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Abstract—The data generated in many real-world applica-
tions can be modeled as heterogeneous graphs of multi-typed
entities (nodes) and relations (links). Nowadays, such data are
commonly generated and stored by distributed clients, making
direct centralized model training unpractical. While the data
in each client are prone to biased local distributions, gener-
alizable global models are still in frequent need for large-
scale applications. However, the large number of clients enforce
significant computational overhead due to the communication
and synchronization among the clients, whereas the biased local
data distributions indicate that not all clients and parameters
should be computed and updated at all times. Motivated by
specifically designed preliminary studies on training a state-of-
the-art heterogeneous graph neural network (HGN) with the
vanilla FedAvg framework, in this work, we propose to leverage
the characteristics of heterogeneous graphs by designing dynamic
activation strategies for the clients and parameters during the
federated training of HGN, named FedDA. Moreover, we design
a novel disentangled model D-HGN to enable type-oriented
activation of model parameters for FedDA. The effectiveness
and efficiency of our proposed techniques are backed by both
theoretical and empirical analysis– We theoretically analyze the
validity and convergence of FedDA and mathematically illustrate
its efficiency gain; meanwhile, we demonstrate the significant
performance gains of FedDA and corroborate its efficiency gains
with extensive experiments over multiple realistic FL settings
synthesized based on real-world heterogeneous graphs.

Index Terms—heterogeneous graphs, federated learning, dy-
namic activation, performance gain, efficiency gain

I. INTRODUCTION

Heterogeneous graphs constructed with multiple types of
nodes and links can well record and model complex real-world
application scenarios [1], such as citation prediction on biblio-
graphical networks [2]–[4], patient profiling on healthcare net-
works [5]), emergency medical service [6] and recommender
systems [7]–[9]. Herein, we take the healthcare system as an
example, as illustrated in Fig. 1. For each hospital, it records
the patients’ healthcare profiles independently, which contain
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various types of information, such as demographics, laboratory
testing results, medical treatments, and diagnosis histories.
By regarding patients, drugs, procedures, and diseases as
nodes of different types and linking every patient with his/her
prescribed drugs, operated procedures, diagnosed diseases,
and other closely interacted patients, the hospital possesses
a clinical heterogeneous graph.

Fig. 1. A toy example of the real-world clinical heterogeneous graph.

Within one domain, there can be numbers of service
providers (e.g., clinics). In contrast to general centralized
global data, for each data owner, the locally collected and pre-
served data can be prone to selection biases. In the healthcare
system example, a clinic with the specialty in heart diseases
can attract more patients with the corresponding medical
needs, whereas a clinic possessing a prestigious psychology
department can collect more data regarding psychological
disorders. Meanwhile, the heart disease clinic can record more
links between surgeries and patients than the psychological
disease clinic. Thus, each data owner possesses a biased
local subset of the global clinical data. When each of them
constructs a local clinical heterogeneous graph, it can be
regarded as a non-independent-identically-distributed (Non-
IID) heterogeneous subgraph of the entire global heteroge-
neous graph containing all potential healthcare data generated



such as in the city. Due to privacy protection regulations and
interest conflicts, clinics cannot directly share their Non-IID
heterogeneous graphs with others. However, given a city-level
task such as pandemic prediction, the question arises as to how
to efficiently obtain a generalized global heterogeneous graph
model without actually putting all Non-IID heterogeneous
graphs of different data owners together.

Federated learning (FL) [10] was proposed to enable dis-
tributed data owners (clients) to collaboratively learn a global
model without sharing local raw data. Originally designed for
traditional machine learning tasks such as in CV and NLP,
FL exhibits enormous potential in effectiveness, especially
when data are IID across data owners [11]. Recently, FL
also achieves remarkable progress in tackling relational data
mining tasks, i.e., for graph learning [12]–[16]. However, they
primarily focus on homogeneous graphs (homographs), which
cannot handle the diversity of node and link types.

Key Findings As the first work on FL over distributed Non-
IID heterogeneous graphs, we first conduct a preliminary
analysis to examine the pivotal factors that determine the
utility of the outcome graph learning model. For simplicity, we
use the state-of-the-art heterogeneous graph model of Simple-
HGN [17] with the FedAvg protocol [18] across our distributed
system. Our empirical results surprisingly and clearly show
that there is a potential for attaining a global model with
better performance yet smaller cost not only with fewer clients
involved in each round of FedAvg but also by gathering only
partial gradients from involved clients. Notwithstanding, when
we randomly reduce the transmitted data along the FL process,
the global model can exhibit more unstable performances.
Based on the observations in our preliminary analysis, we
further formulate two natural yet unique challenges for FL
over distributed heterogeneous graphs.

Challenge 1: How to dynamically activate clients and param-
eters to obtain the final generalized global model?

Solution 1: Vanilla FedDA Utilizing the returned information
from each clients, we design an FL process termed FedDA.
Technically, FedDA dynamically selects clients according to
their returned gradients in the previous round. In particular,
clients returning gradients smaller than the averaged values
will be deactivated in the next round. We theoretically jus-
tify the effectiveness of our client and parameter selection
approach based on previous gradients. Note that, although
FedDA is motivated by our distributed heterogeneous graph
setting, it can potentially generalize to other types of data in
the Non-IID FL setting.

Challenge 2: Can we leverage the characteristics of het-
erogeneous graphs and heterogeneous graph neural networks
(HGNs) to further excite the potential of FedDA?

Solution 2: FedDA with D-HGN Activating parameters solely
based on gradients can lead to unwanted instability in FL.
To this end, we propose to enable type-oriented activation
of graph model parameters for FedDA by designing a novel
disentangled model D-HGN. For an input heterogeneous ego-

graph, at each hop, D-HGN models each link type by em-
ploying an exclusive set of parameters. Hence, in an activated
client, parameters responsive to modeling a certain link type
can be precisely activated or vice versa. Applying such disen-
tangled model leads to improved convergence and stability in
the FL training process on distributed heterogeneous graphs.

Approaches We provide two strategies to implement the
dynamic activation of clients and parameters in FedDA to-
wards improved performance and efficiency. Based on these
strategies, theoretical analysis is provided on their correctness
and convergence, whereas mathematical analysis is conducted
towards their saves on computational costs.

To empirically verify the utility of our proposed methods,
we perform experiments on multiple distributed heterogeneous
graph systems realistically synthesized four real-world bench-
mark datasets of heterogeneous graphs from different appli-
cation scenarios. Experimental results indicate that FedDA
can lead to a global model with significantly improved per-
formance and efficiency, which are further boosted by the
employment of D-HGN. In-depth training analysis and hyper-
parameter studies further corroborate the improved conver-
gence, stability, and robustness of FedDA.

II. RELATED WORKS

A. Federated learning on graphs

Federated learning (FL) [19], [20] on graphs has drawn sig-
nificant attention from researchers in relevant fields. Existing
works on FL over graph data mainly consider homogeneous
graphs (homographs), whose nodes and links only have a
single type. In the vertical FL setting, Zhou et al. [21] and
Mei et al. [22] studied the scenarios where node features
and structures on distributed graphs vary across local devices.
In the more common horizontal FL setting, He et al. [14]
proposed an open-source benchmark system for federated
GNNs; and there are also some works studied the distributed
homograph setting under the consideration of cross-graph links
[12], [15], [16]. Moreover, Xie et al. [23] considered latent
heterogeneous link distributed in the FL setting, but their
graphs are still on homogeneous.

With the consideration of multiple types of links, Wu et
al. [24] studied FL over the bipartite user-item graph for
recommender systems; Chen et al. [25] studied FL over
knowledge graphs for their completion. In complex real-
world applications, heterogeneous graphs that include multiple
types of both nodes and links can better simulate and model
realistic networks compared to knowledge graphs [1], [26].
The superior richness of information in heterogeneous graphs
not only creates an emerging need of applying FL over them,
but also brings in unique challenges, such as the Non-IIDness
over different types of data.

As for dealing with Non-IID data in the FL framework, Li
et al. [27] proposed FedProx to tackle clients’ heterogeneity
through a generalization and re-parametrization of FedAvg.
Wang et al. [28] utilized model-agnostic meta-learning to
handle Non-IID graph data while preserving the model gen-
eralizability. GCFL [13] dynamically finds clusters of local



systems based on the gradients to perform graph classification
through FL across data from different domains. However, these
methods are either not specifically designed for tasks over
graphs or not suitable for tasks on heterogeneous graphs. To
the best of our knowledge, our work is the very first attempt
towards effective FL over distributed Non-IID heterogeneous
graphs. Besides improving the performance compared to basic
FL, our proposed approach further steps out to uplift the
communication efficiency.

B. Strategic training of GNNs

Similar to traditional machine learning models, when the
testing heterogeneous graph is considered as a generic graph
following the global data distribution, training a GNN on bi-
ased (Non-IID) local heterogeneous graphs degenerates its test
performance [29], [30]. Several training strategies designed for
CV and NLP [31]–[34] tasks in solving the Non-IID problem
have been transferred to graph learning tasks.

For example, inspired by cognitive science, curriculum
learning [35] points out the pivotal role of training sample
selection in machine learning tasks, which is now applied in
graphs as well. Wang et al. [36] proposed a novel methodology
for curriculum learning on graphs that includes novel graph
evaluation and selection steps. Nevertheless, it tackles the
graph-level task (graph classification) and does not consider
the node-level and link-level tasks inside every graph. Another
aspect of tackling the label imbalance issue in the Non-IID
graph learning task is to leverage negative sampling skills [37].
Huang et al. [38] focused on the recommendation task with
knowledge graphs and proposed a method to generate negative
samples by leveraging a hop mixing technique on selected
neighbors. However, all these works are restricted to the
locally (centralized) training setting instead of the distributed
setting. In summary, our work considers the FL scenario over
distributed graphs, which can jointly handle the distributed
setting and the privacy issue while the existing works cannot.

III. PROBLEM FORMULATION

System We denote a global heterogeneous graph as H =
{V,E, φ, ψ, X}. V includes all nodes in H , where each node
v ∈ V is associated with a node type φ(v) and attributed with
a feature vector xv ∈ X with dimension dφ(v). E denotes the
set of all links. Each e ∈ E is associated with an edge type
ψ(e), which is determined by the types of nodes on its two
ends. In this work, we consider heterogeneous graphs without
multiple types of links between two specific types of nodes,
but our methods extend trivially beyond this constraint.

In the FL setting, we have a central server S, and M clients
D = {Di|i ∈ [M ]} with distributed heterogeneous subgraph
H = {Hi|i ∈ [M ]}. Slightly different from H , we denote
Hi = {Vi, Ei, φ, ψ,Xi} as the sub-heterograph of H owned
by Di, for i ∈ [M ]. While the global graph H conceptually
exists, no entity is able to aggregate all sub-heterographs to
really obtain H .

In a distributed heterogeneous graph system, it is common
to see the non-identical distribution of edge types across local

devices as data are generated from heterogeneous applications
or locations. For example, in community clinics, diagnosing
patients with lymphoma and operating craniotomy on patients
are much rarer than those in national hospitals. Similarly, for
an online music application, songs in a certain language (e.g.,
Japanese) are far more likely to be favored by users from
certain locations (Asia-Pacific).

In this paper, we mainly focus on the issue of local Non-
IID edge types and formulate the problem and respective
assumptions as follows.

Problem According to the system described above, the global
graph H has its all nodes and edges distributed in M sub-
heterographs. Specifically, we have V = V1 ∪ · · · ∪ VM , and
E = E1 ∪ · · · ∪ EM . For i, j ∈ [M ] and i ̸= j, the system
allows overlaps, i.e., |Vi ∩ Vj | ≥ 0 and |Ei ∩ Ej | ≥ 0.

We denote the edge type distribution for an edge set E∗ as
the probability P = P (ψ(e)|e ∈ E∗). For any two different
clients Di and Dj , we have Pi ̸∼ Pj , which we refer to
as biased data regarding Non-IID link types in distributed
heterogeneous graph that we consider in the FL setting.

We consider the downstream task of link prediction over
node pairs in H , which is one of the most common tasks on
heterogeneous graphs [17]. Technically, for a pair of nodes
on the heterogeneous graphs, link prediction infers whether
there exits an edge between them. Therefore, we formulate
our goal of federated link prediction on heterogeneous graphs
as follows.

Goal The system exploits an FL framework to collaboratively
learn on isolated sub-heterographs, {Hi}i∈[M ], across M
clients, without direct data sharing, to obtain a global link
prediction model F with parameters indexes I. We formulate
the link prediction task as a binary classification problem. The
N learnable parameters θ in F are optimized on queried pairs
of nodes and their neighbors that are similar to the ones drawn
from the global heterogeneous graph H , and finally test F on
the global test data with all types of edges. We formulate the
problem as finding θ∗ that minimizes the loss L on H by
aggregating local loss values as

θ∗ = argminL
(
F (θ|H)

)
= Agg

(
Li

(
Fi(θ|Hi)

))
, (1)

where Agg(·) is an aggregation function (e.g., averaging). Li
is the local empirical loss defined as

Li
(
Fi(θ|Hi)

)
:= Eψ(e)∼Pi

[ℓ (Fi (θ;Hi(v), Hi(u)) , ψ(e))] ,

where e is the link between u and v, Hi(v) is v’s ego-graph (v
and its neighbors) on Hi, and ℓ is a task-specific loss function
such as cross-entropy for link classification.

Under basic FL frameworks (e.g., FedAvg), learning from
Non-IID data can rapidly distort the outcome model’s per-
formance compared to the one trained on IID data (drop at
most 48.3% in certain CV tasks [39]). For the complex and
highly irregular heterogeneous graphs, it is an urgent demand
to design an effective and efficient FL method for the Non-IID
setting. Herein, we conduct preliminary studies on Non-IID



heterogeneous graphs to find out pivotal factors in FedAvg
that determine the outcome graph learning model’s utility.

IV. MOTIVATING PRELIMINARY STUDIES

Here, we present intuitive preliminary studies to investigate
the problem of heterogeneous graph FL across the distributed
system. Specifically, we adopt the widely used weights-
sharing-based FL protocol, FedAvg [18], with the state-of-
the-art heterogeneous graph model of Simple-HGN [17] on a
small subgraph from the benchmark heterogeneous network
of DBLP [40]. We are here to observe how Simple-HGN
performs under the vanilla FedAvg framework with biased
and unbiased data in the global downstream task of link
prediction. We construct experiments trying to answer these
questions: Should we activate all clients when data are largely
biased? Should we aggregate all parameters when the data are
largely biased? What are some potential enhancements for the
traditional FedAvg framework when applied to the distributed
heterogeneous graphs?

A. Simple-HGN

Lv et al. [17] studied 12 recent state-of-the-art heteroge-
neous graph neural networks (HGNs) and found that vanilla
GAT [41], a homogeneous GNN, surprisingly outperforms all
compared HGNs. Based on the finding, they proposed a simple
yet powerful baseline Simple-HGN (S-HGN) by adapting GAT
to heterogeneous graphs. Specifically, S-HGN enhances GAT
by equipping it with three components: learnable type-wise
edge embedding, residual connections between layers, and L2

normalization on the final output. The structure of the encoder
part of S-HGN is shown as the backbone in Fig. 4, while
the highlighted part is its extension to Disentangled-HGN
(D-HGN), which will be discussed later. S-HGN follows a
common encoder-decoder architecture to conduct link predic-
tion, and as shown in [17], it is empirically superior to other
compared models.
Learnable Edge-type Embedding At each layer l, S-HGN
adopts a dl-dimensional embedding vector r⃗lψ(e) in order to
include the edge type information into the graph attention
mechanism, where ψ(e) is the type of edge e. The attention
score over edge e between node u and node v is calculated as
following1:

α̂uv =

exp

(
σ
(
a⃗T

[
Wh⃗u||Wh⃗v||Wr r⃗ψ(e)

]))
∑
k∈Nu

exp

(
σ
(
a⃗T

[
Wh⃗u||Wh⃗k||Wr r⃗ψ(e)

])) , (2)

where Wr is a learnable matrix to transform type embeddings,
and σ is LeakyReLU as the activation function.

Residual Connections S-HGN adopts pre-activation residual
connection for node representations across layers for link pre-
diction tasks. The aggregation function at layer l is constructed
as

h⃗(l)v = σ
(∑

v∈Nu

α(l)
uvW

(l)h⃗(l−1)
v +W (l)

resh⃗
(l−1)
u

)
, (3)

1We omit the superscript l in the equation for brevity.

where α(l)
uv is the attention weight over edge e between node u

and node v , and the activation function here is ELU [42] by
default. Note that W (l)

res is only needed when the dimensions
of hidden features change across layers, and the final output
embedding is the concatenation of embeddings from all layers.

L2 Normalization S-HGN performs L2 normalization on the
final output embeddings before presenting it to the decoder,
which makes the dot product of embeddings equivalent to their
cosine similarity. The normalized embedding for node v is
calculated as ov = h⃗

(L)
v /||⃗h(L)v ||, where L is the total number

of layers.
Incorporating these three enhancements, accompanied by

the multi-head attention mechanism of vanilla GAT, S-HGN
is claimed to achieve the best performance on heterogeneous
graphs with link prediction task. However, its only adoption
specific to tasks on heterogeneous graph is the edge type
embedding, which makes it hard to disentangle the model
under federated learning frameworks.
B. FedAvg

FedAvg [18] is an FL framework for training deep neural
networks across decentralized data from clients based on
iterative averaging. Specifically, in each round t, the server first
broadcasts the latest global model’s parameters w(t) to all ac-
tivated clients. Then, for each client i, it lets w

(t)
i = w(t) and

then updates the received global model locally as following:

w
(t+1)
i ← w

(t)
i − ηi · ∇Li

(
w

(t)
i ,Bi

)
, ∀ i ∈ [M ] (4)

where ηi is the learning rate for the local update on client i
and Bi is the mini-batch sampled from local data on client
i. Finally, the server aggregates the local models and takes
their weighted average as the updated global model by round
t. However, due to privacy concerns, we assume the server
does not own prior knowledge of the distribution of global and
local data. Thus we perform the average without discriminative
weights as

w(t+1) ←
∑M

i=1
piw

(t+1)
i (5)

where pi is the aggregation weight and for standard FedAvg
it follows pi = 1

M , ∀ i.
C. Motivating Observations

We run Simple-HGN under the vanilla framework of Fe-
dAvg and display the trends of model performances along
communication rounds. In Fig. 2(a) and Fig. 2(b), we ran-
domly select gradients from C-fraction of clients to aggregate
in each round, while in Fig. 2(c) and Fig. 2(d), we randomly
select gradients of D-fraction of parameters to aggregate. We
come up with the following two observations according to the
results of our preliminary studies.

Observation 1: With distributed heterogeneous graphs,
more clients involved in each round do not ensure better
performance. As the results in Fig. 2(a) and Fig. 2(b) indicate,
when we consider the best-performed models over five runs
(solid lines), the 80% and 67% clients versions both achieve
comparable or even better performance than the 100% clients



Fig. 3. Illustrative visualization of FedDA. Best viewed in color. The clients
in dotted boxes and the parameters in white are the deactivated ones. For
each round, the server sends the activation signals and global model to each
activated client. The activated clients update the model locally for several
epochs and return the gradients of the activated parameters accordingly.
Finally, the server gathers the returned gradients and updates the global model
as well as the activation signals.

(a) (b)

(c) (d)

Fig. 2. Performance curves of FedAvg with different client activation rates
(C) and parameter activation rates (D). Fig. 2(a) and 2(c) are the results on
unbiased data (IID link types) across clients, whereas Fig. 2(b) and 2(d) are
the results on biased data (Non-IID link types) as discussed in Sec. III. The
results we show are max and min scores over five separate runs, in which the
solid lines are the best performance in each round, while the dotted lines are
the worst.

version. However, as for the worst models (dashed lines),
activating fewer clients may end up with much worse models,
especially when edges are Non-IID by their types. That is to
say, decreasing the number of involved clients does not harm
the optimal performance yet introduces more instability, which
implies that we are able to simultaneously enhance the model
performance and communication efficiency by activating fewer
clients when we can find the right group to activate.
Observation 2: When we randomly update only a part
of the parameters in FedAvg, we can still obtain a well-
performed global model. Herein, we compare FedAvg with
its partially aggregating variations. Specifically, during the
aggregation process, instead of taking the weighted average
of all gradients as in FedAvg, we only take the average of
a randomly selected set of gradients with the ratio D. As

shown in Fig. 2(c) and Fig. 2(d), similarly to activating part
of the clients, activating fewer parameters may also end up
with models just as powerful (solid lines), while this random
selection also results in worse performance in the worst
case (dashed lines). Nevertheless, this also implies potential
enhancement over FedAvg by reducing the number of returned
gradients. Specifically, if we deliberately choose the set of
returned gradients for each client, we may be able to end up
with a model just as powerful with less communication cost.

Summary Observation 1 indicates that we can potentially
achieve the same or even better performance with fewer clients
involved for each round, while Observation 2 implies that we
may be able to gather only a part of the gradients from each
client without harming the final global model performance.
However, according to the experimental results, there is a
need to design appropriate strategies to adaptively choose
groups of clients to contribute as well as the gradients we
want to aggregate along the FL process. In an ideal case,
through leveraging smaller sets of clients and gradients in
each round, such strategies can lead to great enhancement
in communication and computation efficiency, which is an
essential merit in the distributed graph learning system. In
the meantime, these strategies can potentially obtain global
models with similar or even better performance.

Can we design a proper client and parameter selecting
strategy for FL to reduce the instability, benefit the data trans-
mission efficiency, while can assist the system in achieving a
satisfactory result simultaneously? We leave the discussion of
our novel FL framework designs in the following section.

V. METHODOLOGY

As we discussed before, in our FL setting, sub-
heterographs are independently collected with potential se-
lection bias. Based on the observations of our preliminary
studies in Sec. IV-C, we design an FL framework with
dynamic activation of clients and parameters (FedDA) on top
of FedAvg to alleviate the negative effect brought by local
bias and elevate the communication efficiency simultaneously.
The overall structure of FedDA is presented in Fig. 3. We
theoretically justify that our FL model’s performance loss
brought by the reduction of transmitted data during FedDA
can be bounded.

In this section, we first discuss the technical details of
our proposed FedDA and Disentangled-HGN adapted from
S-HGN with theoretical justifications. Then, we discuss the
efficiency advantage of FedDA compared with FedAvg.

A. Dynamic Activation of Clients

From our Observation 1 in Sec. IV-C, the total number of
transmitted gradients can be potentially reduced by activating
only a portion of the clients. Thus, to control the client
selection, the server maintains an activation set DtA containing
the clients to be activated in round t. Here, we present
a dynamic activation mechanism for clients to deliberately
choose DtA during the training process of FedDA.



Fig. 4. Structure of Disentangled-HGN.

Intuitively, we want to leave out the clients with rather trivial
contributions in each round. In other words, if most of the
returned gradients from a client are smaller than the average of
all clients, we deactivate this client in the next round. However,
we cannot obtain the contribution of a client in each round
without actually gathering it. To deal with this problem, we
estimate the more effective set of clients in the next round
using the returned gradients from the last round. We justify
this approximation in the following theorem.

Theorem 1. [Stationariness of DA between steps.] Sup-
pose the neural network is Lf -Lipschitz continuous and Lg-
Lipschitz smooth. Given a set of gradients {gk ∈ R : k ∈ I}
which is (ϵ, τ)-separable, i.e., |gk1 − gk2 | > ϵ, ∀ k1 ̸= k2,
and |ḡ − gk| > τϵ, ∀ k, where ḡ := (1/|I|)

∑|I|
k=1 gk and

τ ∈ (0, 12 ). Then, after one step of gradient descent with
stepsize η, the new gradients {g′k ∈ R : k ∈ I} satisfy

(g′i − ḡ′) · (gi − ḡ) > 0, ∀ k ∈ I (6)

as long as η <
((√

|I|+
√
|I|−1

)
LfLg

)−1

· τϵ.

Theorem 1 above guarantees that, with an appropriately
small enough stepsize of gradient descent, if the gradient is
smaller or greater than the average, the same inequality still
holds over the updated gradients after the gradient descent.

Furthermore, if we continuously deactivate clients and up-
date DA along with training, the number of involved clients
may be reduced rapidly, and the training will be much more
biased. Thus, to guarantee enough exploration and exploitation
of clients during FedDA and prevent the global model from
falling into some biased local optimum, we propose two
different strategies as follows.

Restarting-based Herein we introduce a hyper-parameter
βr ∈ (0, 1) as a threshold value controlling the number of
activated clients. Particularly, when |D(t+1)

A | < βrM , D(t+1)
A

is set to the initial values, i.e., D(t+1)
A ← D In this way, after

the restart process, the server gets all clients back involved
with all their latest parameters. Therefore, it can retrieve a
global monitoring of the capability of each client regarding
the current state of the global model so as to make a more
informed decision in the following communication rounds.

Exploration-based The main idea of the exploration-based
strategy is to maintain a certain size of the D(t)

A with a hyper-
parameter βe ∈ (0, 1). Technically, when |D(t)

A | < βeM , the

server randomly explores (βeM − |D(t)
A |) clients from the

deactivated clients, i.e., D \ D(t)
A , to maintain the number of

activated clients as βeM . With this approach, the server can
exploit more diverse training information from the system and
alleviate the selection bias or errors in choosing the activated
clients. Note that, to make this process more historically
consistent, we do not consider the clients that have just been
deactivated in this round to rejoin DA in the next round.

B. Dynamic Activation of Parameters

From our Observation 2 in Sec. IV-C, the number of
transmitted gradients of a single activated client can also
be potentially reduced since we can achieve a global model
just as powerful by aggregating only a part of the gradients.
To achieve this, the server preserves a request indices set
I(t) = {I(t)i |i ∈ DA}, where I(t)i = {0, 1}N indicates
the required parameter indices for a client i in round t. For
k ∈ [N ], I(t)i [k] = 1 means the server is requesting θ

(t)
i [k]

from Di in round t, and otherwise if I(t)i [k] = 0.
In fact, the contribution of a client to certain sets of

parameters can be trivial due to the local training data bias.
For example, in the most extreme case, if the downstream task
on a client only performs link prediction on one single type
of links, then the weights in the decoder of S-HGN for other
types of links will not be properly trained, which means if
we still naively take the average for all parameters without
discrimination, the random initialization of those untrained
parameters will always be a part of the aggregation and thus
lead to poor final performance. In this spirit, we design the
central server to first consider the distribution of returned
gradients and come up with a threshold for each parameter.
Then, it signals the clients to only return the gradients of
parameters that are above that threshold2.

Similar to the deactivation of clients, we approximate the
larger set of gradients in the next round using the returned
gradients from last round. That is, for the returned gradient
g
(t)
(i,k) of parameter k from client i at round t, if it is smaller

than the average value of all the gradients for this parameter
at round t, we ask i not to pass the gradient of g in round
t + 1. Furthermore, with partially activated parameters, we
can extend the deactivation of clients discussed in Sec.V-A
by considering the amount of contributed gradients. Thus, we
introduce a hyper-parameter α to control the occupation rate
of the client, i.e., whether a client is sufficiently contributing
to the FL training process. For i ∈ [M ], if the portion of
the returned gradients compared with the total number of
disentangled parameters Nd is less than α, we give up this
client in the next round. That is, if

∑
k∈[Nd]

I(t)i < α · Nd,

D(t+1)
A = D(t)

A \ {Di}.

Disentangled-HGN Since the node and link type distributions
can be biased across the Non-IID local heterogeneous sub-
graphs, it is intuitive to allow clients with more data of certain

2In this work, we set that threshold to be the mean value, and leave the
discussion of other settings to future work.



Algorithm 1 FedDA.
Require: Number of total communication rounds T , local

batch size B, number of local epochs E; indices of all
the trainable parameters [N ], indices of all the disentangled
parameters [Nd].

Server executes:
initialize θ
for each round t ∈ [T ] do

for client i ∈ D(t)
A do

θ
(t)
i ← ClientUpdate(i, I(t)i , θ(t))

end for
for parameter k ∈ [N ] do

θ(t+1)[k] = 1∑
Di∈D(t)

A

I
(t)
i [k]

∑{
θ
(t)
i [k]|I(t)i [k] = 1

}
if k ∈ [Nd] then ▷ Deactivation of parameters

for client i ∈ D(t)
A do

if I(t)i [k] = 1 and θ(t+1)[k] > θ
(t)
i [k] then

I
(t+1)
i ← 0

else
I
(t+1)
i ← I

(t)
i

end if
end for

end if
end for
for client i ∈ D(t)

A do ▷ Deactivation of clients
if
∑
k∈[Nd]

I(t)i < α ·Nd then
D(t+1)
A = D(t)

A \ {Di}
end if

end for
Reactivation(DA,D(t)

A ,D(t+1)
A )

end for
ClientUpdate(i, Ii, θ)
B ← (split training data on Hi into batches of size B)
for each local epoch e from 1 to E do

for batch b ∈ B do
θ ← θ − η∇(θ; b)

end for
end for
return {θ(t)i [k]|I(t)i [k] = 1}

types of nodes and links to contribute more to the training
of the corresponding parts of the model. Therefore, to fully
excite the potential of dynamic activation of parameters, we
propose to disentangle the learnable parameters in the global
model according to the node and link types, and develop a
novel Disentangled-HGN (D-HGN) by extending the original
S-HGN structure to a model with both edge-type-aware and
node-type-aware attention parameters. Note that, even so, the
amount of parameters for D-HGN is still O(1) regarding the
number of link types and node types, which is within the
same level of complexity compared with S-HGN. As shown
in the red part of fig.4, at each layer l, D-HGN assigns a
different attention weight for different types of nodes and
edges during the attention score calculation process. Thus,
Eq.2 is reformulated as

α̂uv =

exp

(
σ
(
a⃗T

[
Wφ(u)h⃗u||Wφ(v)h⃗v||Wψ(e)r⃗ψ(e)

]))
∑

k∈Nu

exp

(
σ
(
a⃗T

[
Wφ(u)h⃗u||Wφ(v)h⃗k||Wψ(e)r⃗ψ(e)

])) ,

where Wφ(n) is the attention weight for node n with type φ(n)
and Wψ(e) is the attention weight for edge e with type φ(e).
In this way, the parameters in the model can be disentangled
to take care of the biased data in each client regarding node
types, link types, and different hops of neighbors.

C. The FedDA Algorithm

In this section, we introduce the specific algorithms of
FedDA, followed by theoretical analysis on convergence and
mathematical analysis on efficiency gain. The overall pipeline
of FedDA is shown in Algorithm.1.

1) Deactivation of Clients and Parameters: The initializa-
tion for D(0)

A is D, and ∀ Di ∈ D(0)
A , I(0)i is set to ones.

For the t-th round of FedDA, the server first broadcasts
the current model weights θ(t) = {θ(t)[k]|k ∈ [N ]} and It
to the clients in DA, and then each activated client locally
updates the received model to θ̂(t)i = {θ(t)i [k]|k ∈ [N ]}. After
collecting weights from the activated clients, for k ∈ [N ], the
server updates each θ(t)[k] as

θ(t+1)[k] =
1∑

Di∈D(t)
A

I
(t)
i [k]

∑{
θ
(t)
i [k]|I(t)i [k] = 1

}
. (7)

Meanwhile, based on the collected gradients, the server
updates its I(t) to I(t+1) by evaluating the relative contri-
bution of each involved Di in round t. The main idea of the
evaluation is that if a client Di’s contribution for parameters
θ[k] in round t is relatively trivial, the server will not request
the k-th parameters from Di in round t + 1. Note that the
evaluation metric can be any kind of measurements for the
contributions of clients. In this work, as discussed in Sec.V-B,
we set a threshold as the mean value of all returned gradients,
and construct the updating function as follows:

I(t+1)
i [k] =

{
0, I(t)

i [k] = 1 and θ(t+1)[k] > θ
(t)
i [k],

I(t)
i [k], otherwise.

(8)

2) Reactivation of Clients and Parameters: As described in
Sec.V-A and Sec.V-B, there are two different implementation
strategies for reactivating clients and parameters in FedDA.
Restart re-initializes the process whenever there are less
than βr of total clients to be involved in the next round,
and Explore randomly explores the deactivated clients and
ensures there are at least βe of total clients being activated in
each round. Complete pseudo-code for these two strategies are
given in Algorithm 2 and Algorithm 3. We also present theo-
retical justification for the convergence of these two strategies
right after the algorithms.

Theorem 2. [Convergence of FedDA with Restart strategy.]
Suppose Assumptions 1-4 from [43] hold and L, µ, σi, G,Γ
follows the definition therein. If we choose ξ = L/µ,
β =max{8ξ, E}, and learning rate ηt = 2/(µ(β + t)). Then,
FedDA with Restart strategy satisfies

E[L(wT)]−L(w∗) ≤ ξ

β + TR−1 − 1

(2B
µ

+
µβ

2
E∥w1−w∗∥

)
,



Algorithm 2 Restart strategy for reactivating clients.

Reactivation(DA,D(t)
A ,D(t+1)

A )
if |D(t+1)

A | < βrM then
D(t+1)
A ← D
I(t+1) ← [1]

end if
return D(t+1)

A , I(t+1)

where B =
∑M
i=1 p

2
iσ

2
i +6LΓ+8(E− 1)2G2 and R is the

number of global iterations between two restarting rounds.

Algorithm 3 Explore strategy for reactivating clients.

Reactivation(DA,D(t)
A ,D(t+1)

A )
if |DtA| < βeM then

sample (βeM − |D(t)
A |) clients from D \ D(t)

A to
rejoin D(t+1)

A

end if
return D(t+1)

A , I(t+1)

Theorem 3. [Convergence of FedDA with Explore strategy.]
Suppose Assumptions 1-4 from [43] hold and L, µ, σi, G,Γ
follows the definition therein. ξ, β, ηt and B follow the defini-
tion in Theorem 2. Then, FedDA with Explore strategy satisfies

E[L(wT)]− L(w∗) ≤ ξ

β + T− 1

(2B′

µ
+
µβ

2
E∥w1 −w∗∥

)
,

where B′ = B + 4
KE

2G2.

3) Communication Efficiency Analysis: Here we present a
mathematical efficiency analysis of our proposed framework
FedDA. We denote the expectation of the fraction of remaining
clients after each round is rc and the fraction of deactivated
parameters is rp.

For the Restart strategy, the expectation of the amount of
communicated parameters for each iteration before reinitializ-
ing can be calculated as

E[#cp] =MN
1− rt0+1

c

1− rc
−MNd

rcrp − (rcrp)
t0+1

1− rcrp
, (9)

where t0 is the number of expected rounds before restarting,
which satisfies the equation t0 ≥ logrcβr. Thus, with the frac-
tion of activated clients denoted by C, the expected number
of communicated parameters compared with vanilla FedAvg
is

E[#cp]
t0CMN

=
1− rt0+1

c

(1− rc)C
− Nd
N

rcrp − (rcrp)
t0+1

(1− rcrp)C
. (10)

Similarly, for Explore strategy, the expectation of the
amount of communicated parameters for each round starting
from the second round is

E[#cp] =Mβercγ(N − rpNd)
−Mβerc(1− γ)(N − r̂pNd)
+MNβe(1− rc),

(11)

where γ is the fraction of clients that have been in the activated
list before the last round, and r̂p is their expected fraction
of deactivated parameters. Obviously, r̂p ≥ rp, which means
the communication costs comparison starting from the second
round can be bounded as

E[#cp]
t0CMN

≤ βe
C
− rcrp

Nd
N

βe
C
. (12)

Note that, according to our analysis in Sec. IV, when
we only activate a fraction of clients in each round, the
performance is highly unstable compared with activating all
of the clients with Non-IID distributed systems, that is, both
the average final performance and the worst final performance
suffer from partially activated FedAvg. Moreover, it is well
established that, even with IID data, a lower C in FedAvg
means the global model will need more communication rounds
to converge and reach a target accuracy. Therefore, simply
setting C as smaller than 1 in FedAvg is not an ideal solution
for improving the efficiency of FL. On the contrary, in this
work, we consider the proper dynamic selections of clients
and parameters with rc and rp smaller than 1, to effectively
reduce the computations in FL without significantly harming
the performance. Furthermore, from Eq. (10) and Eq. (12), we
know larger Nd may lead to more communication efficiency
benefits under the same status, which gives our D-HGN model
an intrinsic efficiency advantage. We will further discuss this
in Sec. VI.

VI. EXPERIMENTS

We conduct comprehensive experiments on four real-
world heterogeneous graphs constructed from open benchmark
datasets in two application scenarios. We compare the models
towards the practical link prediction task and conduct in-
depth analyses to illustrate the advantages of our proposed
techniques. To fully demonstrate the superiority of our model,
we conduct experiments to verify the following four research
questions (RQs):

• RQ1 Compared with FedAvg, does FedDA achieve better
performance in the downstream task?

• RQ2 Can the FedDA enhance communication efficiency
as expected?

• RQ3 How does FedDA converge on real data compared
with FedAvg and global training?

• RQ4 How does the setting of hyper-parameters (such as
α and β) affect FedDA?

A. Experimental settings

We use four commonly studied datasets, including one
used in the original paper of S-HGN [17], to study the
performance of our proposed FedDA framework and D-HGN
model. Statistics of the datasets are shown in Tab. VI-A. Link
prediction on tested datasets is common [44]–[47].

• DBLP is a citation network including nodes of authors,
venues, years, and papers. We use a subgraph of the
dataset generated by HNE [40]. Specifically, we consider



the subgraph containing all the authors with publications
in International Conference on Data Engineering, the
years those authors are active in, and the phrases they
study.

• Amazon is a dataset for online purchasing. Following S-
HGN, we use the subset proposed by GATNE [44], which
contains product metadata of electronics categories, with
co-viewing and co-purchasing links.

• LastFM is an online music website. HetRec 2021 [48]
first released it to be a graph containing links between
users, artists and tags. We use the version released by
S-HGN which is preprocessed to leave out the users and
tags with only one link.

• PubMed is a network of genes, diseases, chemicals, and
species constructed from a biomedical literature library.
It is first released by HNE with links generated through
open relation pattern mining and manual selection.

TABLE I
STATISTICS OF THE DATASETS.

Dataset |V |
(avg(|Vi|))

#Node
Types

|E|
(avg(|Ei|))

#Edge
Types Density

DBLP 114,145
(44,425) 3 7,566,543

(262,858) 5 0.058%

Amazon 10,099
(7774) 1 148,659

(32,039) 2 0.15%

LastFM 20,612
(6,849) 3 141,521

(19,105) 3 0.033%

PubMed 63,109
(19,950) 4 244,986

(32,434) 10 0.0061%

System synthesis The edges on the global graph of Amazon,
PubMed and LastFM are split into a training set (90%) and
a test set (10%), whereas the edges on the global graph of
DBLP are split into a training set (85%) and a test set (15%).
The training sets are further split into a training set (90%)
and a validation set (10%). As for simulating the distributed
system, we split each dataset through random sampling, and
the averaged statistics of subsets are shown in Tab. VI-A.
Specifically, every client will first randomly select the types of
edges they are specialized with, and sample ra of them out of
the global graph. Then, for the rest of the types, they sample
rb of them, which is set to be a much smaller value than ra.
In our experiments, we set ra to be 30% and rb to be 5%.
Note that the biased clients only perform link prediction with
edges they are specialized with, but for global test data, the
downstream link prediction task is performed over all types of
links.

Since our proposed FedDA framework can fit any HGN
model, we just use a same default structure of S-HGN, which
is a three-layer model with three-head attention weights. The
dimension of hidden layer is 64, the dimension of edge
embedding is 32, the negative slope of LeakyReLU is 0.01, the
dropout rate is 0.5 and the weight decay for Adam optimizer is
0.0001. The µ for FedProx is set to be 0.001. We also perform
a grid search for learning rate lr since our theoretical analysis
points out that FedDA may be sensitive to high learning rate.

As it turned out, lr does not effect the final performance
much as long as it is smaller than 0.01, which is within the
common setting range for learning rates. So, in this work,
we simply follow the default setting of S-HGN in its original
paper and set the lr to be 0.0005. We use a batch size of 4096
for DBLP, 1024 for Amazon, 8192 for LastFM and PubMed,
which are selected on the validation sets. We find the best-
performed hyper-parameters for FedDA by grid search which
will be further discussed in Sec. VI-B, and find the best βr
for Restart strategy to be 0.2, βe for Explore strategy to
be 0.667, and α for both strategies to be 0.5. We implement
our model on top of the code from [17] which is based on
pytorch3 library. The experiments are executed on a server with
8 NVIDIA GeForce GTX 1080 Ti GPUs. All code and data
are provided in this GitHub repository with clear instructions4.

Baselines and Evaluation Metrics We conduct compre-
hensive evaluations by comparing S-HGN and D-HGN un-
der FedDA with four natural baseline frameworks, i.e., 1)
Global model: S-HGN and D-HGN trained on the original
global heterogeneous graph without data partitioning, which
is supposed to be an upper bound for any FL framework
without consideration of the missing links and lack of node
alignment between clients, 2) Local model: S-HGN and D-
HGN trained solely on each client locally (with performance
averaged), which is presented as a lower bound without any
consideration from the global view, 3) FedAvg: S-HGN and
D-HGN trained collaboratively across all clients under the
vanilla FedAvg framework, and 4) FedProx: S-HGN and D-
HGN trained collaboratively across all clients under the vanilla
FedProx framework. Following previous work, we evaluate the
performance with the metrics of ROC-AUC (Area Under the
ROC Curve) and MRR (Mean Reciprocal Rank), which are
the two common metrics for link prediction on heterogeneous
graphs. As for communication efficiency, we report the amount
of total transmitted parameters of two FL frameworks, i.e.,
FedAvg and FedDA. For global training and FL frameworks,
we report the average performance over five runs, while for
local models, the scores are further averaged across all models
trained locally on each client.

B. Experimental results and analysis

(a) DBLP (b) PubMed

Fig. 5. Average total amount of transmitted gradients on DBLP and PubMed
with varying numbers of clients (M ). We omit FedProx for simplicity since
it has the same amount of transmitted gradients with FedAvg.

3https://pytorch.org/
4https://github.com/dongzizhu/FedDA



TABLE II
LINK PREDICTION RESULTS ON FOUR HETEROGENEOUSLY DISTRIBUTED DATASETS WITH 16 CLIENTS. BESIDES AVERAGED ACCURACY, WE ALSO

PROVIDE THE CORRESPONDING STD. FEDDA 1 : FEDDA WITH Restart STRATEGY, FEDDA 2 : FEDDA WITH Explore STRATEGY.

Framework Model DBLP Amazon LastFM PubMed

ROC-ACU MRR ROC-ACU MRR ROC-ACU MRR ROC-ACU MRR

Global
S-HGN 0.7750 0.9015 0.9215 0.9604 0.8152 0.9287 0.7670 0.8599

± 0.0087 ± 0.0045 ± 0.0046 ± 0.0035 ± 0.0042 ± 0.0070 ± 0.0051 ± 0.0036

D-HGN 0.7810 0.9065 0.9230 0.9647 0.8147 0.9366 0.7719 0.8722
± 0.0084 ± 0.0048 ± 0.0046 ± 0.0068 ± 0.0024 ± 0.0043 ± 0.0035 ± 0.0022

Local
S-HGN 0.4980 0.7503 0.7522 0.9066 0.6128 0.7847 0.5694 0.7760

± 0.0062 ± 0.0045 ± 0.0945 ± 0.0496 ± 0.0525 ± 0.0309 ± 0.0312 ± 0.0169

D-HGN 0.5013 0.7582 0.7620 0.9004 0.5964 0.7726 0.5709 0.7794
± 0.0084 ± 0.0074 ± 0.0948 ± 0.0492 ± 0.0491 ± 0.0331 ± 0.0257 ± 0.0138

FedAvg
S-HGN 0.5382 0.7710 0.9187 0.9655 0.8017 0.9233 0.6921 0.8421

± 0.0074 ± 0.0085 ± 0.0033 ± 0.0029 ± 0.0025 ± 0.0019 ± 0.0118 ± 0.0027

D-HGN 0.5372 0.7801 0.9203 0.9663 0.8026 0.9227 0.6841 0.8407
± 0.0060 ± 0.0058 ± 0.0038 ± 0.0049 ± 0.0016 ± 0.0031 ± 0.0101 ± 0.0045

FedProx
S-HGN 0.5315 0.7507 0.9210 0.9713 0.7802 0.9080 0.6646 0.8310

± 0.0103 ± 0.0070 ± 0.0006 ± 0.0010 ± 0.0025 ± 0.0030 ± 0.0061 ± 0.0049

D-HGN 0.5298 0.7523 0.9200 0.9725 0.7874 0.9145 0.6673 0.8369
± 0.0041 ± 0.0048 ± 0.0013 ± 0.0012 ± 0.0028 ± 0.0045 ± 0.0093 ± 0.0036

FedDA 1
S-HGN 0.5407 0.7784 0.9201 0.9668 0.7964 0.9210 0.6939 0.8459

± 0.0093 ± 0.0082 ± 0.0051 ± 0.0032 ± 0.0027 ± 0.0020 ± 0.0020 ± 0.0026

D-HGN 0.5375 0.7787 0.9239 0.9668 0.7982 0.9230 0.6978 0.8530
± 0.0052 ± 0.0047 ± 0.0039 ± 0.0038 ± 0.0016 ± 0.0033 ± 0.0064 ± 0.0042

FedDA 2
S-HGN 0.5422 0.7822 0.9203 0.9635 0.8018 0.9221 0.6938 0.8467

± 0.0042 ± 0.0070 ± 0.0033 ± 0.0021 ± 0.0030 ± 0.0020 ± 0.0116 ± 0.0028

D-HGN 0.5443 0.7809 0.9190 0.9649 0.8114 0.9371 0.6968 0.8456
± 0.0058 ± 0.0065 ± 0.0018 ± 0.0025 ± 0.0021 ± 0.0023 ± 0.0071 ± 0.0023

(a) Average performance of D-
HGN on DBLP.

(b) Average performance of D-
HGN on Amazon.

(c) Best and worst performance of
D-HGN on DBLP.

(d) Best and worst performance of
D-HGN on Amazon.

Fig. 6. Training curves of FedDA compared with FedAvg. In Fig. 6(c) and Fig. 6(d), the solid lines are the highest score over test data in each round, while
the dotted lines are the lowest score. All curves are generated with 16 clients.

FedDA Effectiveness (RQ1): We first compare the perfor-
mance of our proposed D-HGN with S-HGN on global data
in the top part of Tab. II. It appears that D-HGN achieves
slightly better performance on both datasets, which indicates
the importance of disentangling HGNs towards node and link
types even in the centralized training setting. Furthermore,
comprehensive experimental results shown in Tab. II indicate
that, when we apply these two models under the FedDA
framework, due to the ability of type-wise decoupling, D-HGN
outperforms S-HGN in most cases. However, this gap does not
usually exist under FedAvg, which may indicate that FedAvg
is less capable of leveraging more powerful graph models.

As for the comparison between frameworks, the first thing
to notice is the great gaps between locally trained and globally
trained models, which indicates the potential enhancement if
we can properly use the global information gathered through
FL. As it turns out, the FL-trained models in the lower
part of Tab. II indeed achieve much better performances
than vanilla average of local models, which also proves the

benefits brought by the collaboration across clients. Further-
more, when comparing FedDA with FedAvg and FedProx,
FedDA constantly achieves better performance. Particularly,
the Explore strategy tends to outperform the others on DBLP
and LastFM, while the Restart strategy is more effective
for Amazon and PubMed. Another thing worth noticing is
the gap between FedProx and the other FL frameworks,
which could be owing to the graph-specific data heterogeneity.
Specifically, the Non-IID nodes and edges in clients are biased
not only in feature and label distributions but also in types.
While existing methods dealing with Non-IID traditional data
can fail to capture the type heterogeneity in our scenario.
This further proves the necessity of designing specific FL
frameworks for heterogeneous graphs. Moreover, though the
final performance enhancement in Tab. II of FedDA compared
with FedAvg seems not that significant, FedDA achieves these
better performances with much fewer communication rounds,
activated clients, transmitted parameters, and a more stable
training process, which is the main focus of this work. In other



(a) βr for Restart Strategy (b) α for Explore Strategy (c) βe for Explore Strategy

Fig. 7. Training curves of FedDA with different parameters setting. All curves are generated by D-HGN on DBLP with 16 clients.

words, if we have a strict budget for communication costs
(e.g. limited communication rounds), FedAvg will perform
much worse and FedDA will have more significantly enhanced
performance. Specifically, as shown in Fig. 6, if we look at 20
communication rounds instead of 40, we can observe that both
of our activation strategies can achieve larger improvements
over FedAvg on DBLP and Amazon. We will further discuss
such efficiency benefits in RQ2, and the stabilized training
process in RQ3.

Communication Efficiency (RQ2): We compare the amount
of total transmitted gradients of FedDA with FedAvg in Fig. 5.
To be consistent with Tab. II and conduct a fair comparison,
we are presenting the results after 40 communication rounds
for all frameworks, after which FedAvg is converged to its
global optimum. However, FedDA often converges faster than
FedAvg, and we will discuss it in the next RQ. Even so,
according to Fig. 5, both implementation strategies of FedDA
can reduce a significant amount of transmitted parameters,
especially for D-HGN, which further proves that the dynamic
activation mechanism effectively reduces the communication
cost as expected. Note that, the disentangled rate Nd

N for
parameters in S-HGN is 0.769 for DBLP and 0.595 for
Amazon, while in D-HGN, it is 0.944 and 0.878, respectively.
According to our analysis in Sec. V-C3, a model with high Nd

N
is potentially more efficient, which is exactly the case in Fig. 5.
Besides, although we only compute the amount of transmitted
gradients as a measure of efficiency, fewer transmitted gra-
dients are naturally equivalent to less computation on clients
(especially the deactivated ones) and the server.

Convergence Studies (RQ3): Taking D-HGN working on
DBLP and Amazon datasets with 16 clients as an exam-
ple, we present the convergence curves in Fig. 6. Notably,
Restart and Explore can both achieve better performance
with significantly fewer communication rounds. For instance,
FedDA with Explore on DBLP can achieve a score over
0.535 within 20 rounds, which will take FedAvg 40 rounds. In
other words, if we limit the number of communication rounds
for both frameworks, FedDA would achieve much better
performance. Moreover, if we take the number of necessary
communication rounds into consideration while calculating the
transmitted cost, the efficiency enhancement would become
even more significant. For instance, if we run FedDA with
Explore strategy for only 20 rounds on DBLP, we will have

a model just as effective as FedAvg with 40 rounds, saving
approximately 75% transmitted parameters. Furthermore, as
shown in Fig. 6(c) and Fig. 6(d), if we consider the best and
the worst performance of these frameworks like in Sec. IV,
it appears that FedDA could also narrow the gap between
maximum and minimum even compared with FedAvg with
C = 1, which is a significant improvement given the results
in Fig. 2(a) and Fig. 2(b). It further proves that the dynamic
activation strategy is capable of stabilizing the FL process.

Hyper-parameter Studies (RQ4): We compare the link pre-
diction performance regarding the ROC-AUC curves generated
by FedDA with different α, βe and βr. Results are shown in
Fig. 7. In Fig. 7(a), we fix other parameters and study βr for
Restart strategy, while for Fig. 7(b) and Fig. 7(c) we present
Explore strategy with different α and βe. All the results are
generated by training D-HGN on DBLP with 16 clients.

Observed from Fig. 7(a), βr affects the final performance
significantly. Thus, choosing a proper βr, which controls the
number of communication rounds before re-initializing, is
crucial to elevate the final testing accuracy. Furthermore, if the
total number of communication rounds is fixed, then a smaller
βr will tolerate fewer clients being activated before reactivat-
ing them all, leading to better communication efficiency. As
for α in Fig. 7(b), apparently, it has a negligible effect on
the final global performance, but a too large α can lead to an
unstable training process. We infer that such observations can
be attributed to the too-aggressive client deactivation threshold,
which indicates that the server will repeatedly activate clients
with rather trivial contributions. At last, for βe, though the
analysis in Sec. V-C3 shows a positive relationship between
the βe and the amount of transmitted parameters, as we only
consider efficient models with the best performance, in this
work, we settle with βe = 0.667 since it brings the most
effective model according to Fig. 7(c).

VII. CONCLUSION

In this work, we study the demanded yet challenging setting
of FL across distributed Non-IID heterogeneous graphs. We
revisit the vanilla FedAvg protocol over heterogeneous graphs
and surprisingly discover that the partial activation of clients
and parameters can potentially benefit the final model’s per-
formance and communication efficiency. To reduce activated
clients and parameters while addressing the instability in
performance under random activation, we design a dynamic



activation protocol FedDA, which is able to adaptively evaluate
clients and their respective parameters for their strategical
selection along the global model’s FL training process. Both
theoretical and empirical analyses corroborate the effectiveness
of our proposed techniques in reducing the communication
cost while stabilizing the FL process. Further studies on
privacy and fairness issues on top of FedDA, as well as its
potential connection with generic FL beyond graph data can
both be interesting future directions.

APPENDIX

In appendix, we provide the formal proof of theorems
presented in our main paper.

A. Proof of Theorem 1
Proof. According to our assumption, we know that

g = ∇L(w), g′ = ∇L(w′) (13)

Since w′ = w− η · g, by the Lipschitz assumption, we have

∥g′ − g∥2 = ∥∇L(w′)−∇L(w)∥2
≤ Lg · ∥w′ −w∥2 = Lg · η · ∥g∥2 ≤ Lg · Lf · η

(14)

where the last inequality holds because the ℓ2-norm of a
function’s gradients is always upper bounded by the function’s
Lipschitz continuous constant, and one can easily prove it by
mean value theorem.

Only requiring ∥g′ − g∥2 to be small is not enough to
guarantee the inequality we want to prove. The main idea for
the rest of the proof is to find the maximal amount of shift
of each gi and the average ḡ, such that the relative position
of ḡ and the gi closest to ḡ do NOT change after one step of
gradient descent. Denote the two gradients that are closest to
ḡ as gj and gj+1. Given ∥g′−g∥2 ≤ Lg ·Lf ·η, we know that

∥g′ − g∥1 ≤
√

|I| · ∥g′ − g∥2 (15)

where
√
|I| is essentially the dimension of g and g′. Hence,(√

|I|+
√

|I|−1
)
· ∥g′ − g∥2 < τϵ (16)

Plugging Eq. (14) into above, we have

η <
((√

|I|+
√

|I|−1
)
LfLg

)−1

· τϵ (17)

B. Proof of Theorem 2 and 3

Proof of Theorem 2. First, notice that FedDA with Restart
strategy can be regarded as a generalization of FedAvg with
full device participation as defined in [43]. Formally speaking,
suppose restarting strategy is applied every R iterations, then
for iterations 1, 1+R, 1+2R, · · · , 1+ZR, Z ∈ N+, all devices
are employed, while for the rest of iterations partial devices
are employed due to the dynamic activation mechanism. If
we only consider FedDA with iterations where all devices
participate, the proof directly follows that in Theorem 1
in [43], only differing in the number of iterations that T
should be replaced with T/R. Hence, the rest of the proof
is to show that for iterations with partial device participation,
the loss function does NOT increase, which combined with

Theorem 1 in [43] will be sufficient to guarantee that FedDA
with restarting strategy can converge.

By definition, we have L =
∑N
k=1 pkLk, where Lk, pk is

local loss, device aggregation weight, respectively. For some
iteration t that only K devices participate (K < N ). Without
loss of generality, we assume the first K devices participate
in iteration t. By definition of gradient descent,

∀ k ≤ K, Lk(w(t)
k )− Lk(w(t−1)

k ) < 0 (18)

where w
(t)
k = w

(t−1)
k − ηkgk, where ηk is the learning rate

for device k. For those devices that do NOT participate in
iteration t, we have

∀ k > K, Lk(w(t)
k )− Lk(w(t−1)

k ) = 0 (19)

since their model parameters do not change. Combining both
equations above finishes the proof.

Proof of Theorem 3. The general idea here is to show that
our FedDA with explore strategy is a special case of FedAvg
with partial device participation as defined in Theorem 2 and 3
in [43]. The core part to prove lies in showing that the explore
strategy gives an unbiased estimator. Due to the limited space
here, we omit some unnecessary details and please refer to
Sec. B.2 in [43] if interested.

The key idea is to regard FedDA with explore strategy
as stratified sampling scheme. To see this, suppose given
two deterministic sets X = {x1, x2, · · · , xN1

} and Y =
{y1, y2, · · · , yN2}, and define Z = X ∪Y . Define SK as a set
of random samples by stratified sampling without replacement
from Z , as SK = {x1, x2, · · · , xK1

, y1, y2, · · · , yK2
} with

K = K1 + K2. Here we consider stratified sampling with
uniform distribution within each strata. Then,

E[
∑

SK ] = E[
∑

SX ] + E[
∑

SY ]

= K1 ·
∑N1

i=1

1

N1
xi +K2 ·

∑N2

i=1

1

N2
yi

=
K1

N1

∑N1

i=1
xi +

K2

N2

∑N2

i=1
yi

:= K1 · X̄ +K2 · Ȳ

(20)

where X̄ and Ȳ is defined as average over all elements in set
X and Y , respectively. On the other hand,

Z̄ =

∑
X +

∑
Y

N1 +N2
=

N1

N1 +N2
· X̄ +

N2

N1 +N2
· Ȳ (21)

Suppose N1 = cN2, c ∈ R+. If we choose K1 = cK2, then
it directly follows that there exists some constant C ∈ R+,
such that

E[
∑

SK ] = C · Z̄ (22)

which proves that our sampling scheme SK is unbiased over
Z̄ up to a scaling constant. Hence, our sampling scheme can
be regarded as a special case of scheme 2 in Sec. B.2 in [43]
and the rest of the proof follows there directly.

In practice, set Y corresponds to the devices that 100%
participate, so K2 will be set to N2. On the other hand, set
X represents the devices that are first de-activated and then
we uniformally sample some from X following the explore
strategy. We can control the ratio c to make sure our sampled
estimator is unbiased.
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