information, we can classify them into static and dynamic
embedding methods. Static methods [2, 5, 18, 21, 24, 27] have al-
ready covered both homogeneous and heterogeneous networks,
but they do not consider temporal information and cannot learn the
rich features contained in the network evolution. Dynamic methods
[1, 6, 12, 15, 34, 36, 37] learn these features based on embedding
snapshots or using temporal evolution models, but none of them
can be directly applied to heterogeneous networks.
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Figure 1: Toy example of a dynamic heterogeneous network
(Different shapes denote different node types.)

In this paper, we mainly focus on dynamic heterogeneous net-
work representation learning. With the rapid development of tech-
nology, real-world networks are getting larger and more complex.
As shown in Fig.1, there are various kinds of nodes and edges
and they change over time. Existing methods considering static
information or homogeneous network are not enough to obtain
good results in dynamic heterogeneous networks as shown in the
experiment. Besides, several problems emerge like that most of
the current dynamic methods cost a lot when updating, since they
need to recompute the embedding of all nodes. In conclusion, the
challenging issues are how to learn the structural information of
dynamic heterogeneous networks and how to quickly update the
embedding when the network changes. Naturally, we have a con-
ventional approach to deal with it. That is, we can apply static
network embedding algorithms to the network snapshot of each
timestamp and just adjust some affected nodes. However, the major
drawback of this intuitive idea is that generating embedding in
each timestamp consumes a lot of time and resources.

To sum up, the development of networks imposes new challenges
on network embedding methods.

• (C1) Heterogeneity. The heterogeneous information network
has different node types, and each node may have multiple edge
types. Different types of edges and nodes have different effects on
the target node. Therefore, an appropriate aggregation strategy
is needed to find to aggregate this structural information.

• (C2) Dynamics. Networks evolve over time. When learning
node representation, how to maintain temporal network struc-
ture information, such as high-order proximity and structural
information, is a problem worth pondering over.

• (C3) Efficiency. Because large-scale networks may have hun-
dreds of millions of nodes and edges, an efficient online updating
method is needed to update network embedding in real-time.

To address the three major challenges presented, we design a
novel unsupervised dynamic heterogeneous network embedding
method named Dynamic Heterogeneous Information Network Em-
bedding (DyHINE). It consists of two core models, named dynamic
time-series embedding model and online real-time update model
respectively. The dynamic time-series embedding model contains
two key designs. One is to learn dynamic information from node se-
quences obtained by temporal random walk. The other is to design
a hierarchical attention mechanism to learn the information on
heterogeneous networks. The hierarchical attention mechanism is
to aggregate the neighbor node and different edge type information.

Specifically, for the target node, the first attention layer is used to ag-
gregate the neighbor node embedding and the embedding of edges
of the same type around it; the second attention layer aggregates
edges by types, and then uses a fusion method to further aggregate
all edges. In the online real-time update model, we use time-based
operators to learn the changing node information, and then only
adjust and update the embedding of the affected nodes to save
training time. At last, an additional objective function is designed
to constrain the learned embedding. Since most networks do not
have node labels, we focus on unsupervised network embedding.

To summarize, the main contributions of DyHINE are as fol-
lows:
• An unsupervised network embedding method based on hierarchi-
cal attention mechanism and temporal random walk is proposed
to learn the embedding of nodes in heterogeneous information
networks.

• The online real-time update method is proposed to study nodes’
information dynamically and reduce time consumption. Avoiding
updating the whole network, the incremental learning method is
proposed to update the representation of nodes that are affected
by network changes.

• We conduct experiments on three datasets and the results demon-
strate the superior performance of DyHINE over state-of-the-art
baselines on the task of temporal link prediction.

2 PROBLEM DEFINITION
In this part, we first introduce key concepts including heteroge-
neous networks, dynamic heterogeneous networks and dynamic
heterogeneous network embedding, then we formally define our
problem.

Definition 1. (Heterogeneous Network). A heterogeneous net-
work G = (V, E) is a form of graph where V and E represent the
sets of nodes and edges, respectively. It is associated with a node type
mapping function 𝜇1 : V → 𝐴 and an edge type mapping function
𝜇2 : E → 𝑅, where 𝐴 and 𝑅 denote the set of all nodes and edges
types, respectively. Each node 𝑣 ∈ V belongs to a particular node
type. Similarly, each edge 𝑒 ∈ E is categorized into a specific edge
type. If |𝐴| + |𝑅 | > 2, it is called heterogeneous network.

Definition 2. (Dynamic Heterogeneous Network). A dynamic
heterogeneous network is a graph G = {G1, . . . ,G𝑡 } with a series of
network snapshots within a time interval. G𝑡 = (V𝑡 , E𝑡 ,W𝑡 ) is a
directed network snapshot at time 𝑡 , whereV𝑡 , E𝑡 andW𝑡 represent
the sets of nodes, edges, the edges type at time 𝑡 , respectively.

Definition 3. (Dynamic Heterogeneous Network Embedding).
Given a dynamic heterogeneous networks G = {G1, . . . ,G𝑡 }, it aims
to learn amapping function 𝜇𝑡 : 𝑣𝑖 → R𝑑 for each timestamp 𝑡 , where
𝑑 is a positive integer indicating the number of embedding dimensions.
The objective of the function 𝜇𝑡 is to preserve the similarity between
𝑣𝑖 and 𝑣 𝑗 on both the network structure at timestamp 𝑡 and predict
their tendencies to develop relationships with others in the future.

We are committed to solving the problem of node representa-
tion learning in dynamic heterogeneous information network and
give an efficient method to update embedding during a short time.
Dynamic heterogeneous network embedding can be divided into
two parts: one is base embedding, the other is the embedding of



adjusting the changed nodes within a certain time. After given the
above definition, our problem can be defined as:

Problem 1. Given G = {G1, . . . ,G𝑡 } and base embedding, the
input is the changed set of edges E𝑐ℎ = {(𝑛1, 𝑛2, 𝑒𝑡𝑦𝑝𝑒, 1), (𝑛2, 𝑛3,
𝑒𝑡𝑦𝑝𝑒, 0), . . . }, where 1 and 0 represent the operation of creating and
deleting edges, respectively. The output is node representation 𝐺𝑡+Δ

capturing the evolutionary trajectory of the graph, where Δ denotes
time variation.

3 PROPOSED METHOD
In this section, we first explain the design motivation and the pro-
posed model architecture, namely Dynamic Heterogeneous Infor-
mation Network Embedding (DyHINE) method. Then, we describe
the corresponding model structure which aims to solve the three
challenges in detail and give the objective optimization function.

3.1 Model Overview
The network structure is continuously changing over time in re-
ality. In order to learn more purposeful node representation, the
evolutionary information needs to be employed. Furthermore, node
embedding should be updated in real-time to provide superior down-
stream services. For example, in the e-commerce shopping scene,
users’ preferences should be updated instantly after user clicking
on a product to improve the recommendation performance.

To meet different requirements, we design two models: dynamic
time-series embedding model and online real-time update model.
In the former, we focus on the heterogeneity and dynamics of
the network to mine rich features. In the latter, the few new nodes
change their features in a short time is assumed to ensure efficiency,
so only the affected nodes are updated. In summary, the purpose
of the dynamic time-series embedding model is to learn the time-
varying features of nodes in heterogeneous networks, while online
real-time update model is to meet the need for updating embedding
in a short time.

Our idea of designing models is dedicated to solving the three
major challenges presented. Firstly, network has heterogeneity as
shown in Fig.1. The users rate the film and television works, and
the film and television works also have their category. There are
some different nodes and relationship links between nodes, such as
indicating that users like films and who is the star of a film. In this
paper, the features of nodes and edges are represented by vectors,
which can be called node or edge embedding. Node embedding is
represented by𝐺 ∈ 𝑅𝑛×𝑑 (where 𝑛 represents the number of nodes
and𝑑 represents the dimension of embedding), and edge embedding
is represented by 𝐸 ∈ 𝑅𝑛×𝑠×𝑒 (where 𝑒 is the edge embedding size
and 𝑠 denotes the number of edge types). Nodes are susceptible
to the changes of their neighbors, and different types of nodes or
edges have different importance to the target node. Therefore, we
design a hierarchical attention mechanism to learn the diversity of
edges and nodes to solveC1 (as described in section 3.2). Secondly,
the network is constantly evolving, and the features of nodes are
constantly changing. To solve C2, we adopt temporal random walk
and design the corresponding loss function. (Please see section 3.3
for details.) Thirdly, according to the actual situation, the number
of changed edges and nodes in the network is extremely small in

a short period, thus the embedding should not change a lot and
rerunning the whole network is unnecessary. Especially for large-
scale networks, the rerun strategy is not appropriate when new
nodes and edges are coming. To solve C3, an online update model
is designed. If some nodes are changed, only the features of affected
nodes (edge type, neighbor embedding) are used to update their
embedding. Experiments show that it can also achieve good results.
In the loss design, our goal is to find the embedding of each node at
time 𝑡 based on the unsupervised model. Inspired by Deepwalk [18],
we used skip-gram as the basic model to learn node embedding.

3.2 Heterogeneous Network Embedding
Learning

To solveC1, we design the hierarchical attention mechanism which
can be viewed as a pyramid level attention mechanism as shown
in Fig.2 (the figure is shown horizontally). We select the network
snapshot diagram at the current time for operation and our model
can also be used for continuous-time update learning. The first layer
firstly aggregates different neighbor edge and node embedding (the
neighbor and edge relations formed before the current time) and
then aggregates the neighbor node and edge embedding in the
second layer.

Node aggregation. Learning the information of neighbor nodes
in heterogeneous networks, we have some intuitive ways to inte-
grate the neighbor nodes. For example, the final fusion result can
be calculated by the mean-pooling, max-pooling or min-pooling
method with multiple embedding matrix. But these methods fail to
consider the contribution of different nodes. In reality, users can
interact with other users or rate movies. They should have different
contributions or influences for users. Thus we use the attention
mechanism to learn the information of neighbor nodes.

An obvious fact is that the number of node neighbors could
be extremely large without giving a limitation on neighborhood
distance. Thus, we set the number of neighbors as a super parameter
(we can choose to use the whole neighbors or a fixed number of
neighbors in the experiment) and fuse the neighbor information
into the target node. If the target node 𝑣 has 𝑚 neighbor nodes
in the network snapshot at time 𝑡 , denoting as {𝑣𝑛1, 𝑣𝑛2, ..., 𝑣𝑛𝑚},
the embedding combination of these neighbor nodes is set as 𝑁𝑣 ∈
𝑅𝑑×𝑚 , with

𝑁𝑣 = [𝐺𝑣𝑛1 ;𝐺𝑣𝑛2 ; ...;𝐺𝑣𝑛𝑚 ], (1)

where, 𝐺𝑣𝑛𝑚 denotes one of the neighbors embedding of node 𝑣 .
To efficiently capture the neighbors’ influence, we exploit attention
mechanism, and the gravity coefficient of different neighbors is:

𝛽𝑣 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇
𝑛1𝑡𝑎𝑛ℎ(𝑊𝑛2𝑁𝑣))𝑇 , (2)

where,𝑊𝑛1 ∈ 𝑅𝑑 and𝑊𝑛2 ∈ 𝑅𝑑×𝑑 are the parameters of learning
neighbors information for node 𝑣 .

Considering the influence of the previousmoment and the change
of embedding at the current moment, the neighbor node embedding
after aggregation is proposed as follows:

𝐺𝑡 ′
𝑣 =𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑁 𝑡

𝑣 𝛽
𝑡
𝑣,𝐺

𝑡
𝑣), (3)

where, 𝐺𝑣 denotes the representation of node 𝑣 , 𝑡 represents the
timestamp.



Figure 2: Overview of the dynamic time-series embedding model of DyHINE method: the network at time 𝑡 is firstly obtained
for the target node, then representations of different types of edges and neighbor nodes are learned by neural networks, and
the final representations are generated via aggregating the edge and neighbor nodes representations.

Edge aggregation. Through the aggregation of neighbor nodes,
the structural characteristics of the network have been roughly
learned. And edge features are needed to learn to solve network
heterogeneity better, so edge embedding 𝐸 ∈ 𝑅𝑛×𝑠×𝑒 is introduced.
In the edge aggregation calculation, only the edge embedding with
first-order neighbors is calculated.

Similarly, the influence of different edge types should be dif-
ferent. For example, in the friend recommendation scenario, the
contribution of friends is greater than group relationships and the
contribution of the best friend is greater than a normal friend. For
this reason, a novel dual-level attention mechanism is designed to
learn about different types of edges.

Firstly, we apply type-level attention to learn the representation
𝑃𝑣,𝑟 ∈ 𝑅𝑒 of the same type edges of neighboring nodes:

𝑃𝑣,𝑟 = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 (𝐸 𝑗,𝑟 , 𝑗 ∈ N𝑣,𝑟 ), (4)

where, 𝑣 represents target node, N𝑣,𝑟 is the neighbors of node 𝑣 on
edge type 𝑟 , and the aggregator function is the same as attention
mechanism used in Formula (2) and (3).

Then, we design the edge-level attention to capture the impor-
tance of different type edges in the target node. Formally, different
type of edge representations are aggregated first:

𝑃𝑣 = [𝑃𝑣,1; 𝑃𝑣,2; ...; 𝑃𝑣,𝑠 ], (5)

where 𝑠 is the size of edge type. Then edge-level attention weights
are computed with softmax function:

𝛼𝑣 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇
𝑒1𝑡𝑎𝑛ℎ(𝑊𝑒2𝑃𝑣))𝑇 , (6)

where,𝑊𝑒1 ∈ 𝑅𝑑 and𝑊𝑒2 ∈ 𝑅𝑑×𝑒 are the parameters of learning
neighbors information for node 𝑣 . Finally, we incorporate dual-level
attention mechanism into edge aggregation with the following
layer-wise propagation rule:

𝐻𝑡 ′
𝑣 = 𝑀𝑃𝑣𝛼𝑣, (7)

where,𝑀 ∈ 𝑅𝑑×𝑒 is the transformation matrix for the unification
of the edge and node embedding.

Second layer aggregation. In the second level of aggregation,
we focus on the aggregation of edge embedding and node embed-
ding. One could also have a simple aggregation operator over them
to model interactions between node and edge, but we find that this
resulted in worse performance. Instead we obtain improvements by
a gate mechanism to distill the complementary information from
𝐺𝑡 ′
𝑣 and 𝐸𝑛𝑡

′
𝑣 . Specifically, the gate is designed as:

𝑔𝑣 = 1 − 𝜎 (𝑊𝑔1𝐻
𝑡 ′
𝑣 + 𝑏𝑔1) ⊙ 𝐺𝑡 ′

𝑣 , (8)

where, 𝜎 (.) is the sigmoid function, ⊙ denotes the element-wise
multiplication,𝑊𝑔1 ∈ 𝑅𝑑×𝑑 and 𝑏𝑔1 ∈ 𝑅𝑑 are learnable parameters
used to align edge embedding to node embedding space. After
that, cooperated with a new trainable matrix𝑊𝑔2 ∈ 𝑅𝑑×𝑑 and bias
𝑏𝑔2 ∈ 𝑅𝑑 , the final aggregation is computed as:

𝐺𝑡+1
𝑣 = ((𝑊𝑔2𝐻

𝑡 ′
𝑣 + 𝑏𝑔2) ⊙ 𝐺𝑡 ′

𝑣 ) ⊙ 𝑔𝑣, (9)

where, 𝑡 + 1 represents the next timestamp.

3.3 Dynamic Network Embedding Learning
As the network evolves over time, the features of nodes are con-
stantly enriched and changed. Time is a critical factor in dynamic
learning because the order of relationship formed by nodes and
edges contains rich semantic. For example, in the network formed
by item recommendation, the order of forming edges between users
and commodities not only reflects the change of users’ preferences,
but also reflects the possible combination of commodities. There-
fore, some strategies are designed to capture timing information.

At first, based on the loss function of original skip-gram model,
time dimension | |𝐺𝑡 −𝐺𝑡−Δ | |2 is added. The motivation comes from
the fact that there are few changes during a short time. Secondly,
the temporal random walk strategy is adopted. That is, it walks
out of the sequence according to the time sequence relationship.
For example, sequence 𝑎 → 𝑏 → 𝑐 indicates that node 𝑏 builds
up relation with 𝑎 before 𝑐 . And the length of the random walk is
fixed in our model. In addition, time-based batch is used to sort



Figure 3: Overview of the online real-time update model of
DyHINE method: it first obtains the change edges and finds
the influenced nodes, then it adjusts their embeddings.

the training and testing datasets in ascending order of time. Time-
based batch refers to dividing batches for learning according to
time points.

3.4 Efficient Embedding Updating
The learning of large networks faces the problem of computational
complexity. In some practical applications, such as real-time moni-
toring of abnormal behavior, real-time network changes need to
be quickly learned to serve downstream tasks. Generally speaking,
the nodes affected by network changes in a short time may be few
in a large-scale network. Updating all nodes wastes a lot of time.
Therefore, some affected nodes are found to update to reduce time
consumption. For these reasons, we design the model shown in
Fig.3. The model dynamically updates the representation of nodes
when edge relations of nodes are established or deleted. In the
training, we use the idea of flow to learn data one by one. To meet
the requirement of the rapid update, embedding is divided into
two parts: past embedding and changing embedding. The changing
embedding uses the operator𝑤 to learn directly.

When a new node is formed, it can be learned when it estab-
lishes new edge connections. Before that, just the random or mean
initialization is done to learn its embedding. Based on this point,
we first put forward the updating process of the node in the case
that it has new edges establishment. The embedding of the new
node can be updated with the edge establishment method when it
has established the new edge relationship.

Edge change. There are many scenes of changing edges such as
establishing a new chat relationship, users rating a movie, students
publishing a paper, and so on. Given the set of changed edges
E𝑐 = {(𝑛1, 𝑛2, 𝑒𝑡𝑦𝑝𝑒, 1), (𝑛2, 𝑛3, 𝑒𝑡𝑦𝑝𝑒, 0), . . . }, we find the adjacent
affected nodes and only update them by using operator𝑤 ∈ 𝑅𝑑 to
reduce time complexity.𝑤 =𝑊𝑜 × Δ.𝑊𝑜 is initialized by Gaussian
distribution. Assuming that 𝑣 is one of the affected nodes, inspired
by [12], the following function is used to study the embedding of
node 𝑣 :

𝐺𝑡+Δ
𝑣,𝑑

= (1 +𝑤) ⊙ 𝐺𝑡
𝑣, (10)

where ,𝐺𝑡
𝑣 denotes the embedding learning by dynamic time-series

model, 𝐺𝑡+1
∗𝑑 represents dynamic node embedding in online real-

time update model and 𝑤 ∈ 𝑅𝑑 denotes the operator of node 𝑣 .
There are no deleted edges in the experiment, and a feasible theo-
retical method is proposed here.

Node change. On the Internet, users may register and delete
accounts, which brings changes to the network structure. A similar
solution to edge processing is adopted to ensure that node embed-
ding can be updated in real-time. When a new node comes, it will
first initialize its embedding with mean value of all nodes. Then
when it establishes a relationship with other nodes, the edge in-
crease strategy will be used to update the network. When the node
is deleted, we will find the affected node, and then update these
nodes using the operator. The formula is the same as Formula 10.

3.5 Objective and Model Training
To perform dynamic heterogeneous graph representation learning,
we define the following objective function:

𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥
∏
𝜈∈V

∏
𝑡 ∈𝑇V

∏
𝜈𝑐 ∈𝑁 𝑡

𝜈

𝑝 (𝜈𝑐 |𝜈 ;𝜃 ) (11)

where, 𝑁 𝑡
𝜈 is the set of neighbors of node 𝜈 in the random walk

of the graph at a timestamp, 𝜃 denotes all the model parameters.
Following Node2vec [10], we use softmax function to define the
conditional probability 𝑝 (𝜈𝑐 |𝜈 ;𝜃 ) as:

𝑝 (𝜈𝑐 |𝜈 ;𝜃 ) =
𝑒𝑥𝑝 (𝐺𝜈𝑐 ·𝐺𝜈 )∑

𝑘∈V𝑡
𝑒𝑥𝑝 (𝐺𝜈𝑘 ·𝐺𝜈 )

(12)

where, 𝐺𝜈 is the output node embedding from the proposed model.
Similar to [16], we use the negative sampling technique to approxi-
mate the function 𝑝 (𝜈𝑐 |𝜈 ;𝜃 ) as:

𝑝 (𝜈𝑐 |𝜈 ;𝜃 ) = 𝑙𝑜𝑔𝜎 (𝐺𝜈𝑐 ·𝐺𝜈 ) +
𝐿∑
𝑙=1

Ξ𝜈𝑘∼𝑃𝑡 (𝜈𝑘 )𝑙𝑜𝑔𝜎 (−𝐺𝜈𝑘 ·𝐺𝜈 ) (13)

where, 𝐿 denotes the negative sample size and 𝜈𝑘 is randomly
selected from a noise distribution 𝑃𝑡 ∝ 𝑑

3/4
𝑣𝑘

, with 𝑑𝑣𝑘 denoting the
out-degree of 𝑣𝑘 . In the selection of positive and negative samples,
a pair of positive and negative samples are selected for each central
node.

The objective function in the dynamic time-series embedding
model is described above, and in the online real-time update model,
considering the change is slight, the following one is added to its’
objective function:

𝐸 ′ = 𝑎𝑟𝑔𝑚𝑖𝑛
∑
𝑡 ∈𝑇

∑
𝜈∈V𝑐ℎ

| |𝐺𝑡
𝑣 −𝐺𝑡−Δ

𝑣 | |2 (14)

where, 𝐺𝑡 denotes the dynamic embedding in time 𝑡 while 𝐺𝑡−Δ

denotes the dynamic embedding before time 𝑡 andV𝑐ℎ denotes the
nodes whose edges have changed.

Finally, the objective function of DyHINE model is:

𝐸𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛(
∑
𝑡 ∈𝑇

∑
𝜈∈V𝑐ℎ

| |𝐺𝑡
𝑣−𝐺𝑡−Δ

𝑣 | |2−
∏

𝜈∈V𝑐ℎ

∏
𝑡 ∈𝑇V𝑐ℎ

∏
𝜈𝑐 ∈𝑁 𝑡

𝜈

𝑝 (𝜈𝑐 |𝜈 ;𝜃 ))

(15)



Table 1: Statistics of Datasets.

Datasets #nodes #edges #node-type #edge-type density

Twitter 27711 40000 1 3 0.0052%
Movielens 2643 182799 3 3 2.62%
Amazon 11930 163951 1 4 0.12%

4 EXPERIMENT
In this section, we conduct extensive experiments aiming to answer
the following research questions:

• RQ1 How does DyHINE perform vs. state-of-the-art baselines
on the temporal link prediction task?

• RQ2What are the effects of different neighbors and surrounding
edges features on the target node?

• RQ3 How efficient is DyHINE compared with other dynamic
methods?

• RQ4 How does model parameters like embedding size affect the
model?

4.1 Datasets
Three public datasets are selected to complete the temporal link
prediction task. The statistics of datasets are summarized in Table
1. In the process of network construction, several relationships
are selected to form heterogeneous networks. The data is sorted
in chronological order. The data before a certain point in time is
used as the training set, and the last data is used as the testing set.
In the experiment, we also divide the training set into about 9:1
according to timestamp. The first nine parts are learned according
to the proposed dynamic time-series embedding model, and the
last part is learned by streaming according to the online real-time
update model. There are some new nodes in the last part that
have not previously appeared. The link relationship of new nodes
in the testing set needs to be predicted. For other methods, the
entire training set is trained without involving new nodes. In the
application of the formula, the first nine parts use Formula 9, while
the last one part use Formula 10. A brief introduction to the data
set is given below:

Twitter. Twitter dataset (Higgs) comes from social applications.
It consists of four directional relationships, namely forwarding,
replying, and mentioning relationships between more than 450,000
Twitter users. The data format is "userA, userB, timestamp, interac-
tion" and each edge type is balanced. In our experiment, all edge
types are tested.

Movielens.Movielens dataset has three node types that consist
of four types of edges with timestamp. We select users’ ratings
for movies, movies’ genre, movies and users’ relationship. The
distribution of different edge types is not uniform, and the number
of one edge type is much higher than the other. Only one main
edge type(movies and users) are tested, which can be seen as a
recommendation question.

Amazon. Amazon dataset in our experiment is derived from
[3], which has four types of edges without timestamp. It includes
product metadata and links between products. AsMovielens dataset,
there is only one edge type in its’ testing set.

4.2 Experimental Setup
Our model code is completed with Pytorch. To reduce experimental
adjustment parameters and better compare the effectiveness of each
method, for all embedding methods, some parameters are fixed if
they have: The length of the walkers: 10; The window size: 5; The
number of neighbor samples: 10; The size of negative samples: 5.
The node embedding size of our model is 64, and other methods
select it by tuning.

Baselinemethods. The proposed method is compared with sev-
eral state-of-the-art methods using public codes or our implemen-
tations. In terms of comparison method selection, we choose three
kinds of network embedding methods, categorized as static homo-
geneous network embedding methods (Deepwalk, LINE, Node2vec),
static heterogeneous network embedding methods (GATNE), and
dynamic network embedding methods (CTDNE, DynamicTriad, tN-
odeEmbed, DynAERNN). In the test method, we first use different
methods to generate the node vector representation, and then use
the temporal link task to test the generated results.
• Deepwalk.Deepwalk [18] generalizes word embedding and uses
truncated random walks to learn potential representations of
networks.

• LINE. LINE [24] designs an optimized objective function to pre-
serve first-order and second-order approximations for learning
network representations.

• Node2vec. Node2vec [10] designs a biased random walk pro-
cedure for static network and it introduces two parameters to
control the random walk process.

• GATNE. GATNE [3] formalizes the embedded learning problem
of heterogeneous networks with multiple attributes and proposes
a unified framework to solve it. The framework supports both
transductive and inductive learning.

• CTDNE. CTDNE [17] generalizes random walk-based embed-
ding methods to a dynamic scenario. Several effective meta-path
selection strategies are proposed to capture temporal properties.
Specifically, the unbias strategy is used in this paper.

• DynamicTriad. DynamicTriad [36] is incapable of distinguish-
ing different types of objects, which could result in incorrect
meta-paths being adopted for modeling the triad closure process.

• tNodeEmbed. tNodeEmbed [22] utilizes a joint loss function to
optimize specific given tasks, which simultaneously obtains a
temporal embedding of a node by learning to combine historical
temporal embeddings.

• DynAERNN. DynAERNN [9] extends the autoencoders to in-
crementally generate embedding of a dynamic graph by using
Recurrent Neural Network to capture the temporal correlations.

4.3 The Performance on Temporal Link
Prediction (RQ1)

To answer RQ1, we set up some experiments to estimate the effec-
tiveness of our proposed model on temporal link prediction task.

Temporal link prediction. Link prediction is a common task
in academia and industry. In academia, it is often used to estimate
the advantages and disadvantages of different network embedding
methods. The different is that temporal link prediction considers
the time, which can be viewed as predicting future connections. In
this experiment, we hide the later part of the edge as the testing set



Table 2: Perfromance comparison of different methods on three datasets for temporal link prediction task.

Method Twitter Movielens Amazon
ROC-AUC F1 PR-AUC ROC-AUC F1 PR-AUC ROC-AUC F1 PR-AUC

Deepwalk 0.8068 0.6474 0.7315 0.8043 0.6783 0.6521 0.6509 0.6615 0.7033
LINE 0.6726 0.4965 0.6142 0.7032 0.5932 0.5591 0.3154 0.461 0.4485

Node2vec 0.7346 0.5553 0.6427 0.8146 0.6831 0.6818 0.5822 0.6202 0.6362
GATNE 0.5878 0.485 0.4364 0.839 0.7 0.6789 0.8251 0.6857 0.6795
CTDNE 0.777 0.5565 0.6267 0.5351 0.4158 0.4125 0.6719 0.6791 0.7098

DynamicTriad 0.8111 0.598 0.6769 0.5717 0.4319 0.4612 0.6236 0.6366 0.6782
tNodeEmbed 0.7543 0.6737 0.7299 0.6519 0.5735 0.5182 0.9495 0.8896 0.9403
DynAERNN 0.7393 0.6367 0.6952 0.6861 0.5558 0.5481 0.8508 0.8266 0.8322

DyHINE 0.8316 0.7533 0.7731 0.8715 0.7798 0.6818 0.9013 0.8356 0.9489
DyHINE-e 0.8159 0.7245 0.7365 0.8648 0.7795 0.6793 0.8738 0.8194 0.9207
DyHINE-n 0.8249 0.7412 0.7398 0.8706 0.7793 0.6799 0.8654 0.8107 0.9143

%Improv. 2.53% 11.82% 5.17% 3.87% 11.4% - - - 0.91%

according to the time series. After obtaining the representation of
nodes, the inner product is used to perform temporal link prediction.
Since this is a binary prediction problem, we use the area under
the ROC curve (ROC-AUC), F1 score, and PR curve (PR-AUC) as the
evaluation methods. The Table 2 lists the results and the analysis
are as follows:

• On Twitter and Amazon datasets, the performance of Deep-
walk method is better than Node2vec, while on Movielens, the
Node2vec method is superior to Deepwalk. It illustrates that
Node2vec proposed biased random walk procedure to help im-
prove the representation of nodes on the dense dataset and Deep-
walk performs well with sparse data.

• LINE has a poor performance on Amazon. According to the
feature analysis of datasets, we can find that it performs relatively
well in dense data, but poorly in the case of sparse data and
uneven distribution of edge types. It is more susceptible to data
distribution than Deepwalk.

• GATNE performs well on relatively dense data. Compared with
other methods mentioned above, it enhances learning by aggre-
gating neighbor information, which to some extent reflects that
aggregating neighbor node helps to improve embedding perfor-
mance. However, it cannot learn good features in the especially
sparse dataset, which may be because the introduction of other
heterogeneous information in the case of insufficient data adds
too much noise. Besides, GATNE combines with base embed-
ding to integrate the relationship of different edges, which is
better than the previous method, indicating the effectiveness of
embedding different edges.

• On the whole, the dynamic method performs well for sparse data.
By mining the data evolutionary features, this kind of method
outperforms the static one by a substantial margin. Comparing
among the four dynamic methods, The experiment results show
that the tNodeEmbed method works better with more changing
edges in a timing chip. Due to the rich variation in the time
slice of the amazon data set, it has shown exceptionally excellent
performance in the ROC-AUC and F1 indexes. DynamicTriad and
CTDNE perform well on sparse data. From the overall effect,

tnodeEmbed’s performance is better, to a certain extent reflects
the effectiveness of the framework and the combination of history
embedding can improve performance. This also brings us some
inspiration when designing the model in combination with the
previous node embedding aggregation.

• The experimental results show that our method performs better
than the others as a whole and performs well in the case of very
sparse data. This is because the hierarchical attention mechanism
is used to strengthen the feature mining of the relationship be-
tween users. At the same time, taking into account the changes in
the time dimension, our method has learned richer user features.
Its performance on Amazon is not optimal, probably due to the
loss of information in online updates.

In summary, DyHINE learns the better heterogeneous node embed-
dings than state-of-the-art methods on the temporal link prediction
task, which lies in the better consideration of the network hetero-
geneity and dynamic challenge.

4.4 The Effect of Aggregating Edge Type and
Neighbors (RQ2)

In order to judge the influence of edge aggregation and neighbor
node aggregation on the model, we conduct ablation experiments to
answer RQ2. DyHINE-e and DyHINE-n represent only using edge
and node embedding for aggregation respectively. The experimental
results are shown in Table 2.

• From the results, we find that the effect of aggregating neighbor
node embedding is better than that of aggregating edge embed-
ding on Twitter andMovielens dataset, but the results on Amazon
are the opposite. This may be because the characteristics of neigh-
bor nodes reflect user preferences, and when there are more edge
types, they can effectively reflect better user preferences. In the
actual situation, the use of attention mechanism to aggregate
node information can reflect the importance of the connection
relationships to a certain extent.

• It can be observed that using a single edge or node aggregation
can also improve performance due to the use of side information.



Table 3: Average running time (seconds) per epoch under dy-
namic embedding model.

Methods CTDNE DynamicTriad tNodeEmbed DynAERNN DyHINE

Twitter 2578 3 30 52 11
Movielens 11074 4 154 37 40
Amazon 10715 6 133 42 37

Many studies like GATNE [3] have also proved that using edge
information can effectively improve model performance.

• It can be found that using hierarchical attention mechanism to ag-
gregate both can effectively improve the performance. This may
stem from using richer heterogeneous information and mining
shallow relationships between nodes.

4.5 Efficiency Analysis (RQ3)
To show the computational efficiency of our proposed method to
answer RQ3, the average time of all dynamic embedding methods
run in GPU on different datasets are recorded in Table 3. The unit
of time is minutes. It can be seen that our method can get relatively
efficient performance. CTDNE takes longer time because it learns
the evolution of continue-time, whereas the other baselines just
learn a few snapshots. DynamicTriad seems to have excellent per-
formance, but it cost lots of time during sampling triad. DyHINE
costs longer time on Movielens due to the aggregation of neighbor
nodes and edges and the dataset has more types of edge and node.

4.6 Parameter Sensitivity (RQ4)
In this part, the impact of embedding size on the model is explored
by using the temporal link prediction task to answer RQ4. The
experimental results are shown in Fig.4. The vertical comparison
shows that the performance on Amazon dataset is better, while
on Movielens is worse on PR-AUC. It can be observed that, as the
embedding size increasing, the performance initially rises steadily,
but then drops after the size reaching a certain level. Specifically, it
can be concluded that the proposed model consistently achieves the
best performance on three datasets when the node embedding size
is between 200 and 300 and the edge embedding size is between
15 and 25. This desirable phenomenon may be contributed to the
fact that the probability of assigning similar items to homogeneous
embedding may decrease significantly when the embedding size is
too large.

5 RELATEDWORK
We review existing network embedding methods on homogeneous
networks, heterogeneous networks and dynamic networks, which
are most relevant to our work.

Homogeneous networks. Early work on homogeneous net-
work embeddings rely on the skip-gram model to generate node
representations, such as Deepwalk [18], Node2vec [10] and LINE
[24]. NetMF [19] further theoretically unify these works into a
matrix factorization framework. However, these methods can not
generalize well to dynamic heterogeneous network since they ig-
nore the heterogeneity and dynamic information of networks.

(a) Node: ROC-AUC (b) Edge: ROC-AUC (c) Node: F1

(d) Edge: F1 (e) Node: PR-AUC (f) Edge: PR-AUC

Figure 4: The impact of node and edge embedding size.

Heterogeneous networks. Recent studies [3–5, 8, 11, 14, 20,
27, 32, 35] have considered network embedding in heterogeneous
networks. For example, PTE [23] represents markup information
and word co-occurrence information at different levels as a large-
scale heterogeneous text network and then embedded nodes into a
low-dimensional space through a principled and efficient algorithm.
Metapath2vec [5] introduces meta-path to learn node embeddings
of heterogeneous information networks. MNE [32] represents each
node by aggregating one common embedding and edge type embed-
ding. HAN [27] uses hierarchical attention to aggregate information
from the neighbors and combine various meta-paths. Despite the
effectiveness of learning the heterogeneity of networks, these meth-
ods ignore the dynamic changes of networks.

Dynamic networks. Existing works [22, 25, 30, 38] focus on
learning embeddings on dynamic homogeneous network. Multiple
attempts have been devoted to embed time network, which can be
roughly divided into two categories: embedded snapshot network
[1, 6, 7, 15, 30, 36] and modeling temporal evolution [17, 22, 38]. For
example, DynamicTriad [36] incorporates both structural informa-
tion and evolution patterns of a given network based on the idea
of triad. However, real-world networks, such as social network of
friends and e-commerce network, keeps changing over time and few
work [1] have study the dynamic embedding methods on heteroge-
neous network. The existing work [1] uses meta-path to learn about
the heterogeneity of the network based on the DynamicTriad [36].

Above methods either learn node embedding on the snapshot or
model the network only in continuous time. Most studies do not
consider how to efficiently update embeddings when the number
of nodes increases. Our method solves the problem of efficiently
updating embedding while considering the time dimension.

6 CONCLUSION
In this paper, we generalize the problem of learning and updating
embedding of dynamic heterogeneous networks and then propose
DyHINE with the dynamic time-series embedding and online real-
time update model. The target node embedding is divided into two
parts: its own features and aggregated features. The aggregated
features consist of neighbor node and edge embedding, and the
hierarchical attention mechanism is adopted to aggregate them. In



the learning of temporal information,We use temporal randomwalk
to learn them better. The operator is designed in this paper to solve
the frequently changing problem of dynamic network. Only some
nodes were dynamically modified to avoid rerunning the whole
network. In this paper, three real-world datasets are used in the
experiments and the results show that DyHINE method performs
better on the temporal link prediction task than existing methods
to some extent. In addition, some characteristics of other models
are found.

This work explores the potential of dynamic network embed-
ding learning and updating. There are many directions that can
be improved in the future. At first, the validity of the LINE model
can be considered to extend DyHINE to the model with specified
neighbors’ order. Secondly, we can focus on the sparse problem
and introduce cross-domain data to assist embedding generation.
Thirdly, we can design better strategies to identify affected nodes
to improve the performance of online real-time update model.
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