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Abstract—Continuous diagnosis prediction based on multi-
modal electronic health records (EHRs) of patients is a promising
yet challenging task for AI in healthcare. Existing studies ignore
abundant domain knowledge of diseases (e.g., specific medical
terms and their interrelations) in textual EHRs, which fails to
accurately predict disease progression and assist in sequential
diagnosis prediction. To this end, we first propose an Expert
enhanced neural Ordinary Differential Equations (ExpertODE)
framework for continuous diagnosis prediction. In particular,
we first propose a novel Mixture of Language Experts (MoLE)
module to enhance disease embeddings with domain knowledge.
Furthermore, we propose a Contrastive Neural Ordinary Differ-
ential Equation (CNODE) module to continuously model tempo-
ral correlations of disease progression, and implement a unified
contrastive learning framework to jointly optimize the domain-
based MoLE module and the temporal-based CNODE module.
Extensive experiments on two real-world textual EHR datasets
show significant performance gains brought by our ExpertODE,
yielding average improvements of 3.91% for diagnosis prediction
over state-of-the-art competitors.

Index Terms—Diagnosis Prediction, Language Experts, Con-
trastive Neural ODE

I. INTRODUCTION

Multimodal electronic health records (EHRs) are valuable
data sources for researchers to construct continuous diagnosis
prediction and assist clinical decision-making [13], [20]. These
data encompass various formats, including texts (clinical notes,
diagnostic records), signals (sensor records), images (ultra-
sound scans), environmental data, and behavioral data.

Among them, textual data has garnered attention for the
predictive models in medical applications. This is largely due
to the rich domain knowledge encapsulated in texts (e.g.,
specific terms from semantic domain and their interrelations
from clinical domain). Many recent studies leverage deep
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learning models to excavate the semantic interplay in textual
EHRs, such as Recurrent Neural Networks [1], Convolutional
Neural Networks [19], Attention-based mechanisms [9],
and Transformers [21]. However, several challenges remain
in delving into abundant textual EHR data:

Challenge I. How to effectively utilize domain knowl-
edge for accurate disease representations? As shown in
Fig. 1, the semantic relations between Allergic Asthma and
Bronchial Asthma can be understood by general language
experts due to the phrase overlapping of “Asthma”. However,
different asthma can correspond to different syndromes under
the knowledge of clinical experts. For example, Allergic
Asthma exhibits a notable degree of stability over time,
while Bronchial Asthma phenotypes often demonstrate a trend
toward syndromic exacerbation. Although general Language
Models (LMs) equipped with a broad spectrum of knowledge
can model the semantic similarities among disease names
(e.g., BERT [5] and GPT-2 [14]), they fall short in capturing
specialized knowledge extracted from medical corpus. Since
clinical experts are not readily available in every situation and
manual collection is often very costly, the existing methods
fail to automatically obtain domain knowledge of diseases for
accurate disease representations.

Challenge II. How to model continuous disease progression
together with the domain knowledge? Although the clinical
data are generally discrete with patients’ irregular visits in
EHRs (shown in Fig. 1), the majority of disease progressions
and alterations in a patient’s physical state occur continu-
ously [4], [17]. Therefore, it is essential to utilize sporadic,
partially observed patient visits for continuous modeling of
diagnosis prediction. However, how to jointly optimize con-
tinuous diagnosis prediction based on the disease embeddings
learned with domain knowledge remains unknown.
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Fig. 1: An toy example depicting semantic and syndromic relations in disease progression using textual EHR data.

To address the above challenges, we propose a novel contin-
uous diagnosis prediction model with Expert enhanced neural
Ordinary Differential Equations (ExpertODE). In particular,
we first propose a Mixture of Language Experts (MoLE)
module that harnesses LMs from both general and clini-
cal domains. The general domain LMs (e.g., GPT-2) offer
a wide comprehension of common semantic patterns with
large parameter scales, while clinical LMs (e.g., Clinical-
BERT) provide specialized knowledge extracted from medical
contexts with smaller parameter scales. Then, we propose a
Contrastive Neural Ordinary Differential Equation (CNODE)
module. We propose to leverage neural Ordinary Differential
Equations (ODEs) to continuously model disease progression
under patients’ irregular visits, where a unified contrastive
learning framework is designed to bridge continuous disease
progression together with the domain knowledge of diseases.

The main contributions of this work are summarized as:
(1) Novel integration of domain experts. We propose an ef-
fective MoLE module that integrates both clinical and general
language experts to enrich disease embeddings. (2) Effective
model design. ExpertODE is the first unified framework to
jointly capture domain-based semantic relations and continu-
ous disease progression for diagnosis prediction. (3) Extensive
experiments on real-world datasets. Extensive experimental
results against state-of-the-art approaches demonstrate the
superiority of our proposed model.

II. RELATED WORK

Language Models for General and Clinical Domains.
With the massive corpora and powerful computation resources
for pre-training, the general LMs can be categorized into
three types: encoder-only LMs (e.g., BERT [5]), decoder-
only LMs (e.g., GPT-2 [14]), and encoder-decoder LMs (e.g.,
T5 [15]). Although the general LMs have been widely applied
to various NLP tasks, they may fail to solve specialized
domain problems, especially in the clinical domain. To learn
rich domain knowledge, existing studies have tried to pre-train
the LMs on a large medical corpus from scratch [21]. For
example, Clinical-BERT [22] is pre-trained on MIMIC-III [6]
including multimodal EHRs. However, these clinical LMs may

ignore the comprehension of common semantic patterns and
lack generalization capabilities.
Dynamics Modeling for Diagnosis Prediction. EHR data
can be observed as the sequence of patients’ visits for
diagnosis prediction [1]. Recently, deep learning has been
widely adopted to model the dynamics in EHR data. For
example, Dipole [10] applied bidirectional long-short-term
memory networks and attention mechanisms to predict patient
visit information. Timeline [1] utilized time-aware attention
mechanisms in RNNs for health event predictions. Chet [7]
designed a context-aware dynamic graph learning method to
learn disease combinations and disease development schemes.
However, they ignore the timestamps of the visits and fail
to capture the continuous dynamics of disease progression.
To better leverage irregular timestamps, recent studies [2]
proposed to capture temporal dependencies via learning time
embeddings. For instance, HiTANet [9] designed time interval
vectors to model irregular time gaps between successive visits.
Procare [18] leveraged neural ODEs to capture the continuous-
time disease progression. However, they do not consider the
domain knowledge of diseases.

III. METHODOLOGY

A. Method Overview

Our goal is to provide continuous diagnosis prediction
based on multimodal EHRs via modeling accurate disease
representations and continuous-time dynamics of the patient’s
health state (shown in Fig. 2). To leverage domain knowledge,
we obtain the disease representation Xd for the d-th disease
from XG

d and XM
d , which are the embeddings from the

general and clinical language experts, respectively. To capture
the dynamics across irregular visit sequences, our process
starts with initializing an ID embedding Id for d-th disease.
We then aggregate these into sequential visit embeddings
{vi,k}Mi−1

k=0 , each associated with timestamps {ti,k}Mi−1
k=0 , to

form the comprehensive patient embedding P i for patient pi.
Mi denotes the number of visits of patient pi. Finally, we
predict the last diagnosed diseases in the visit vi,Mi

at the
timestamp ti,Mi

(i.e., diagnosis prediction V̂ i,Mi
and Ṽ i,Mi

).
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Fig. 2: The overall framework of Expert enhanced neural Ordinary Differential Equations (ExpertODE).

B. Mixture of Language Experts
As highlighted in the introduction section, accurate disease

representations are crucial for effective diagnosis prediction.
This task is particularly challenging due to the complex seman-
tic relations and syndromic relations among diseases shown in
Fig. 1. There is a pressing need for an automated mechanism
that can seamlessly integrate rich domain knowledge from
textual EHRs, such as specific terms from the semantic domain
and their clinical interrelations, without the necessity for
manual curation or supervision.

Inspired by the success of representation learning based
on LMs, we propose to leverage language experts to incor-
porate external domain knowledge, where a novel Mixture
of Language Experts (MoLE) module can harness distinct
LMs from both general and clinical domains. In this way,
the general language expert with a much larger parameter
scale can capture the shared semantics provided by the term
“Asthma” (shown in Fig. 1), whereas the clinical expert with
a smaller parameter scale can distinguish the conditions based
on disease progression patterns and associated syndromes.

Specifically, we adopt a gating mechanism to aggregate
knowledge from various LMs (i.e., Clinical-BERT and GPT-
2). Note that, these language models can be flexibly replaced
according to the specific situation. Then, we can learn the
importance of different LMs for each particular disease. The
ensemble representation for a disease Xd is calculated as:

Xd = MoLE(XG
d ,X

M
d ) = ω ·XG

d + (1− ω) ·XM
d , (1)

where XG
d is the embedding from the general LM, XM

d is
the embedding from the clinical LM, and ω are the weights
assigned to the respective embeddings by the MoLE module,
ensuring a balanced integration.

C. Contrastive Neural Ordinary Differential Equations
When constructing disease progression from EHRs, it is

needed to address the challenges posed by the discrete and

irregular nature of the observed data. Traditional models
that consider only discrete visit entries fail to capture the
continuity inherent in disease progression. As shown in Fig. 1,
without recognizing the evolving nature of diseases, we can
not distinguish patient Leo’s trajectory (i.e., from Bronchial
Asthma to Pneumonia) from patient Amy’s progression (i.e.,
remaining Allergic Asthma).

To capture the temporal dynamics of patient visit sequences
for diagnosis prediction, we introduce a novel approach inte-
grating a Gated Recurrent Unit (GRU) based encoder with an
attention mechanism to generate patient embeddings, followed
by a neural ODE model to evolve these embeddings over time.

Specifically, we first initialize an ID embedding Id for d-
th disease. Then, we obtain a visit representation via vi,k =∑

d∈Di,k
Id, where Di,k is the set of diseases diagnosed in

the k-th visit of patient i. Furthermore, we obtain patient
embedding P i via processing the input sequence of patient
visits {vi,k}Mi−1

k=0 with a GRU-based attention mechanism:

P i = Attention(GRU({vi,k}Mi−1
k=0 ). (2)

The GRU [8] is adept at capturing temporal dependencies,
while the attention mechanism [9] weighs the importance of
each visit, allowing the model to focus on the most relevant
information. This process yields a consolidated patient state
representation P i.

Subsequently, we adopt a latent ODE model to describe a
continuous process by a neural ODE in the latent space. The
mathematical formulation of neural ODE is written as:

dZ(t)

dt
= fode(Z(t), t; θ), (3)

where the evolved latent state Zt at any time t is used for
predicting the likelihood of future disease onset.

To obtain Zt, it requires solving an ODE initial value
problem via Z0. With widely adopted reparameterization
trick [17], we derive the initial state Zi,0 by sampling from



a Gaussian distribution with mean µ and variance σ, both
of which are yielded by a neural network predicated on the
patient embedding P i. In this way, we have the distribution
qϕ approximates the posterior of Zi,0 given P i as follows:

Zi,0 ≈ qϕ(Zi,0|P i) = N (µ(P i), σ(P i)
2). (4)

This initial state Zi,0 is then evolved through time using
an ODE solver, reflecting the continuous progression of the
patient’s health state over time. The ODE function gi models
the continuous-time dynamics of the patient’s health state:

Zi,Mi
= ODESolveη(gi,Zi,0, t0, t1, . . . , tMi

), (5)

where Zi,Mi
represents the patient’s state at time ti,Mi

and η
is a hyperparameter to control the step size of neural ODEs.

Based on the state Zi,Mi
that captures the evolution of the

patient’s condition throughout their clinical history, we can
make continuous predictions for patients as follows:

V̂ i,Mi
= pθ(Zi,Mi

) = σ(W iZi,Mi
+ bi). (6)

The training objective is formulated to maximize the Evi-
dence Lower Bound (ELBO) by jointly training the encoder
and the generative model. The ELBO is given by:

LELBO =− Eqϕ(Zi,0|P i)[log pθ(Zi,Mi
)]

+ KL[qϕ(Zi,0|P i)||p(Zi,0)],
(7)

where pθ is the likelihood of the patient embedding given
the latent state, qϕ is the approximated posterior distribution,
and KL is the Kullback-Leibler divergence between the ap-
proximated posterior and the prior distribution of the initial
latent state. This objective encourages the model to learn
embeddings that are informative of the patient’s future health
outcomes, providing a dynamic and continuous approach to
disease diagnosis.

Since the diagnosis prediction is a multi-label classification
task, we use a dense layer with a softmax function to calculate
the predicted probability. Specifically, the prediction Ṽ i,Mi is
based on the inferred patient status Zi,Mi , and the objective
function for diagnosis prediction Lpred is given by:

Ṽ i,Mi
= softmax(MLP(Zi,Mi

)), (8)

Lpred = − 1

N

N∑
i=1

V i,Mi
log

(
Ṽ i,Mi

)
+(1− V i,Mi

) log
(
1− Ṽ i,Mi

)
,

(9)

where V i,Mi
is the ground-truth of patient i’s Mi-th diagnosis

and N is the number of patients.
Furthermore, to effectively integrate the semantic view

provided by the LMs and the temporal view from the neural
ODEs, we employ contrastive learning to align two modules:

Lcon =
∑
d

− log
exp(cos(Id,Xd))∑
d′ exp(cos(Id,Xd′))

, (10)

where Id is the disease embedding learned by CNODE, Xd is
the disease embedding learned by MoLE, and cos denotes the

TABLE I: Statistics of the datasets used in our experiments.

Dataset MIMIC-III eICU
# of patients 2,371 23,828
# of visits 7,279 59,908
Avg. visits per patient 3.07 2.51
# of unique ICD-9 codes 4,880 2,591
Avg. # of diagnosis codes per visit 13.39 4.22
Max # of diagnosis codes per visit 39.0 95.0

cosine similarity. This contrastive loss function encourages the
alignment of embeddings from both the CNODE and MoLE
pathways, thereby synergizing the semantic and temporal
insights for a comprehensive disease representation.

The final objective function of the proposed ExpertODE is
given as follows:

min
Id,Xd

LELBO + Lpred + λLcon, (11)

where λ is a hyperparameter to control the contrastive loss.

IV. EXPERIMENTS

In this section, we evaluate our proposed ExpertODE frame-
work focusing on four research questions: RQ1: How does
ExpertODE perform in comparison to state-of-the-art diagno-
sis prediction methods? RQ2: What are the effects of different
model components? RQ3: How do the hyperparameters affect
the prediction performance and how to choose optimal values?
RQ4: How does ExpertODE improve the modeling of diseases
with general and clinical LMs?

A. Experimental Settings

Datasets and Evaluation Protocols. We use two real-
world EHR datasets to verify the effectiveness of compared
methods, i.e., MIMIC-III [6] and eICU [12]. Both datasets are
fully anonymized and carefully sanitized before our access.
We chose patients who made at least two visits for both
datasets. The statistics are summarized in Table I. ICD-9 is
the official disease code [7], [17]. For evaluation metrics, we
use Recall@k and NDCG@k that are consistent with [7], [8].

Methods for Comparison. We adopt 11 representative
state-of-the-art methods as baselines for the performance
comparison with our proposed ExpertODE: (1) interaction
modeling methods: GRAM [3], KAME [11], MHM [13],
TAdaNet [16], and CGL [8]; (2) dynamic modeling methods:
RETAIN [2], Dipole [10], Timeline [1], HiTANet [9], Chet
[7], and ProCare [18].

Implementation Details. We split the dataset randomly
according to patients into training/validation/test sets (i.e.,
1660/237/474 on MIMIC-III and 16679/2383/4766 on eICU),
which is consistent with [7], [8]. We optimize the compared
baselines with standard Adam and tune all hyperparameters on
training sets through grid search. In particular, η in {0.01, 0.05,
0.10, 0.50} and λ in {0.5, 1.0, 1.5}. We set the embedding
dimension D as 128 and the batch size as 128 for all compared
methods on MIMIC-III and eICU. We carefully tune the
hyperparameters of baselines as suggested in the original
papers to achieve their best performance.



TABLE II: Experimental results on two benchmark EHR datasets with Recall and NDCG. The best performances are highlighted
in boldface and the second runners are underlined.

Method Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10
MIMIC-III eICU

RETAIN 0.1510 0.4188 0.2134 0.3537 0.3213 0.3428 0.3901 0.3605
Dipole 0.1442 0.3999 0.2038 0.3378 0.3071 0.3274 0.3727 0.3452
GRAM 0.1429 0.4059 0.2112 0.3510 0.3049 0.3318 0.3862 0.3576
Timeline 0.1487 0.4123 0.2100 0.3482 0.3175 0.3376 0.3840 0.3548
KAME 0.1353 0.3992 0.2055 0.3070 0.2887 0.3268 0.3759 0.3126
MHM 0.1383 0.4080 0.2128 0.3481 0.2954 0.3340 0.3893 0.3547
TAdaNet 0.1433 0.4114 0.2172 0.3568 0.3056 0.3371 0.3972 0.3642
HiTANet 0.1502 0.4166 0.2122 0.3518 0.3204 0.3413 0.3881 0.3584
CGL 0.1538 0.4265 0.2173 0.3602 0.3379 0.3624 0.4298 0.3872
Chet 0.1636 0.4403 0.2312 0.3719 0.3495 0.3604 0.4228 0.3790
ProCare 0.1885 0.5004 0.2687 0.4271 0.4121 0.4097 0.5004 0.4352
ExpertODE M- 0.1908 0.5101 0.2704 0.4310 0.4157 0.4291 0.5047 0.4502
ExpertODE C- 0.1888 0.5112 0.2643 0.4269 0.4038 0.4095 0.4981 0.4378
ExpertODE 0.1963 0.5243 0.2759 0.4439 0.4245 0.4341 0.5105 0.4548

TABLE III: Hyperparameter Studies on MIMIC-III and eICU.

Param. Recall@5 NDCG@5 Recall@5 NDCG@5
MIMIC-III eICU

η = 0.01 0.1921 0.5146 0.4213 0.4301
η = 0.05 0.1963 0.5243 0.4228 0.4319
η = 0.10 0.1949 0.5130 0.4245 0.4341
η = 0.50 0.1904 0.5096 0.4136 0.4266
λ = 0.5 0.1896 0.5170 0.4160 0.4148
λ = 1.0 0.1963 0.5243 0.4245 0.4341
λ = 1.5 0.1947 0.5141 0.4224 0.4296

B. Overall Performance Comparison (RQ1)

We compare the continuous diagnosis prediction results of
the proposed ExpertODE framework to those of the baseline
models. Table II shows the Recall@k and NDCG@k on
MIMIC-III and eICU datasets with k={5, 10}. We have the
following observations.

ExpertODE consistently outperforms all baselines across all
metric on both datasets. This answers RQ1, showing that our
proposed ExpertODE that captures domain-aware semantic
relations and continuous disease progression is capable of
continuous diagnosis prediction. Compared with the second-
best performance, the performance gains of ExpertODE ranges
from 2.02% with Recall@10 on eICU to 5.96% achieved with
NDCG@5 on eICU.

Specifically, ExpertODE outperforms CGL and Chet, which
predict health events through transition functions on disease
graphs. It demonstrates the effectiveness of modeling the
continuously evolving nature of disease progression. Although
ProCare can capture disease severity, interaction, and continu-
ous progression, it does not integrate the rich, semantic under-
standing that ExpertODE’s MoLE module provides through
its language experts. It further validates the significance of
leveraging abundant domain knowledge from EHRs.

C. Ablation Studies (RQ2)

To better understand our proposed techniques, we conduct
ablation studies as follows: ExpertODE M- removes the Mix-
ture of Language Experts (MoLE) module from ExpertODE,

TABLE IV: Different MoLE Weights ω of exampled diseases
learned by our proposed ExpertODE on MIMIC-III.

ICD-9 Disease name ω
252.02 Hyperparathyroidism, unspecified 0.51
252.00 Secondary Hyperparathyroidism 0.55
272.00 Pure Hypercholesterolemia 0.30
401.00 Malignant Essential Hypertension 0.37
790.22 Impaired Glucose Tolerance Test 0.41

and ExpertODE C- removes the Contrastive Neural Ordinary
Differential Equation (CNODE) module from ExpertODE.

As shown in Table II, compared with ExpertODE M-,
ExpertODE leads to performance gains ranging from 1.02%
(achieved in NDCG@10 on eICU) to 2.99% (achieved in
NDCG@10 on MIMIC-III), where ExpertODE M- fails to fully
utilize the domain knowledge for accurate disease embeddings.
Furthermore, the performance gains of ExpertODE over Ex-
pertODE C- ranges from 2.49% (with Recall@10 on eICU)
to 6.01% (with NDCG@5 on eICU), where ExpertODE can
capture latent continuous-time dynamics in patient data. The
results also affirm the effectiveness of our CNODE module
for handling patients’ irregular visits.

D. Effect of Hyperparameters (RQ3)

As shown in Table III, η controls the step size for different
sampling frequencies of the neural ODEs. The optimal η
value on MIMIC-III is about 0.05, and the optimal η value
on eICU is about 0.1. Since the average number of visits
is larger on MIMIC-III, it’s reasonable to use a smaller
sampling frequency for modeling the health status trajectory of
patients. Moreover, λ controls the weight of contrastive loss.
ExpertODE achieves the best performance with λ = 1.0. Too
small λ will cause inadequate modeling disease embeddings
and fail to fully leverage domain knowledge extracted from
general and clinical LMs, while too large λ will likely ignore
the continuous-time dynamics and cause a decrease in the
performance of disease progression.
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Fig. 3: Visualizations of disease embeddings learned by dif-
ferent language experts. Best viewed in color.

E. Case Studies (RQ4)

To provide more insights into the advantages of ExpertODE
in modeling disease embeddings, we provide five exampled
diseases on MIMIC-III. The detailed information of diseases
learned by ExpertODE is presented in Table IV and the cor-
responding visualizations of embeddings are shown in Fig. 3.
As shown in Fig. 3(a), for Hyperparathyroidism, unspecified
(252.02) and Secondary Hyperparathyroidism (252.00), the
general language expert (e.g., GPT-2) can capture the shared
semantics provided by the term “Hyperparathyroidism” and
accurately model the similarity between them (e.g., they
both belong to the ICD-9 of 240-279). Therefore, the MoLE
weights ω of them are higher than 0.5, which means the
importance of general language experts more than clinical
ones. Furthermore, as shown in Fig. 3(b), although Pure
Hypercholesterolemia (272.00), Malignant Essential Hyperten-
sion (401.00), and Impaired Glucose Tolerance Test (790.22)
do not have the shared semantics, the clinical language expert
(e.g., Clinical-BERT) can capture the medical correlation.
Possessing rich domain knowledge, it identifies these condi-
tions as syndromic diseases. Consequently, this understanding
brings their representations closer in the embedding space and
corresponds to low MoLE weights ω.

V. CONCLUSION

In this paper, we propose to make diagnosis predictions
based on the patients’ irregular visits and domain knowledge
of diseases. Specifically, we propose a novel expert enhanced
continuous model (ExpertODE) with two pivotal techniques,
which capture complex dependencies between continuous di-
agnosis prediction optimization and domain-based diagnos-
tic textual representation. Extensive quantitative experiments
demonstrate the clear advantages of our ExpertODE over the
state-of-the-art baselines towards the precise diagnosis, which
is further consolidated with our real case study results.
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