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ABSTRACT
Federated learning aims to train a better global model without shar-

ing the sensitive training samples (usually images) of local clients.

Since the sample distributions in local clients tend to be different

from each other (i.e., non-IID), one of the major challenges for fed-

erated learning is to alleviate model degradation when aggregating

local models. The degradation can be attributed to the weight diver-

gence that quantifies the difference of local models from different

training processes. Furthermore, non-IID also results in feature

space heterogeneity during local training, making neurons of local

models in the same location have different functions and further

exacerbating weight divergence. In this paper, we demonstrate that

the problem can be solved by sharing information from the non-

sensitive modality (e.g., metadata, non-sensitive descriptions, etc.)

while keeping the sensitive information of images protected. In par-

ticular, we propose Federated Learning with Adversarial Example

and Adversarial Identifier (FedAA) that trains adversarial exam-

ples based on the shared non-sensitive modality to fine-tune local

models before global aggregation. The training of local models is

enhanced by client identifiers that discriminate the source of inputs

to force different local models to get similar outputs and be more

homogeneous during the local training. Experiments show that

FedAA significantly outperforms recent non-IID federated learning

algorithms while preserving image privac, by sharing information

from non-sensitive modalities.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Computing
methodologies→ Distributed artificial intelligence.
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1 INTRODUCTION
Recent years have seen a surge of interest in image privacy-preserving

[5, 6, 37, 42], particularly for federated learning (FL), which provides

a method to train a global model across a collection of distributed

clients in the absence of mutual trust.

The most widely used federated learning algorithm, FedAvg [22],

suffers when the assumption of Independent and Identically Dis-

tributed (IID) samples across local clients does not hold. In this

case, the weight divergence that quantifies the difference of local

models from different training processes with the same weight

initialization is much larger than that trained on IID data, which

will significantly degrade the performance of the aggregated model.

As illustrated in the left part of Figure 1, a popular federated strat-

egy [43] to alleviate the non-IID issue by creating a small dataset

Dα that contains images from each client, which can be regarded

as a set of IID samples from the global distribution D of all clients.

Therefore, Dα can be used to align the training data distributions

across local clients, thus alleviating weight divergence and prevent-

ing model degradation. However, Dα is often unrealistic to obtain

since clients should strictly protect the training samples. Even if

there is a way for the central server to obtain Dα without violating

privacy, it is still very hard to examine when the accumulated Dα
can approximate the distribution of D. In specific scenarios (e.g.,

online learning), D is constantly changing, which makes Dα hard

to maintain.

Following prior works [17, 19, 24, 43], for tasks such as image

classification [3, 33] and image caption [32, 38], we regard the

information conveyed by raw images as private information that

easily exposes personal privacy, such as portrait and residential

https://doi.org/10.1145/3581783.3611953
https://doi.org/10.1145/3581783.3611953
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Figure 1: Left: The feasible way for the server to hold a global
dataset. As the server cannot decide which client takes part
in federated learning, especially for online training, the
most feasible way is to collect raw data containing sensitive
information from each client, which violates the federated
setting.Right:Wepropose sharing the information from the
non-sensitive modality and training client identifiers to al-
leviate the non-IID issue.

address. In contrast, task-specific information like label names or

non-sensitive descriptions is the non-sensitive modality. They carry

no private information but can be used to identify samples from

the sensitive modality. For example, in the image classification task,

the label name is a non-sensitive modality, which cannot show any

details of raw images, even the categories (note that the label name

we use can be abstract encoding numbers like “00”, “01”, “10”, “11”

instead of actual category names like “cat”, “dog”, etc.). Furthermore,

in some image caption tasks, the caption is a non-sensitive modality

(general description information) with less private information. As

shown in the example of Figure 2, we cannot know the details of

the man in the picture according to the caption “A man riding a

wave on a surfboard in the ocean”.

We propose to share information from the non-sensitive modal-

ity Dβ instead of the sensitive training samples Dα . Since Dβ and

Dα are correlated, Dβ can also help the system to align the data

distributions across local clients. With non-sensitive modality and

the corresponding local models, we can train adversarial examples

[10, 41] that provide each client with distribution information of

unseen classes. Then, we can fine-tune local models and alleviate

the weight divergence issue with the trained adversarial examples.

Moreover, different input and output distributions also result in

local models’ feature space heterogeneity, which makes neurons

of local models in the same location have different functions and

further exacerbates weight divergence. To align the feature space

during local training, we propose client identifiers that are small

models trained by adversarial examples on the server to discrim-

inate the source of inputs. More specifically, local models try to

learn a similar feature space to mislead the client identifier so that

it cannot distinguish the source of the input data, thus achieving

feature homogeneity across local clients. This paper proposes Feder-

ated Learning with Adversarial Example and Adversarial Identifier

(FedAA). As illustrated in the right part of Figure 1, in FedAA, each

client sends a local model and the non-sensitive modality to the

server to train adversarial examples, then the server will send a

new global model and a client identifier back. During local train-

ing, local models will be trained with client identifiers to align the

feature space. For privacy concerns, we theoretically and exper-

imentally show that sharing the non-sensitive modality will not

expose information of raw images.

The main contributions of this paper can be summarized as

follows:

• We investigate the issues of the popular federated algorithm

for non-IID data [43], which requires sharing a global dataset

of raw images. In contrast, we propose a novel framework

for federated learning, which only shares information from

the non-sensitive modality. It is evident that our method can

better preserve the privacy of images.

• We propose to quantify data privacy by distance correlation

and theoretically prove that sharing information from the

non-sensitive modality is privacy-preserving.

• The proposed method yields promising results on CIFAR-10,

CIFAR-100 and MS COCO. More specifically, FedAA outper-

forms the popular non-IID method, FedBN, by up to 21.26%,

12.52%, 5.90% relatively on different datasets.

2 RELATEDWORK
2.1 Federated learning
With the increasing demand for data privacy protection, feder-

ated learning[1, 22, 25, 26, 29] provides a method to jointly train

machine learning models across a collection of highly distributed

clients while preserving users’ privacy, which has become a key

research area in distributed machine learning and has been attached

to great importance by the community. The currently proposed

federated learning methods consist of three types: horizontal fed-

erated learning, vertical federated learning, and federated transfer

learning[39]. For the sake of brevity, unless otherwise specified,

the federated learning referred to below is all horizontal federated

learning, i.e., the instances are isolated and stored on each client in

a privacy-preserving manner.

2.2 Federated learning on non-IID data
The most widely used federated learning algorithm FedAvg cannot

accurately capture the diversity of non-IID data splits [9], which is

a challenging problem in federated learning. Lots of work has been

proposed to deal with such issues [11]. FedBN [17] trains a federated

model with local batch normalization, but this method has difficulty

in dealing with text data due to batch normalization’s limitation.

FedProx [15] adds a proximal term to the local cost functions, which

forces local models to keep close to the global model. Moon [14]

alleviates the non-IID issue with model-contrastive loss to improve

the representation of local models. [43] proposed a strategy that the

server holds a subset of data that contains examples from each client

and is globally shared between all the clients. However, the server

cannot hold such a dataset in practice. Especially for online training,

the server even has no idea of the number of clients. However, if

clients send raw data containing sensitive information to the server

to construct the global dataset, it will violate the federated setting.

Therefore, we propose FedAA that is suitable for various types

of data. Besides, FedAA only shares information from the non-

sensitive modality (such as label names in classification tasks and

captions in some image caption tasks) that is not critical to users

instead of sharing raw images.
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2.3 Adversarial Example
Adversarial examples[21, 40, 44] is one of the key applications of

Adversarial training. They are inputs to machine learning mod-

els that an attacker has intentionally designed to cause the model

to make a mistake. For example, in image classification tasks, us-

ing adversarial samples to perturb a specific pixel of the image to

be classified can lead to a high-confidence misjudgment[23, 28].

Related work mainly focuses on the generation and defense of ad-

versarial samples for specific downstream tasks[4, 35]. In addition,

it is also used in the fields of enhancing model robustness[2], data

augmentation[31, 36], and object recognition[27], etc. According

to [10], adversarial examples are features, and adversarial vulnera-

bility is a direct result of sensitivity to well-generalizing features in

the data. In this paper, we regard adversarial examples as features

that are related to well-generalizing features.

3 METHODOLOGY
The most widely used federated learning algorithm, FedAvg [22]

keeps data and computation locally on the clients. However, in

practice, sharing some information from non-sensitive modalities

will not threaten the users’ privacy. Therefore, we propose Feder-

ated Learning with Adversarial Example and Adversarial Identifier

(FedAA), which alleviates the non-IID issue by sharing information

from the non-sensitive modality.

3.1 Federated Learning
Assume there areK clients, eachwith a fixed local dataset. A random

fraction C of clients will be selected in each global round when

performing federated learning. The selected clients use the current

global model’s parameters as initialization to train local models.

After the fixed local training epoch le , local models will be sent to

the server and aggregated.

For a machine learning problem, we typically divide the model

into a feature extractor module F (·) and a downstream task module

T (·). If the downstream task is classification, T (·) is a classifier. On
the other hand, if the downstream task is image caption, T (·) is a
decoder. The formal representation of federated learning can be:

min

F ,T
L =

m∑
k=1

Lk , where Lk = min

Fk ,Tk

nk∑
i=1

J(Tk (Fk (xi )),yi ) (1)

where J is the loss function corresponding to the downstream task,

x is a raw image (sensitive modality), y is a label name or caption

(non-sensitive modality),m is the number of selected clients, nk is

the number of samples of client k .
For client k , the local model can be updated as follow:

Fk = Fk − η1∇Lk (Fk ;x)

Tk = Tk − η2∇Lk (Tk ; Fk (x))
(2)

where η1,η2 are learning rates. The Local Training is summarized

in Algorithm 1.

3.2 Non-sensitive Modality
In this paper, we regard the visionmodality as the sensitivemodality.

As for the non-sensitive modality, it depends on the downstream

task. This paper takes the classification task and image caption

task as examples. For the classification task, the label name is a

Algorithm 1 LocalTraining. The K clients are indexed by k ; B is

the local minibatch size; E is the number of local epochs; η1,η2 are

learning rates.

1: LocalTraining(k, F ,T ): //Run on client k
2: B ←(split local data into batches of size B)
3: for each local epoch i from 1 to E do
4: for batch b ∈ B do
5: F ← F − η1∇L(F ;b)
6: T ← T − η2∇L(T ; F (b))
7: end for
8: end for

non-sensitive modality, as it will not reveal the details of the image

content. For instance, one client has images of dogs and flowers,

while the other one has images of cats and trees. Now we train a cat,

dog, flower, and tree classifier. In this case, sharing the correspond-

ing label names (“00”, “01”, “10”, “11”) of different clients will not

expose the private information of images. As for the image caption

task, we select caption as the non-sensitive modality. For example,

in Figure 2, “A man riding a wave on a surfboard in the ocean”, we

cannot deduce relevant information about this man from this gen-

eral description, but the picture can show the appearance and other

information of this man. Hence, the caption is the non-sensitive

modality, while the image is the sensitive modality.

For the classification task, we send clients’ label names to the

server. As for the image caption task, we select the captions that fit

the trained local model best, that is

ykc = arg min

(x ,y)
J(Tk (Fk (x)),y) (3)

where x is a raw image, andy is the corresponding caption,ykc is the

selected caption of client k . Then, we get the global non-sensitive
modality set Yc = {y

1

c ,y
2

c , ...,y
m
c } from all selected clients.

3.3 Train Adversarial Examples from Gaussian
Noise and Adversarially Fine-tune

According to [10], adversarial examples are features that are a direct

result of sensitivity to well-generalizing features in the data. With

the trained local models and non-sensitive modality, we can train

the adversarial examples of client k as follows:

xkadv = arg min

xsample

J(Tk (Fk (xsample )),y
k
c ) (4)

where xsample ∼ N

(
0,σ 2

)
. Specifically, when training adversarial

examples, we first randomly initialize the inputs xsample of F . Then,
we fix F and D to train xsample by L-BFGS [45], which makes the

output of D as close as possible to yc .
Note that the trained adversarial examples from Equation 4 will

not leak users’ privacy. For example, in the image caption task,

we train an adversarial example according to the caption “A man
is walking”, which cannot be used to reproduce the man’s details

in the image. As for an image classification task, if there are two

label names, 0 and 1. Each label name corresponds to lots of images.

Hence, it is impossible to leak the details of any image through the

shared label name.
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Figure 2: Illustration of FedAA. There are four stages and seven steps in the figure, where stages 1, 3 run on clients, and stages
2, 4 run on the server. In step (1), we train local models with local data. In step (2), we select a non-sensitive modality without
private information and send information from the non-sensitive modality to the server. In step (3), we train adversarial
examples by the local models and the corresponding non-sensitive modality. In step (4), after the adversarial fine-tuning, we
aggregate the localmodels to get an averagedmodel and send it to all clients. In step (5), we train a client identifier based on the
adversarial examples and the output of the averagedmodel for each client, then send the client identifier to the corresponding
client. In step (6), we train local models with client identifiers to alleviate weight divergence. In step (7), the local models are
sent to the server and aggregated again.
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Figure 3: The details of training adversarial examples mod-
ule, adversarial fine-tuning module, and client identifier
training module.

After the adversarial examples and the non-sensitive modality

are available, we can adjust local models by Equation 5 before

aggregating.

T ′k , F
′
k = arg min

F ,T
J(Tk (Fk (X

R
adv )),Y

R
c ),

where XR
adv = Xadv − x

k
adv ,Y

R
c = Yc − y

k
c

(5)

where XR
adv is the adversarial examples that do not relate to client

k , and YR
c is the non-sensitive modality information from all clients

except k .

3.4 Client Identifier Update

Algorithm 2 IdentifierUpdate. η is the learning rate; Xadv is the

trained adversarial examples; I is the client identifier.

1: IdentifierUpdate(k, Favд, I ,Xadv ): //Run on client k
2: B ←(split Xadv into batches of size B)
3: for each local epoch i from 1 to E do
4: for batch badv ∈ B do
5: Vembeddinд ← Favд(badv )
6: I ← I − η∇Jadv (Vembeddinд)

7: end for
8: end for
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When data is non-IID, due to the distance between the data

distribution, the divergence between different local feature space

will be large and accumulate very fast [43]. To address this issue, we

propose to train a client identifier I for each client by the adversarial
examples Xadv . At first, we aggregate selected local models to get

an averaged extractor Favд . Then, for client k , the loss function of

the client identifier is:

J
k
adv = − Exi∼X k

adv

[
log Ik

(
Favд(xi )

) ]
− Ex j∼X R

adv

[
log

(
1 − Ik

(
Favд(x j )

) ) ]
,

where XR
adv = Xadv − X

k
adv , Favд =

1

m

m∑
k=i

F ′k

(6)

In Equation 6, Xk
adv is the adversarial examples trained by the local

model and non-sensitive modality from client k . Due to the distance
between the data distributions, the features extracted by Favд are

different. In this case, the object of client identifier Ik is to determine

whether the input adversarial examples (processed by the extractor

Favд ) come from client k , if yes, output 1, otherwise output 0.

Furthermore, every client has a corresponding client identifier. The

training process of I is summarized in Algorithm 2.

3.5 Local Training with Client Identifier

Algorithm 3 LocalTrainingwithI. η1,η2,η3 are learning rates.

1: LocalTrainingwithI(k, F ,T , I ): //Run on client k
2: B ←(split local data into batches of size B)
3: for each local epoch i from 1 to E do
4: for batch b ∈ B do
5: F ← F − η1∇L(F ;b) − η3∇Ladv (F ;b)
6: T ← T − η2∇L(T ; F (b))
7: end for
8: end for

As the client identifier can distinguish different clients’ features,

we send the averaged model and the corresponding client identifier

to the corresponding client, then train the local model with the

client identifier to force different clients to be more similar. And

the new objective function is

Lnew = Lk + Ladv

where Ladv = −Exi∼Xk [log (1 − Ik (Fk (xi )))]
(7)

where Lk =
∑nk
i=1

J
k
(Tk (Fk (xi )),yi ). Note that the Ik remains un-

changed when we update the Tk and Fk . After the local training
with the client identifier, new local models will be sent to the server

and aggregated again to get a global model. The local training with

client identifier is summarized in Algorithm 3. The whole proposed

algorithm is summarized in Algorithm 4.

3.6 Theoretical Analysis for Privacy
Assumption 3.1. For any two variables, the lower the correlation,

the more difficult it is to infer one variable’s value from the other
variable’s value.

Algorithm 4 FedAA. The K clients are indexed by k ; yc is the data
from the non-sensitive modality; xadv is the trained adversarial

examples.

1: Server executes:
2: Initialize global model parameters F0, T0

3: for each round t=1,2,... do
4: m ← max(C · K, 1)
5: St ← (random set ofm clients)

6: for each client k ∈ St in parallel do
7: T kt+1

, Fkt+1
← LocalTraining(k, Ft ,Tt )

8: For image caption, select non-sensitive modality data

yc by Equation 3. For classification, yc is label names.

9: end for
10: Yc ← {y

1

c ,y
2

c , ...,y
m
c }

11: for each client k ∈ St (on server) do
12: Sample noise Xsample ∼ N

(
0,σ 2

)
13: xkadv ← arg minXsample

J(T kt+1
(Fkt+1

(Xsample )),y
k
c ))

14: end for
15: Xadv ← {x

1

adv , x
2

adv , ..., x
m
adv }

16: for each client k ∈ St (on server) do
17: XR

adv = Xadv − x
k
adv ,Y

R
c = Yc − y

k
c

18: F̃kt+1
, T̃ kt+1

← arg minFt+1,Tt+1

J(Tk (Fk (X
R
adv )),Y

R
c )

19: end for
20: Ft+1 ←

∑m
k=1

nk
n F̃kt+1

21: Tt+1 ←
∑m
k=1

nk
n T̃ kt+1

22: for each client k ∈ St (on server) do
23: Initialize client identifier Ik
24: Ik ← Identi f ierUpdate(k, Ft+1, Ik ,Xadv )
25: end for
26: for each client k ∈ St in parallel do
27: T̂ kt+1

, F̂kt+1
← LocalTrainingwithI(k, Ft+1,Tt+1, Ik )

28: end for
29: Ft+1 ←

∑m
k=1

nk
n F̂kt+1

30: Tt+1 ←
∑m
k=1

nk
n T̂ kt+1

31: end for

We propose to use distance correlation R2

n (X,Y) between sen-

sitive modality X and non-sensitive modality Y to quantify data

privacy that may leak, which belongs to [0, 1]. The closer R2

n is to

0, the lower the correlation between X and Y. When R2

n = 0, X
and Y are independent. Suppose there are N different one-hot label

names (classes) and each with the same number of data. We get,

R2

n (X,Y) =
(1 − 1

N )
1

N (
∑
B1 −

∑
B2)√

(1 − 1

N )
1

N
∑
B3

(8)

where B1,B2,B3 are coefficients of sensitive modality data, N is the

number of classes. According to Equation 8, we can get,
lim

N→1,∞
R2

n (X,Y) = 0,

maxR2

n (X,Y) ≤ 0.5,
(9)

We defer the proof to the Appendix A. According to Equation 9,

the non-sensitive data always gets a low correlation with sensitive
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modality data, especially when there is only one value in the non-

sensitive modality, R2

n (X,Y) = 0, which shows that non-sensitive

data and raw data are independent (i.e., N=1 that corresponds to our

experiments). Therefore, sharing non-sensitive modality is privacy-

preserving. Moreover, when 2 ≤ N , the sharedmodality is a random

arrangement (i.e., not paired with samples) that makes the relevant

terms of B in the numerator of Equation 8 appear random sign,

which further leads to the decrease of R.

4 EXPERIMENTS
In this section, we divide the clients of the federated problem into

two categories: data islands and mobile terminals. In practice, there

are some data islands between organizations, such as different

companies and banks. When these organizations participate in

federated learning, the number of clients will be small, each with

a lot of data [12, 18]. In contrast, the number of clients for mobile

terminals will be large, each with a small amount of data [34]. In

our experiments, we aim to (1) validate the effectiveness of FedAA

for two different tasks: image classification and image caption.

(2) validate the effectiveness of FedAA in two different scenarios:

data islands and mobile terminals, (3) validate that FedAA can

effectively alleviate weight divergence, (4) validate whether FedAA

is privacy-preserving. Note that the settings of our experiments

are more challenging, as the data heterogeneity is more obvious,

which makes the reported results lower than that of prior works.

Moreover, we train the adversarial examples by L-BFGS [45] for all

experiments.

4.1 Federated Classification with Data Islands
We run classification of data islands on CIFAR-10 [13] (50,000 sam-

ples) and CIFAR-100 [13] (5,000 samples). There are 10 clients, each

with one class (for CIFAR-100, we randomly sample 10 classes and

assign them to 10 clients). In this experiment, we use a network

with two convolutional layers with 64 and 256 filters, respectively,

followed by two fully connected layers, denoted as F . As we focus
on the classification task in this section, the downstream task mod-

ule T consists of a fully connected layer and a softmax layer. For

the client identifier I , we use three fully connected layers, and the

hidden layer has 512 neurons. When updating F and T , we use the
SGD with a fixed learning rate of 0.0025, batch size 256. Moreover,

D is updated by Adam with learning rate of 0.0004, beta1 = 0.5,

beta2 = 0.9. Furthermore, we fix the number of the first local

epochs to be 10 and the number of the second local epochs to be 1

in every global round, and the number of global epochs is 100. All

experiments are run on GPU 2080.

As shown in Table 1, FedAA consistently outperforms other

methods, except when C = 1.0 on CIFAR-10, the results of FedAA

are slightly lower than that of FedProx. On the other hand, FedAA

performs much better on CIFAR-100 compared to other methods.

Especially, FedAA outperforms FedProx by 16% relatively when

C = 1.0. These results show that algorithms such as FedProx are

not suitable for cases with a small amount of data, as each client

has 5000 and 500 samples on CIFAR-10 and CIFAR-100, respectively.

In contrast, FedAA can work well in both cases. We further show

the convergence by loss in Figure 4, which illustrates that FedAA

gets a lower loss compared to other methods.
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Figure 4: Averaged loss of 10 Clients when C=0.8.

4.2 Federated Classification with Mobile
Terminals

As for the scenario of many mobile terminals in the federated set-

ting, we run experiments with 100 clients. For the non-IID setting,

the training data is sorted by class and divided into 100 partitions.

Then these partitions are randomly distributed to 100 clients (for

CIFAR-10, one in ten clients will have the same class). The hyper-

parameters of this experiment are the same as that of the previous

experiment. We only use a small fraction of clients in this experi-

ment due to the limited bandwidth.

Results in Table 2 show that our approach consistently outper-

forms other baselines, the trend of which is more significant with

the low fraction C , as the adversarial examples of FedAA provides

more information of unseen classes in each round. Its distinguished

performance from FedAvg verifies the efficacy of sharing the non-

sensitive modality under this challenging scenario.

We further show the ablation of FedAA in Table 3. Non-I shows

the results of FedAA without the client identifier module. Non-F

shows the results of FedAA without the adversarially fine-tune

module. It can be seen that both identifier and fine-tuning play a

vital role in FedAA, as almost all results are higher than that of

FedAvg. In addition, these results also show that fine-tuning offers a

more accurate identifier, as all results are lower than that of FedAA,

especially when C = 0.3.
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(a) CIFAR-10, 100 clients, C=0.1
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(b) CIFAR-100, 100 clients, C=0.1

Figure 5: Variance of local models.

To validate that FedAA can force different local models to be

more homogeneous (alleviate weight divergence). We show the

variance of local models before aggregating in Figure 5. It can be

seen that the blue curves of FedAA are much lower than that of

baselines.
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Table 1: Data islands accuracy results of 10 clients on non-IID CIFAR-10 and non-IID CIFAR-100. Each experiment runs 100
rounds, and we report the 95% confidence interval over the highest results.

Dataset C FedAvg [22] FedProx [16] FedBN[17] Moon[14] FedAA (ours)

CIFAR-10

0.5 17.05 ± 7.54% 21.32 ± 12.58% 19.9 ± 11.54% 21.65 ± 12.37% 22.95 ± 3.06%

0.8 34.46 ± 4.53% 37.17 ± 5.24% 33.35 ± 5.44% 35.93 ± 5.31% 40.44 ± 4.23%

1.0 39.09 ± 12.71% 43.94 ± 8.91% 40.93 ± 9.02% 43.04 ± 7.37% 43.69 ± 3.42%

CIFAR-100

0.5 28.30 ± 14.63% 38.33 ± 15.20% 37.80 ± 7.97% 37.57 ± 14.63% 41.93 ± 14.31%

0.8 50.73 ± 4.02% 50.40 ± 8.38% 45.53 ± 4.1% 48.33 ± 4.93% 51.23 ± 9.22%

1.0 56.03 ± 3.87% 49.07 ± 22.06% 53.00 ± 5.47% 51.00 ± 11.21% 57.00 ± 3.48%

Table 2: Mobile terminals accuracy results of 100 clients on non-IID CIFAR-10 and non-IID CIFAR-100. Each experiment runs
100 rounds, and we report the 95% confidence interval over the highest results.

Dataset C FedAvg [22] FedProx [16] FedBN[17] Moon[14] FedAA (ours)

CIFAR-10

0.1 35.73 ± 2.47% 36.87 ± 6.12% 34.41 ± 13.25% 34.78 ± 8.23% 37.91 ± 3.24%

0.2 37.65 ± 7.21% 38.53 ± 5.39% 38.20 ± 6.89% 40.32 ± 1.37% 40.69 ± 1.23%

0.3 42.39 ± 2.64% 42.59 ± 4.00% 43.05 ± 3.57% 41.1 ± 5.48% 43.14 ± 0.31%

CIFAR-100

0.1 3.97 ± 0.30% 3.83 ± 0.34% 3.88 ± 0.70% 3.29 ± 2.18% 4.85 ± 1.10%

0.2 6.31 ± 0.50% 6.98 ± 1.65% 6.75 ± 3.36% 6.15 ± 1.86% 7.42 ± 0.40%

0.3 8.59 ± 0.93% 9.86 ± 1.30% 9.79 ± 2.77% 8.20 ± 1.00% 10.11 ± 0.69%

(a) Airplane (b) Automobile (c) Bird (d) Cat (e) Deer (f) Dog (g) Frog (h) Horse (i) Ship (j) Truck

Figure 6: The trained adversarial examples of classification task. Each image is corresponding to a label of CIFAR-10.

Table 3: The ablation accuracy results of FedAA on CIFAR-
100, 100 clients.

C Non-I Non-F FedAvg

0.1 4.21 ± 0.95% 4.12 ± 0.8% 3.97 ± 0.30%

0.2 7.06 ± 0.52% 7.08 ± 1.07% 6.31 ± 0.50%

0.3 9.35 ± 0.57% 8.64 ± 1.91% 8.59 ± 0.93%

4.3 Federated Image Caption on Multimedia
Dataset

In practice, most federated multimedia tasks such as image caption,

image-text matching, etc., suffer non-IID issues, as clients usually

have different data categories in multiple modalities. For instance,

different specialized hospitals usually hold different categories of

X-ray images and corresponding diagnostic results. A popular mul-

timedia dataset MS COCO [20] contains 123,603 images, and each

is annotated with five sentences using Amazon Mechanical Turk.

To evaluate our method on the non-IID multimedia dataset, we

propose non-IID MS COCO. The training set is grouped according

to the objects in the images. Besides, we drop images that contain

two or more objects. Then there are 25,211 images with 126,055

captions divided into 80 groups. Moreover, we use 5,000 global

images for validation and 5,000 global images for testing. We set

the number of clients to 20 and randomly assigned 80 groups to

these clients, e.g., each with four groups. Besides, each selected

client shares only one caption every global round.

For the image caption task, the feature extractor module F is

the encoder, and the downstream module T is the decoder. In our

experiments, we use the resnet50 [7] as encoder to get a (2048, 4, 4)

embedding vector. As for decoder, we use a LSTM [8] with attention

[30]. F andT are updated by Adam with batch size 32. The learning

rate of the encoder and decoder are 0.0001 and 0.0004, respectively.

The client identifier I and its related hyperparameters are the same

as that in section 4.1. Furthermore, we fix all the number of local

epochs to be 1 in every global round for all methods, and the number

of global epochs is 50.

As shown in Table 4, the results of FedAA on BLEU-4 surpass

that of other methods, which indicates the effectiveness of FedAA

on the image caption task. However, FedProx, which works well

on the classification task, severely degrades the image caption task.

This may result from the proximal term of FedProx cannot capture

the effective features in the more complicated task.

We further show the results of FedAA, FedAA without adver-

sarial fine-tuning, and FedAA without client identifier in Figure

7. It can be seen that FedAA and FedAA without adversarial fine-

tuning both outperform FedAA without client identifiers, which

confirms the effectiveness of the client identifier introduced in
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Table 4: The BLEU-4 score of FedAA and baselines on non-
IIDMSCOCO. Since there is only a slight difference between
the results of each experiment, we only report the average
of three experiments.

Algorithm C = 0.1 C = 0.2 C = 0.3 C = 0.4 C = 0.5

FedAvд 0.0652 0.0695 0.0703 0.0708 0.0703

FedBN 0.0746 0.0781 0.0779 0.0776 0.0790

FedProx 0.0569 0.0603 0.0599 0.0595 0.0594

Moon 0.0721 0.0744 0.0744 0.0758 0.0764

FedAA 0.0790 0.0797 0.0795 0.0806 0.0801
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Figure 7: Ablation study on COCO. The FedAA and FedAA
without adversarial fine-tuning get better results compared
to FedAA without the client identifier. However, the adver-
sarial fine-tuning module makes the algorithm to be more
stable.

FedAA. Moreover, the adversarial fine-tune module can make the

proposed algorithm more stable during training, as there is less

vibration in the red curve.

4.4 Privacy Analysis
We have theoretically analyzed that FedAA is privacy-preserving in

section 3.6. This section empirically shows that FedAA is privacy-

preserving on CIFAR-10, CIFAR-100 and MS COCO.

We propose to quantify the leakage of data privacy through dis-

tance correlation, as it measures dependence between two paired

random vectors of arbitrary, not necessarily equal, dimension. The

correlations between six distributions are illustrated in Figure 9

(more experiments please refer to Appendix B), it can be seen that

the correlations between raw data and 1 shared name, all shared
name are much lower than that between raw data and random
Gaussian distributions. It implies that the information of raw data

exposed by the shared non-sensitive modality is even far less than

that of the generated data according to random Gaussian distri-

butions. These results verify the correctness of the conclusions in

section 3.6.
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Figure 8: Heat map of distance correlation. 1 shared name
denotes each client holds 1 class. all shared name denotes
each client holds all classes and the shared label names are
randomly shuffled. Gaussian 1 and Gaussian 2 denote dif-
ferent Gaussian distributions.

We further show the trained adversarial examples and the corre-

sponding category on CIFAR-10 in Figure 6. The trained adversarial

examples are very different from raw samples, as they are well-

generalizing features of raw data. Therefore, adversarial examples

will not leak private information on classification. We also conduct

similar experiments on MS COCO for the image caption task and

get similar results; for more details, please refer to Appendix B.

5 CONCLUSION
Federated learning suffers when trained on non-IID data because

of the weight divergence issue. Moreover, the setting of the popular

strategy for non-IID data to create a global dataset is flawed, as it is

unrealistic for the server to hold a dataset containing all clients’ dis-

tributions. Furthermore, we propose that the non-sensitivemodality

will not leak users’ privacy while improving federated learning, as

it can help train adversarial examples related to well-generalizing

features. This paper proposes FedAA, which alleviates weight diver-

gence by fine-tuning and training with client identifiers. Moreover,

the proposed algorithm outperforms the popular non-IID baselines

on image classification and image caption tasks over CIFAR-10,

CIDAR-100 and MS COCO by sharing information from the non-

sensitive modality. The lower variance of FedAA also verifies that

the proposed method can effectively alleviate the weight diver-

gence.
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A THEORETICAL ANALYSIS FOR PRIVACY
Assumption A.1. For any two variables, the lower the correlation,

the more difficult it is to infer one variable’s value from the other
variable’s value.

We propose to use distance correlation R2

n (X,Y) between image

X and non-sensitive modality Y to quantify data privacy that may

leak, which belongs to [0, 1]. The closer R2

n is to 0, the lower the

correlation between X and Y. When R2

n = 0, X and Y are indepen-

dent. For observed samples {xi ,yi } from distribution of vectors

X and Y, respectively, compute the Euclidean distance matrices

ai j = (| yi − yj |) and bi j = (| xi − x j |), where | · | denotes the
Euclidean norm. Define

Ai j = ai j − āi · − ā ·j + ā · ·, i, j = 1, . . . ,n (10)

where

āi · =
1

n

n∑
q=1

aiq , ā ·j =
1

n

n∑
k=1

ak j , ā · · =
1

n2

n∑
k ,q=1

akq (11)

Similarly, define Bi j = bi j − ¯bi · − ¯b ·j + ¯b · ·, for i, j = 1, . . . ,n. And
n is the number of observed samples.

The sample distance covariance dCov
2

n (X,Y) and distance cor-

relation Rn (X,Y) are defined by

dCov
2

n (X,Y) =
1

n2

n∑
i , j

Ai , jBi , j (12)

and

R2

n (X,Y) =
dCov

2

n (X,Y)√
dCov

2

n (X,X) dCov
2

n (Y,Y)
(13)

where 0 ≤ R2

n (X,Y) ≤ 1, and the larger the R, the higher the

correlation between X and Y.
Suppose there are N classes (i.e. N different values of the non-

sensitive modality), and each class with the same number of data.

For convenience, let all different observed samples that belong to

different classes of non-sensitive modality hold the same difference

C , that is
| yi − yj |= C, when yi , yj ,p = 1 −

1

N
,

| yi − yj |= 0, when yi = yj ,p
′ =

1

N
.

(14)

where p is the probability that sample i and sample j have the same

value in the non-sensitive modality,p′ is the probability that sample

i and sample j have different values in the non-sensitive modality.

Note that, if the non-sensitive modality is one-hot label name, C
will be 1 (e.g. yi = [0, 01],yj = [0, 1, 0], and | yi − yj |= 1 ).

Substitute Equation 11, into Equation 10,

Ai j = | yi − yj | −
1

n

n∑
k=1

| yk − yj | −
1

n

n∑
q=1

| yi − yq |

+
1

n2

n∑
k ,q=1

| yk − yq |

(15)

There are two situations for the results of Equation 15 based on

| yi − yj |. And compute the expections of Equation 15,

E(Ai j ) = (1 −
1

N
)C,

1

N
C . (16)

Substitute the Equation 16 into Equation 12,

dCov
2

n (X,Y) = (1 −
1

N
)
C

N

∑
B1 +

1

N
(

1

N
− 1)C

∑
B2

= (1 −
1

N
)
C

N
(
∑

B1 −
∑

B2)

(17)

Similarly, compute

dCov
2

n (X,X) = (1 −
1

N
)
C2

N 2
+

1

N
(
C

N
−C)2

= (
1

N
−

1

N 2
)C2

(18)

Substitute the results of Equation 17 and Equation 18 into the Equa-

tion 13,

R2

n (X,Y) =
(1 − 1

N )
1

N (
∑
B1 −

∑
B2)√

(1 − 1

N )
1

N
∑
B3

(19)

where B1,B2,B3 are dCov
2

n of raw data. According to Equation 19,

we can get, 
lim

N→1,∞
R2

n (X,Y) = 0,

maxR2

n (X,Y) ≤ 0.5, when N = 2

(20)

According to Equation 20, the non-sensitive data always gets a

low correlation with raw data, especially when there is only one

value in non-sensitive modality, R2

n (X,Y) = 0, which shows that

non-sensitive data and raw data are independent (i.e., N=1 that

corresponds to our experiemts). Therefore, sharing non-sensitive

modality is privacy-preserving. Moreover, when 2 ≤ N , the shared

modality is a random arrangement (i.e., not paired with samples)

that makes the relevant terms of B in the numerator of Equation 19

appear random sign, which further leads to the decrease of R.

B PRIVACY ANALYSIS
The correlations between six distributions on CIFAR-10 and CIFAR-

100 are illustrated in Figure 9.
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Figure 9: Heat map of distance correlation. 1 shared name
denotes each client holds 1 class. all shared name denotes
each client holds all classes and the shared label names are
randomly shuffled. Gaussian 1 and Gaussian 2 denote dif-
ferent Gaussian distributions.
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C COMBINE AAWITH OTHER METHODS
As our method can be viewed as a step before averaging local

models, the proposed Adversarial Example and Adversarial Model
(AA) can also be combined with other federated algorithms besides

FedAvg. For instance, we combine our method with FedProx, when

C = 0.3 (we choose FedProx as it gets the highest accuracy except

FedAA when C = 0.3 on CIFAR-100), and the results are shown in

Table 5. It can be seen that if the combined algorithm can achieve

better results, our algorithm can continue to improve the results

on this basis.

Table 5: The combining of AA and FedProx.

Method C = 0.3

FedAvд 8.59 ± 0.93%

FedAA 10.11 ± 0.69%

FedProx 9.86 ± 1.30%

FedProxAA 10.84 ± 1.31%


	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Federated learning
	2.2 Federated learning on non-IID data
	2.3 Adversarial Example

	3 Methodology
	3.1 Federated Learning
	3.2 Non-sensitive Modality
	3.3 Train Adversarial Examples from Gaussian Noise and Adversarially Fine-tune
	3.4 Client Identifier Update
	3.5 Local Training with Client Identifier
	3.6 Theoretical Analysis for Privacy

	4 Experiments
	4.1 Federated Classification with Data Islands
	4.2 Federated Classification with Mobile Terminals
	4.3 Federated Image Caption on Multimedia Dataset
	4.4 Privacy Analysis

	5 Conclusion
	References
	A Theoretical Analysis for Privacy
	B Privacy Analysis
	C Combine AA with Other Methods

