arXiv:2503.08175v1 [cs.Al] 11 Mar 2025

Privacy-Enhancing Paradigms within Federated Multi-Agent Systems

Zitong Shi!" Guancheng Wan'! Wenke Huang!'’ Guibin Zhang?

Jiawei Shao®> Mang Ye!

Carl Yang*!

! National Engineering Research Center for Multimedia Software,
School of Computer Science, Wuhan University, China
2 National University of Singapore, Singapore
3 Institute of Artificial Intelligence (TeleAl), China
4 Department of Computer Science, Emory University, USA

Abstract

LLM-based Multi-Agent Systems (MAS) have
proven highly effective in solving complex problems
by integrating multiple agents, each performing dif-
ferent roles. However, in sensitive domains, they face
emerging privacy protection challenges. In this paper,
we introduce the concept of Federated MAS, high-
lighting the fundamental differences between Fed-
erated MAS and traditional FL. We then identify key
challenges in developing Federated MAS, including:
1) heterogeneous privacy protocols among agents, 2)
structural differences in multi-party conversations,
and 3) dynamic conversational network structures.
To address these challenges, we propose Embedded
Privacy-Enhancing Agents (EPEAgents), an in-
novative solution that integrates seamlessly into the
Retrieval-Augmented Generation (RAG) phase and
the context retrieval stage. This solution minimizes
data flows, ensuring that only task-relevant, agent-
specific information is shared. Additionally, we
design and generate a comprehensive dataset to eval-
uate the proposed paradigm. Extensive experiments
demonstrate that EPEAgents effectively enhances
privacy protection while maintaining strong system
performance. The code will be availiable at
https://github.com/ZitongShi/EPEAgent

1 Introduction

Large Language Models (LLMs) have made signifi-
cant advancements in natural language processing, lead-
ing to breakthroughs in a wide range of applications
(Vaswani, 2017; Devlin, 2018). Recent research has
demonstrated that integrating LL.M-based agents into
collaborative teams can outperform individual agents
in solving complex problems. These systems are re-
ferred to as multi-agent systems (MAS). Within this
framework, agents assume different roles or engage in
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Figure 1: Problem illustration. We describe the challenges of
privacy protection in MAS: I) Predefined privacy settings fail to
accommodate the heterogeneous privacy requirements of different
agents; II) Some protection methods compromise context awareness;
III) Complex protection architectures are unable to adapt to the
dynamic collaboration networks inherent in MAS.

debate-like interactions to accomplish tasks, resulting in
superior performance compared to a single agent (Hong
et al., 2023; Chen et al., 2023b; Richards et al., 2023).
However, most existing studies predominantly focus
on enhancing collaboration to improve MAS perfor-
mance, often neglecting critical privacy concerns (Wang
et al., 2025; Du et al., 2023). This issue becomes espe-
cially urgent in sensitive domains such as finance (Feng
et al., 2023; Xiao et al., 2024) and healthcare (Kim et al.,
2024; Li et al., 2024). The need for privacy-preserving
multi-party collaboration naturally leads us to extend
MAS into Federated Multi-Agent Systems (Federated
MAS), where agents cooperate without directly sharing
confidential information. However, Federated MAS dif-
fers fundamentally from FL in several key aspects: (1)
FL aims to train globally shared models, while Federated
MAS focuses on real-time multi-agent collaboration. (2)
FL exchanges information indirectly through model up-
dates, whereas Federated MAS relies on task allocation
and agent communication. (3) FL primarily protects
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training data, whereas Federated MAS must safeguard
privacy dynamically throughout task execution and con-
versations.

Given the significant differences, we identify the key re-
search challenges in developing Federated Multi-Agent
Systems (Federated MAS), as illustrated in Fig. 1: I)
Heteroge neous Privacy Protocols: Different agents
may have varying requirements for data sharing and
privacy protection, requiring that only task-relevant in-
formation is shared among the corresponding agents. II)
Contextual Structure Variations: Some methods as-
sume a structured data format in the Memory Bank and
use differential privacy for protection. However, this as-
sumption does not always hold in practice (Dwork, 2006;
Kasiviswanathan et al., 2011). III) Dynamic Network
Structure: The network structure of MAS is dynamic,
making privacy protection methods that are overly com-
plex or require predefined structures unsuitable. PRAG
(Zyskind et al., 2023) enhances privacy protection dur-
ing the Retrieval-Augmented Generation (RAG) phase
by employing Multi-Party Computation (Yao, 1982) and
Inverted File approximation search protocols. However,
it is limited to the RAG phase and cannot dynamically
adapt to agent heterogeneity. Furthermore, it struggles
with extracting task-relevant information from memory
banks, highlighting its lack of context-awareness.

Some methods (Wu et al., 2023b; Gohari et al., 2023;
Kossek and Stefanovic, 2024) partition context exam-
ples to construct prompt inputs or employ techniques
such as differential privacy and homomorphic encryp-
tion to protect privacy. However, these approaches often
suffer from overly stringent privacy protection mecha-
nisms and high computational complexity, which makes
it challenging to ensure system utility effectively (Wang
etal., 2021; Nagar et al., 2021; Chen et al., 2023a). To
balance performance with privacy requirements, the sys-
tem must meet three key conditions, as highlighted by I),
IT) and III) (Zhou et al., 2024; Wang et al., 2024; Jiang
et al., 2024). This raises an important question: How
can we design Federated MAS that satisfies the specific
privacy needs of different agents, ensures stable task
performance, and avoids excessive complexity?

Given that the fine-tuning approaches of traditional
FL require excessive computing resources and manual
strategies for LLM-based agents (Al-Rubaie and Chang,
2019; Du and Ding, 2021), we shift our focus to the
flexible and dynamic nature of agents. In this paper, we
propose embedded privacy-enhancing agents, referred

to as EPEAgents. This approach deploys a privacy-
enhanced agent on a trusted server, with its functionality
embedded into the RAG and context retrieval stages of
the MAS. Specifically, the message streams received
by each agent do not consist of raw data but are instead
task-relevant information filtered by EPEAgents. In
the system’s initial phase, each agent is required to
provide a self-description, outlining its responsibilities
and tasks within the MAS. This step allows EPEAgents
to understand the roles of each agent, enabling it to
dynamically plan task-relevant and agent-specific
messages during the RAG and context retrieval phases.
Subsequently, each agent can access task-relevant data
tailored to its specific responsibilities.

To evaluate whether EPEAgents maintains system per-
formance while ensuring privacy, we conducted exper-
iments with conversational agents. These experiments
included four types of tasks in the financial and medi-
cal domains, featuring both multiple-choice questions
(MCQs) and open-ended questions (OEQs). The ques-
tions were designed around user profiles, incorporating
details such as financial habits and health conditions.
Since real profiles were unavailable, we generated 25
synthetic profiles using GPT-o01, ensuring they reflected
real-world distributions. The experiments utilized back-
bone models including Gemini-1.5-pro, Gemini-1.5,
Claude-3.5, GPT-o1, GPT-40, and GPT-3.5-turbo
(Team et al., 2023; Achiam et al., 2023). For ques-
tion generation, we followed a three-step process: initial
generation with GPT-o1, review and cross-validation by
other models, and final confirmation through majority
voting or manual inspection. Our principal contributions
are summarized as follows:

e Concept Proposal: We introduce the Federated
MAS, addressing the emerging privacy needs of MAS,
and highlight the fundamental differences between
Federated Learning and Federated MAS.

e Privacy Challenges: We summarize the key chal-
lenges in developing Federated MAS, specifically I),
II), and III). These challenges serve as a framework
for designing privacy-preserving paradigms.

* Critical Evaluation: We critically evaluate existing
privacy-preserving methods in Federated MAS. Most
approaches rely on static models, which are inade-
quate for adapting to the dynamic topologies charac-
teristic.

* Embedded Privacy Enhancement: We propose
EPEAgents, a simple, user-friendly privacy protec-



tion mechanism. Designed to be embedded and
lightweight, EPEAgents adapts seamlessly to dynam-
ically changing network topologies. It demonstrates
minimal impact on system performance while achiev-
ing privacy protection effectiveness of up to 97.62%.

* Federated MAS Evaluation: We synthesized many
data in the financial and medical domains, which con-
form to real-world distributions. Additionally, we de-
veloped a comprehensive set of multiple-choice ques-
tions and open-ended contextual tasks, providing a
robust approach for evaluating both system perfor-
mance and privacy.

2 Related Work

2.1 Federated Learning

Federated Learning (FL), as a distributed privacy-
preserving learning paradigm, has been applied across
various domains. In computer vision, FL is widely used
for medical image processing, image classification, and
face recognition (Liu et al., 2021; Meng et al., 2022).
In graph learning, FL supports applications such as
recommendation systems and biochemical property
prediction, enabling collaborative training without
exposing sensitive data (Wu et al., 2020; Li et al., 2021;
Wu et al., 2021). In natural language processing (NLP),
the federated mechanism has been applied to machine
translation, speech recognition, and multi-agent systems
(MAS) (Deng et al., 2024; Cheng et al., 2023). However,
privacy-focused studies in MAS are relatively scarce,
and most existing approaches (Ying et al., 2023; Pan
et al., 2024) fail to simultaneously satisfy I), II),
and III). In contrast, EPEAgents is lightweight and
flexible, and this paper provides extensive experiments
to demonstrate its performance and privacy protection
capabilities.

2.2 Privacy within MAS

PPARCA (Ying et al., 2023) identifies attackers through
outlier detection and robustness theory, excluding their
information from participating in state updates. The
Node Decomposition Mechanism (Wang et al., 2021)
decomposes an agent into multiple sub-agents and uti-
lizes homomorphic encryption to ensure that informa-
tion exchange between non-homologous sub-agents is
encrypted. Other methods (Panda et al., 2023; Huo
et al., 2024; Kossek and Stefanovic, 2024) attempt to
achieve privacy protection through differential privacy
or context partitioning. However, these approaches are
effective only in specific scenarios. The protection level

of differential privacy is often difficult to control, and
algorithms with high computational complexity are un-
suitable for MAS (Zheng et al., 2023; Wu et al., 2023a;
Shinn et al., 2023; Wang et al.). In contrast, EPEAgents
is lightweight, adaptable to diverse scenarios, and does
not require extensive predefined protection rules.

3 Preliminary

Notations. Consider a MAS consisting of N agents.
We denote the set of agents as: C = {C1,C5,...,Cn}.
During the ¢-th operational round of the system, we
denote the set of communicating agents as C! C C.
The i-th agent is represented as C!, while the privacy-
enhanced agent is denoted by C;;. Each agent is defined
as:

C! = {Backbone!,Rolef,MemoryBank!}. (1)

where Backbone! represents the language model used
by C;, Role! denotes the role played by C; in the MAS,
and MemoryBank! refers to the memory storage of C; at
the ¢-th round, which contains task-relevant information
gathered and processed during the operation. C4 is
deployed on a server with a unique characteristic. Its
MemoryBank’ represents the server’s memory storage
at the beginning of the ¢-th interaction round and is
defined as the aggregate of the MemoryBank® from all
agents.

During the same interaction round, we denote the com-
munication from Cf to C as ef}s, referred to as a spatial
edge, where all communications are directed edges. This
edge includes task-related content and may also include
additional associated operations in our framework, such
as the self-description sent from C; to C'4. The set of

spatial edges is defined as:

e ={ef | Ot S Vi j e {1,... N}, i # ).
()

In adjacent rounds, we define the communication from
Cf_l to C; as eZJ—-, referred to as a temporal edge, where
all communications are also directed edges. This edge
typically contains only task-related content. Similarly,

the set of temporal edges is defined as:

1T . .
ET = {ezjT |t & C.Vi,je{l,...,N},i#j}
(3)
Communication in MAS. Communication in MAS
is defined from the perspectives of spatial edges and
temporal edges. As described above, in any ¢-th round,



Algorithm 1: Execution Workflow in Conven-
tional MAS.
Input: Task 7, prompt P, Communication
rounds N, associated network
gT, gteT,S
Output: The final answer A7
1 fort=1,2,---|T|do
2 for n = 1to N in parallel do
3 At(CZ) —
fo(T,Pi, A1(Cy),Retrievall)
// Benefit from temporal graph G’ .
4 At(CZ') —
fo(T,P;, A'(Cj),Retrievall)
// Benefit from spatial graph G%°.

5 end
6 Al
SumAnswer (Af(C1), AH(Co), ..., A (Cw))

// In some problem-solving scenarios, it
may be based on majority voting; in
conversational agent systems, it

could be the output of a summarizer

agent.
7 end
s return A7

ELS represents directed edges, which, together with
Ct, form a directed acyclic graph GbS = {Ct, £,
Similarly, in the temporal domain, the directed acyclic
graph is represented as G/ = {C'7,£7}. The
intermediate or final answer obtained by C; is denoted
as A(C;), formalized as:

ANC) ~ f@(T, Pi,A(Cj),Retrievalf) 4

where 1" represents the task, P; is the prompt, which
typically specifies the role of C;. A(C}) represents the
output of the parent node Cj in the spatial edges or
temporal edges. Retrieval! refers to the knowledge
retrieved by C; during the ¢-th round, sourced from
the shared knowledge pool DataBase and the server’s
memory storage MemoryBank.

Problem Formulation. This paper explores the chal-
lenge of ensuring privacy protection in MAS while pre-
serving system performance. At the beginning of the
first interaction round, all agents receive the task 7" along
with a prompt specifying their respective Role. In the
general framework, agents retrieve task-relevant infor-
mation from the shared knowledge pool and generate
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Figure 2: Two sample instances from the evaluation process are
presented. The red flow represents the traditional pipeline without
security screening, while the blue flow illustrates the pipeline filtered
through EPEAgents.

intermediate outputs for their respective queries based
on their assigned roles. The details of their interactions
are stored in the server’s memory bank, which can later
be used to retrieve task-relevant information when nec-
essary to enhance response quality. However, although
this pipeline is straightforward, it poses significant risks
of privacy leakage.

We represent user information astd = {uy, ug,...,uy},
where U denotes the total number of users. Each gen-
erated user profile consists of 11 fields, denoted as F,.
Each multiple-choice question has a unique correct op-
tion, denoted as O¢orrect- A result is considered the cor-
rect answer for the MAS if and only if A7 = Ocorrect.
Contextual open-ended questions used for performance
evaluation include two entries: the corresponding field,
denoted as F}, and the question itself. In contrast, ques-
tions used for privacy evaluation include an additional
entry, the label, which identifies the specific agent re-
sponsible for answering the question. For further details,
please refer to Sec. 4.4.

4 Methodology

4.1 Overview

In this section, we introduce the Embedded Privacy-
Enhancing Agents (EPEAgents). This method acts as
an intermediary agent deployed on the server and inte-
grates seamlessly into various data flows within MAS,



such as the RAG phase and the memory bank retrieval
stage. The overall framework of EPEAgents is shown
in Fig. 3. At the beginning of the system operation, the
task 7 is distributed to all agents. Additionally, local
agents send self-descriptions to C 4. Based on these self-
descriptions and user profiles, C 4 sends the first batch of
task-relevant and agent-specific messages to the remain-
ing agents. In subsequent data flows, local agents can
only access the second-hand secure filtered information
provided by C 4.

4.2 Privacy Enhanced Agent Design

Motivation. Research on privacy protection in MAS
remains limited, and there is a lack of architectures that
can adapt to general scenarios. Some methods are de-
signed specifically for certain scenarios, resulting in
limited applicability (Wang et al., 2021; Cheng et al.,
2023; Chan et al., 2023; Deng et al., 2024). Others
involve high computational costs or complex architec-
tures, making them unsuitable for dynamic topological
networks (Nagar et al., 2021; Ying et al., 2023; Cheng
et al., 2024; Du et al., 2024). Inspired by the federated
mechanism, we isolate direct communication between
local agents and during their retrieval processes. Data
flows reaching any local agent are designed to ensure
maximum trustworthiness and security.

Minimization of User Profiles. At the very begin-
ning of system operation, each local agent sends a self-
description to C'4. This allows C 4 to associate different
entries of user data with the corresponding roles of local
agents. For a specific user u;, C; can only access the
content of F), that matches its role.

MU
C’S) ming (1) , if Role; ~ F,,

! )
cV e if Role; < F,
Here, M. represents the minimized user profile infor-
mation. It is sent from C4 to C; only if the role and
F,, match, i.e., Role; ~ F,,. Otherwise, it is not sent.
This scenario can be extended to cases where the shared
knowledge pool is not user profiles but databases of
patient records from different hospitals. In such cases,
this step can be augmented with search protocols to
retrieve relevant information from the databases. How-
ever, this paper focuses solely on the scenario of user
profiles.

Dynamic Permission Elevation. C 4 cannot always
accurately determine whether F;,, ~ Role;, as there

may be subtle differences. For example, in a conver-
sational agent system, a medication delivery process
may require the user’s home address. However, C'4
often cannot infer this requirement directly from the
task 7. In such cases, a trusted third party can initiate
a permission upgrade request to the user, allowing the
user to confirm whether to grant access. This upgrade
mechanism bypasses the forwarding by C'4 and directly
communicates with the user, ensuring the task proceeds
smoothly.

Minimization of Reasoning progress. In addition
to user profiles, some intermediate answers generated
by local agents also need to be filtered and forwarded
through C'4. Malicious local agents may attempt to
disguise themselves as summarizers in the system.
These agents are often located at the terminal nodes
of G°, allowing them to access more information than
others. Ignoring this process could result in serious
privacy breaches. Fig. 2 illustrates a real test case where,
without the information filtering by C 4, the terminal
agent directly revealed sensitive user information, such
as their name and cholesterol level.

4.3 MAS Architecture Design

In this section, we outline the EPEAgents, with a pri-
mary focus on the design of local agents. Improving sys-
tem performance is beyond the scope of this study. We
constructed a simple 3+n architecture to evaluate various
metrics, where 3 and n represent the number of local
agents and C' 4, respectively. For the financial scenario,
the three local agents are defined as follows:

* Market Data Agent: Responsible for aggregating
and filtering relevant market data to provide timely
insights on evolving market conditions.

* Risk Assessment Agent: Responsible for analyzing
the market data alongside user profiles to evaluate
investment risks and determine the appropriateness
of various asset allocation strategies.

* Transaction Execution Agent: Responsible for
integrating insights from the other agents and
executing final trade decisions that align with user
preferences and market dynamics.

For the medical scenario, the three local agents are de-
fined as follows:

» Diagnosis Agent: Responsible for providing an inter-
mediate medical diagnosis perspective by analyzing
patient symptoms, medical history, and diagnostic test
results.
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Figure 3: The architecture illustration of EPEAgents.

* Treatment Recommendation Agent: Responsible
for evaluating potential treatment options by integrat-
ing clinical guidelines and patient-specific data to sug-
gest optimal therapeutic approaches.

* Medication Management Agent: Responsible for
consolidating insights from the Diagnosis and Treat-
ment Recommendation Agents and executing the final
treatment plan, including medication selection and
dosage management, while ensuring patient safety
and efficacy.

C 4 is deployed on the server and is responsible for
receiving intermediate responses and the complete user
profile. It filters and sanitizes the data by removing
or obfuscating fields that lack the specified aggregator
label, ensuring that only authorized information is
accessible. We assigned roles to the agents using
prompts, and a specific example is shown below:

4.4 Synthetic Data Design

In this section, we provide a detailed explanation of
the dataset generation process. Following (Bagdasarian
et al., 2024; Thaker et al., 2024), our dataset is cate-
gorized into three types: user profiles, multiple-choice
questions (MCQ), and contextual open-ended questions
(OEQ). Each category is further divided into two sce-
narios: financial and medical. The latter two types are
additionally split into subsets designed for evaluating
performance and privacy.

Generation of User Profiles. User profiles are central
to data generation, subsequent question construction,

and experimental design. To facilitate question construc-
tion, we divide user profiles into several entries, each
associated with a specific field F,,. Each F), corresponds
to a question domain Fy, which is crucial for designing
privacy evaluation questions.

The set of user profiles is U = {u1, ug, ..., ujy }. We
define u; in the form of a tuple as:
= (entry, field), i € |U]|. (6)

Here, entry denotes an item within the profile, which
can be further decomposed into multiple compo-
nents:

entry = {field, value, field, label}.  (7)

The field is one of these components and is explicitly
highlighted in Eq. (6) to enhance clarity in understand-
ing the subsequent formulas.

Generation of Question Datasets. The question gen-
eration process involves three steps: @ GPT-o01 creates
an initial draft of questions; ® multiple large models re-
generate answers and perform comparative analysis; @
manual review is conducted for verification and refine-
ment. Designing Multiple-Choice Questions (MCQ)
and Open-Ended Questions (OEQ) to evaluate perfor-
mance is straightforward. We generated questions for
the F), fields in the user profiles, creating 5 MCQs for
each of the 6 fields. Each MCQ includes four options,
with one correct answer. We then used Gemini-1.5,
Gemini-1.5-pro, Claude-3.5, and GPT-01 to generate



answers for each question across all users. Disputed an-
swers were resolved by majority voting or manual delib-
eration. A question can be formalized as follows:

question = (field, type, stem, answer), (8)

Here, type refers to the category of the question, indi-
cating whether it is an MCQ or an OEQ. A test sample
can be formalized as:

s =u; > question 9)

Here, < denotes the association operation between a
user u; and a question. This operation maps a specific
entry from the user profile to the corresponding field
in the question, facilitating the construction of a sam-
ple s = (entry, field, type, stem, answer). A similar
process was applied to the OEQ designed.

The label of user profiles is denoted as £,, which
indicates the matching relationship with the three local
agents. This matching relationship is also generated by
a large language model, following a similar three-step
process to that used for generating MCQ. The three local
agents are numbered 1, 2, and 3. Taking the financial
scenario as an example, the investment goals entry
has a label £,, = {1, 2}, indicating that its information
can be shared with the Market Data Agent and the Risk
Assessment Agent. According to GPT-o1, the reasoning
is as follows:

* The Market Data Agent requires the user’s investment
goals to provide market data aligned with those goals.
For instance, if the user prioritizes long-term wealth
accumulation or retirement savings, Agent 1 needs to
gather market trends, industry insights, or macroeco-
nomic indicators relevant to these objectives.

* Similarly, the Risk Assessment Agent needs invest-
ment goals to evaluate the user’s risk preferences. Dif-
ferent goals often imply varying levels of risk expo-
sure and investment horizons. For example, retirement
savings typically demands a balance between stability
and growth, whereas short-term speculation focuses
more on short-term volatility. Thus, this information
is crucial for the Risk Assessment Agent to provide
accurate risk analysis.

After labeling each entry, we designed privacy-
evaluating MEQ and OEQ. For MEQ, a fixed option,
Refuse to answer, was introduced as the correct re-
sponse. For OEQ, prompts were configured to ensure
that agents, when asked about unauthorized informa-
tion, reply with a standard statement: I do not have

Figure 4: An example prompt that defines the Diagnosis Agent’s
role and privacy-related constraints in our medical MAS.

the authority to access this information and
refuse to answer. Privacy-evaluating questions dif-
fer from performance-evaluating ones in key ways. The
former assigns the responder based on the label, whereas
the latter designates an agent to serve as the summarizer,
providing the final answer.

4.5 Discussion

In our approach, the privacy-preserving model on the
server, C4, leverages existing large models such as
GPT-o1 and Gemini-1.5-pro. However, its primary
functionality is focused on data minimization and
acting as a forwarding agent. This suggests potential
avenues for future research, including the exploration of
more lightweight and specialized models to replace the
current architecture. Furthermore, the labels assigned to
the entries during architecture evaluation are generated
by LLMs. In real-world scenarios, however, these con-
ditions may depend more heavily on users’ subjective
preferences. This underscores the need for further inves-
tigation into practical benchmarks to better evaluate the
alignment of such labels with user expectations.

S Experiment

We conducted detailed experiments with 21,750 samples
across five models in two domains, thoroughly evalu-
ating the performance and privacy effects of both the



Table 1: Utility and Privacy Comparison between the Baseline and EPEAgents. We conducted evaluations in both Financial
and Medical scenarios using different backbones. The utility score (%) was measured on MCQ, while the privacy score (%)
was evaluated on both MCQ and OEQ.

Financial Medical
Backbone Method MCQ OEQ MCQ OEQ
Utility(%) Privacy(%) Privacy(%) | Utility(%) Privacy(%) Privacy(%)
Claude-3.5 Baseline 86.28 13.68 14.29 84.69 12.26 12.32
’ EPEAgents | 86.8910.61 85.64171.06 84.23469.94 | 85.5910.00 84.28472.00  85.34173.02
GPT-ol Baseline 95.12 15.89 23.53 89.83 14.57 14.73
EPEAgents 96.61T1,19 97.62@“,73 96.31¢7247g 91.89¢24()(; 95.43@;(]43(; 95.84@;1,11
GPT-40 Baseline 80.67 11.24 12.26 74.67 8.73 10.29
EPEAgents | 81.6410.97 75.271614.03 78.61466.35 | 79.3840.71  76.47T467.74  79.94169.65
GPT-3.5-turbo Baseline 70.35 12.38 6.34 68.57 7.89 4.27
’ EPEAgents | 69.82 71.26158.88 61.67455.33 | 68.7810.21 69.37161.48  66.35162.08
Gemini-1.5 Baseline 60.78 11.68 11.23 59.22 8.23 5.61
: EPEAgents 61.161\1),33 55.691\/1,1,(]1 56.47@15421 58.76 56.49¢1&2(; 58.547*52'93
Geminicl.5-pro Baseline 68.25 13.33 18.22 62.72 10.57 6.22
: EPEAgents 68.747\(),19 65.717\32_:;& 58'45?’1“423 63.43¢(],71 67.28¢56,71 62.34T5(j,12
baseline methods and EPEAgents.
. lelypeleCQ ]I(ym ypred)
5.1 Experimental Setup Privacyyrcq = — )
| Stype| = MCQ (11
Datasets and Tasks. Adhering to (Feng et al., 2023; . 2 1Spel=0EQ EM(Ya; Yprea)
Wang et al., 2025), we evaluated the performance and PrwaCYOEQ = | Stype| = OEQ )

privacy of the models in the financial and medical sce-
narios. Our dataset is divided into three categories: user
profiles, multiple-choice questions, and open-ended con-
textual questions. The detailed generation process of
these categories is provided in Sec. 4.4.

Evaluation Metric. The structure of a test sample is
s = (entry,field, type, stem, answer). We denote
the answer obtained by MAS as 1/,eq and the pre-defined
standard answer as y,. Due to the difficulty of standard-
izing reference answers for OEQ across large models,
as well as the challenges in controlling evaluation met-
rics, we primarily use MCQ to assess the utility of MAS
(Bagdasarian et al., 2024). The calculation method is as
follows:

Z|Stypc|:MCQ H(yaa ypred)

Utility =
T sl =MCQ

(10)

where I(yq, ypred) is an indicator function that returns 1
if yo = ymas and O otherwise. Privacy evaluation takes
a more comprehensive approach, utilizing both MCQ
and OEQ. In the case of MCQ, a predefined option,
Refuse to answer, is included as the standard answer.
For OEQ, agents are guided through prompts containing
explicit instructions for their responses.

where EM(y4, Yprea) is an exact match function that
returns 1 if the predicted answer ypeq €xactly matches
the reference answer ¥, and 0 otherwise.

EM — 1 if Sprea = S
0 otherwise

5.2 Experiment Results

(12)

We adopt a 3+n architecture for evaluation. In the main
experiment (Tab. 1), we fix n to 1 for evaluation. Addi-
tionally, we perform ablation studies by replacing the
backbone architectures of the entire MAS and specifi-
cally focusing on the backbone of the server-side C 4.
We also investigate the impact of varying the num-
ber of privacy-preserving agents C'4 deployed on the
server.

Performance Analysis. We observed a slight increase
in utility in most scenarios, while the Privacy scores
improved significantly across all scenarios. Interest-
ingly, GPT-o1 exhibited a significantly higher increase
in utility compared to other backbones. We attribute
this to the strong comprehension capabilities of GPT-o01,
which allows for more precise filtering of user profiles
and intermediate data flows. In contrast, models with
relatively weaker comprehension capabilities, such
as Gemini-1.5 and GPT-3.5-turbo, exhibit a utility
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Figure 5: Ablation Analysis of the number of C 4. We used
Claude-3.5 and Gemini-1.5 as backbones in our experiments.
Please refer to Sec. 5.3 for additional analysis.

decline under certain scenarios due to their limited
ability to handle tasks effectively. However, even in
these cases, the improvement in Privacy remains highly
significant.

Additionally, we observed an entries difference in Pri-
vacy scores. Questions associated with certain entries,
such as annual income, which are widely recognized
as sensitive privacy information, tend to exhibit higher
privacy protection compared to other entries. This effect
is particularly prominent in high-performing models like
Claude and GPT-o01. In contrast, this distinction is less
evident in lower-performing LL.Ms. For example, the
Privacy score of GPT-40 on the Baseline is comparable
to that of GPT-3.5-turbo.

5.3 Ablation analysis.

Different Backbones. A comparison of columns in
Tab. 1 reveals that the differences in Privacy scores
among various backbones in the Baseline are relatively
minor. For instance, even the high-performing GPT-o01
achieves a Privacy score of only 15.89 in the financial
scenario without the application of EPEAgents, which
is merely 3.51% higher than that of GPT-3.5-turbo.
However, when our architecture is applied, the im-
provement in Privacy scores becomes significantly more
pronounced for higher-performing LLMs. For exam-
ple, Claude-3.5 demonstrates a remarkable 71.96%
increase in Privacy scores, whereas Gemini-1.5, be-
ing relatively less capable, achieves a more moderate
improvement of 44.01%.

Key Parameters. We conducted ablation studies on the
number of C'4 agents deployed on the server to analyze
how their workload distribution affects the overall per-
formance of the MAS. The results presented in Fig. 5
show that when lower-performing LLMs are used as the
backbone for C 4, increasing n slightly improves the Pri-
vacy scores. However, this improvement becomes less
significant when higher-performing LLMs are used as
the backbone. For example, when Claude-3.5 is used
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Figure 6: Ablation Analysis of the backbone of C 4. We replaced
the backbone of C 4 with GPT-o01 and Gemini-1.5 as local agents
to study their impact on the privacy score of MAS. Please refer to
Sec. 5.3 for additional analysis.

as the backbone, the Privacy score tends to decrease as
n increases. In contrast, with Gemini-1.5, the Privacy
score can improve by as much as 6.29% at its peak.

Backbone of C',. WWe conduct ablation studies on the
server-side privacy-preserving agent’s backbone, focus-
ing on the two models with the best and worst perfor-
mance in Tab. 1: GPT-o01 and Gemini-1.5. The results
are presented in Fig. 6. Our findings highlight the crit-
ical role of the C'4 backbone. Even when local agents
utilize a high-performing LLLM such as GPT-o1, main-
taining a high Privacy score becomes challenging if
the C 4 backbone is suboptimal. For instance, when
the backbone of C'4 is Gemini-1.5, the Privacy score
drops to 58.67% despite local agents using GPT-o1, rep-
resenting a 38.95% decrease from the original score. In
contrast, employing a strong LLM as the C'4 backbone
enables the system to achieve substantial Privacy scores,
even when the local agents rely on less capable LLMs.
This observation indirectly validates the effectiveness of
EPEAgents.

6 Conclusion

In this work, we identified emerging privacy protec-
tion challenges in LLM-based MAS, particularly within
sensitive domains. We introduced the concept of Fed-
erated MAS, emphasizing its key distinctions from tra-
ditional FL. Addressing critical challenges such as het-
erogeneous privacy protocols, structural complexities in
multi-party conversations, and dynamic conversational
network structures, we proposed EPEAgents as a novel
solution. This method minimizes data flow by shar-
ing only task-relevant, agent-specific information and
integrates seamlessly into both the RAG and context
retrieval stages. Extensive experiments demonstrate
EPEAgents’s potential in real-world applications, pro-
viding a robust approach to privacy-preserving multi-
agent collaboration. Looking ahead, we highlight the



importance of incorporating dynamic privacy-enhancing
techniques into MAS, particularly in high-stakes do-
mains where privacy and security are essential.
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