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Abstract—Behemoth graphs are often fragmented and sepa-
rately stored by multiple data owners as distributed subgraphs
in many realistic applications. Without harming data privacy, it
is natural to consider the subgraph federated learning (subgraph
FL) scenario, where each local client holds a subgraph of
the entire global graph, to obtain globally generalized graph
mining models. To overcome the unique challenge of incomplete
information propagation on local subgraphs due to missing cross-
subgraph neighbors, previous works resort to the augmentation
of local neighborhoods through the joint FL of missing neighbor
generators and GNNs. Yet their technical designs have profound
limitations regarding the utility, efficiency, and privacy goals of
FL. In this work, we propose FedDEP to comprehensively tackle
these challenges in subgraph FL. FedDEP consists of a series of
novel technical designs: (1) Deep neighbor generation through
leveraging the GNN embeddings of potential missing neighbors;
(2) Efficient pseudo-FL for neighbor generation through em-
bedding prototyping; and (3) Privacy protection through noise-
less edge-local-differential-privacy. We analyze the correctness
and efficiency of FedDEP, and provide theoretical guarantees
on its privacy. Empirical results on four real-world datasets
demonstrate the clear benefits of our proposed techniques.

Index Terms—Federated Learning, Graph Neural Networks

I. INTRODUCTION

Graph data mining, one of the most important research
domains for knowledge discovery, has been revolutionized by
Graph Neural Networks (GNNs), which have established state-
of-the-art performance in various domains such as social plat-
forms [1], e-commerce [2], transportation [3], bioinformatics
[4], and healthcare [5]. The power of GNNs benefits from
training on real-world graphs with millions to billions of nodes
and links [6], [7]. Nowadays, emerging graph data from many
realistic applications, such as recommendation, drug discovery,
and infectious disease surveillance, are naturally fragmented,
forming distributed graphs of multiple “data silos”. More-
over, due to the increasing concerns about data privacy and
regulatory restrictions, directly transferring and sharing local
data to construct the entire global graph for GNN training is
unrealistic [8], [9].

Federated learning (FL) is a promising paradigm for dis-
tributed machine learning that addresses the data isolation
problem, which has recently received increasing attention in
various applications [10], [11]. Despite its successful appli-
cations in domains like computer vision [12] and natural

§ This work was done while at the University of Hong Kong.
∗ Corresponding author (j.carlyang@emory.edu).

language processing [13] where data samples (i.e., images or
documents) hardly interact with each other, FL over graph
data manifests unique challenges due to the complex node
dependencies, structural patterns, and feature-link correlations.
In this work, we focus on one of the most common and
challenging scenarios of federated learning over distributed
subgraphs (subgraph FL), where clients hold subgraphs of
largely disjoint sets of nodes and their respective links, as
illustrated in Fig. 1 (b) and (c). One unique challenge in sub-
graph FL is the incomplete neighborhood of nodes in the local
subgraphs caused by cross-subgraph missing neighbors, that is,
potential neighboring nodes captured by other local subgraphs.
This phenomenon cannot be properly handled by applying
generic FL mechanisms such as FedAvg for GNN training.
Targeting this limitation, Zhang et al. propose FedSage [14],
where a missing neighbor generator is collaboratively learned
across clients to retrieve cross-subgraph missing neighbors and
better approximate GNN training on the entire global graph
(Fig. 1 (d)). The success of FedSage justifies the necessity
of obtaining complete information in local neighborhoods.
However, the designs of FedSage have several deficiencies in
complex and sensitive real-world scenarios, regarding utility,
efficiency, and privacy.

Limited Utility. The missing neighbor generator in FedSage
can only recover 1-hop missing neighbors and does not further
propagate their features to other neighboring nodes. As illus-
trated in Figure 1 (e), for predictions where neighbors further
than 1 hop away are important, the model will still fail. Such
limitation can also be verified by the limited performance gain
of FedSage+ over vanilla FedSage without neighbor generator
in [14] as well as our experimental results in Table III.

Significant Overhead. The FL training of missing neighbor
generators in FedSage incurs substantial inter-client com-
munication costs (Step I in Fig. 1 (d)), in addition to the
standard client-server communication in FL (Step III), and
heavy intra-client computations (Step II). Specifically, for each
FL iteration, each client needs to broadcast the generated node
embeddings to all other clients and receive training gradients
for the neighbor generator in Step I, and each client needs to
repeatedly search across its entire node set to find the most
likely cross-subgraph missing neighbors in Step III.

Privacy Concerns. For subgraph FL, FedSage shares GNN
gradients and node embeddings instead of raw data, but with-
out specific privacy protection, the gradients and embeddings
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Fig. 1: A toy example of modeling the spread of infectious disease in a distributed subgraph FL system. The black lines are
the close contact relations between people, and the dashed red lines are the cross-subgraph missing links. Red solid lines are
the generated links, and the people figures with red solid rectangles are the generated neighbors. (a) The reason for a target to
be diagnosed when his/her direct contacts are all healthy can be attributed to Pattern 1⃝: some of the healthy neighbors have
direct contacts with many diagnosed ones, or Pattern 2⃝: many of those healthy neighbors have direct contacts with diagnosed
ones. (b) If the global graph is available, both patterns are observable and centralized GNN can correctly identify the reasons
for both u and v to be infected. (c) In the more realistic setting of local subgraphs, neither of the patterns is observable and
GNN obtained from generic FL (such as FedAvg) will fail to learn why u and v are infected. (d) FedSage tries to achieve the
recovery of 1-hop missing neighbors across local subgraphs through three steps, which require significant extra communication
and computation. (e) Unfortunately, even if all 1-hop missing neighbors can be generated accurately, GNN obtained through
FedSage will still fail because the correct patterns require access to deeper missing neighbors.

directly computed from raw data are prone to privacy leakage,
such as via inference attacks [15], [16] and reconstruction
attacks [17], [18]. Unlike FedSage, FedGNN [19] provides pri-
vacy protections by leveraging homomorphic encryption [20]
and DPSGD techniques [21]. However, it relies on an addi-
tional trusted authority to achieve strict privacy guarantees,
which is not available in general subgraph FL.

Herein, we propose Subgraph Federated Learning with Deep
Efficient Private Neighbor Generation (FedDEP) to address
the unique utility, efficiency, and privacy challenges in the
important and realistic setting of subgraph FL.

Utility-wise: Deep Neighbor Generation and Embeddi-
ng-fused Graph Convolution (DGen). To enhance the mod-
eling of cross-subgraph missing neighbors in the system with-
out exponentially increasing computation and communication
overheads, we propose a deep neighbor generator, DGen. It
generates missing neighbors in depth, by leveraging the GNN
embeddings of generated neighbors. The generated embed-
dings contain information from the target node’s multiple hops
of neighbors [22], [23] and include richer context beyond
single node features generated in FedSage. To incorporate
the generated deep neighbors into GNN training, we propose
a novel embedding-fused graph convolution process for the
system to obtain the global classifier.

Efficiency-wise: Deep Embedding Prototyping and Pseu-
do-FL (Proto). To reduce the intra-client computation, we

cluster the GNN embeddings of nodes in each client to
construct sets of missing neighbor prototypes. Instead of
repeated exhaustive searches for closest neighbors across a
client’s entire node set as in FedSage, we can find the closest
prototypes across the much smaller prototype sets. To further
reduce the inter-client communication, we propose pseudo-
FL by sharing the prototype embeddings across the system
before the training of DGen. Thus, clients can conduct closest
neighbor searches locally without communications while still
achieving FL for DGen. Similarly to [24], sharing the proto-
type embeddings instead of node embeddings can also lead
to empirical privacy benefits due to the difficulty in inference
attacks from aggregated models.

Privacy-wise: Noise-free differential privacy through ra-
ndom sampling (NFDP). We aim to theoretically guaran-
tee rigorous edge-local-differential-privacy (edge-LDP), which
protects edges’ existence within local node’s neighborhoods in
distributed subgraphs [25]. Particularly, we achieve noise-free
edge-LDP by transferring noise-free differential privacy from
general domains [26] to edge-LDP, without embracing compli-
cated cryptology techniques, explicitly perturbing shared data,
or introducing additional roles into the system as previous
work [19]. Technically, we incorporate two stages of random
sampling into FedDEP, i.e., (1) mini-batching: random neigh-
borhood sampling in each graph convolution layer [27]; and
(2) Bernoulli-based generation selection: randomly sampling



generated deep neighbors by a Bernoulli sampler in DGen.
Extensive experiments on four real-world graph datasets

justify the utility, efficiency, and privacy benefits of FedDEP.

II. RELATED WORKS

A. Federated Learning for Graphs

With massive graph data separately stored by distributed
data owners, recent research has emerged in the field of FL
over graph data. Some studies propose FL methods for tasks
on distributed knowledge graphs, such as recommendation or
representation learning [28]–[31]. Another direction is for the
scenarios where every client holds a set of small graphs, such
as molecular graphs for drug discovery [32]. In this work, we
consider subgraph FL, where each client holds a subgraph of
the entire global graph, and the only central server is dataless.
The instrumental isolation of data samples leads to incomplete
structural features of local nodes due to cross-subgraph neigh-
bors missing not at random, which is fundamentally different
from the centralized graph learning scenarios with unbiased
sparse links [33] or randomized DropEdge [34].

To deal with the missing neighbor problem in subgraph FL,
existing works [14], [19], [35], [36] propose to augment local
subgraphs by retrieving missing neighbors across clients, and
then mend the subgraphs with the retrieved neighbors. Fed-
Graph [36] considers a relaxed scenario where the existences
of inter-subgraph neighbors are known for corresponding
clients. Moreover, it requests the central server to manage the
FL process with auxiliary data. FedSage [14] primarily focuses
on the design of the missing neighbor generator without
considering the important aspects of efficiency and privacy.
FedHG [35] studies the heterogeneous subgraph FL systems
where graphs consist of multiple types of nodes and links, and
it only protects the partial privacy of certain types of nodes in
the system. FedGNN [19] equips its augmentation with privacy
guarantees based on an additional trusted authority.

None of them provides a complete solution to the utility,
efficiency, and privacy of subgraph FL.

B. Privacy-Preserving Learning for Graphs

Privacy-preserving learning over graph data has been widely
studied. Differential Privacy (DP) [37] is a widely applied
privacy concept in this field, which describes the privacy of
a method in protecting individual samples while preserving
the analytical properties of the entire dataset. A prevalent
approach in attaining a graph mining model with general DP is
DPSGD [21], which injects designed noise into clipped gradi-
ents during model training. For centralized training scenarios,
DPGGAN [38] incorporates DPSGD to achieve DP for indi-
vidual links on original graphs. In FL systems, VFGNN [39]
and FedGNN [19] leverage DPSGD and cryptology techniques
to obtain rigorous privacy guarantees for federated graph learn-
ing. Meanwhile, to achieve general DP on graphs, there are
some other noised-injecting based methods. Previous works
of centralized learning [40]–[42], and FKGE [28] for FL
systems, guarantee their proposed techniques with general DP
by applying noise perturbation.

However, general DP does not depict the privacy guaran-
tees for sensitive node features, edges, or neighborhoods, on
distributed graphs. Edge local DP and node local DP (edge-
LDP and node-LDP) are two specific types of DP targeting
local nodes’ neighbor lists [25]. These novel DP definitions
better fit the graph learning that learns from multiple neighbor
lists, and match the privacy goal of protecting nodes’ local
neighborhoods.

As illustrated in Definition 2.2 in [25], edge-LDP defines
how much a model tells for two neighborhoods that differ by
one edge, while node-LDP promises a model’s max leakage
for all possible neighborhoods. In contrast to node-LDP, which
is much stronger and can severely hinder the graph model’s
utility, edge-LDP precisely illustrates the local DP for local
neighborhoods without overly constraining the model.

There are several works analyzing edge-LDP over dis-
tributed graph data. Qin et al. [25] propose a decentralized
social graphs generation technique with the edge-LDP. Imola
et al. [43] analyze the edge-LDP of the proposed shuffle
techniques in handling the triangle and 4-cycle counting for
neighbor lists of distributed users. Lin et al. [44] propose
Solitude, an edge-LDP collaborative training framework for
distributed graphs, where each client shares its perturbed local
graph for the training. However, different from our subgraph
FL setting, its central server (data curator) has access to node
identities and labels. To the best of our knowledge, we are the
first to leverage edge-LDP in the FL setting.

III. BACKGROUND

A. Problem Formulation

a) Distributed Subgraph System: We denote a global graph
as G = {V,E,X}, where V is the node set, X is the
respective node feature set, and E is the edge set. In the
subgraph FL system, we have one central server S and M
clients with distributed subgraphs. Gi = {Vi, Ei, Xi} is the
subgraph owned by Di, for i ∈ [M ], where V =

⋃M
i=1 Vi. In

this system, we assume that the dataless central server S only
maintains a graph model, and no direct sharing of nodes nor
edges is allowed. For simplicity, we assume no overlapping
nodes shared across data owners, i.e., Vi ∩ Vj = ∅ for any
i ̸= j ∈ [M ]. Thus, for an edge ev,u ∈ E, where v ∈ Vi and
u ∈ Vj , we have ev,u /∈ Ei ∪ Ej . That is, ev,u might exist in
reality but is missing from the whole system.
b) Goal: The system exploits an FL framework to collabora-
tively learn a global node classifier F on isolated subgraphs
in clients, without raw graph data sharing. The learnable
weights W in F are optimized following the distribution of
the global graph G. We formalize the problem as finding W ∗

that minimizes the risk

W ∗ = argmin
W

R(F (W )) = argmin
W

1

M

M∑
i

Ri(Fi(W ))),

where Ri(Fi(W )) := E[ℓ(Fi(W ;Gi), Yi))] is the local em-
pirical risk, and ℓ(·) is a task-specific loss function.



B. Preliminaries

In this subsection, we revisit the popular existing subgraph
federated learning framework, i.e., FedSage+, the variant
of FedSage with the proposed missing neighbor generator
(NeighGen) [14]. For simplicity, in this paper, we refer to
this stronger variant as FedSage.

1) Neighbor Generation: The proposed NeighGen in [14]
includes an encoder He and a generator Hg . For a node v on
Gi, NeighGen generates its missing neighbors by taking in its
K-hop ego-graph GK

i (v). Specifically, it predicts the number
of v’s missing neighbors ñv , and predicts the respective
feature set x̃v .

2) Cross-subgraph Neighbor Reconstruction: To obtain
ground truth for supervising NeighGen without actually see-
ing the missing neighbors, each client simulates the missing
neighbor situation by randomly holding out a pre-determined
portion of the nodes and all links involving them. To allow
a NeighGen model to generate diverse and realistic missing
neighbors, the system conducts federated cross-subgraph train-
ing as follows.
1) Each client Di sends its local NeighGen’s generator Hg

and its input to all other clients Dj .
2) Dj computes the cross-subgraph feature reconstruction loss

Lf
i,j between real node features on Gj and the generated

ones from received data.
3) Dj sends Lf

i,j’s gradients back to Di via server S.
4) Di computes the total gradients of cross-subgraph neighbor

reconstruction loss Lf
i = αn

∑
j∈[M ] L

f
i,j by summing up

all received gradients from other clients. Notably, Lf
i,i is

the local neighbor reconstruction loss computed on local
ground truth obtained from hidden nodes and edges.

To attain the generalized final classifier, in FedSage, data
owners federally train a shared model of NeighGen with a
GraphSage classifier, where the classifier learns on nodes
drawn from local subgraphs mended with the generated neigh-
bors. For more technical details of the process and equations,
please refer to the original paper of FedSage [14].

IV. FEDDEP

A. Utility Elevation through DGen

The demanding utility challenge left by FedSage is how to
further enrich local node contexts regarding deeper missing
neighbors. However, directly generating deeper neighbors will
incur exponential increments for intra-client computation and
inter-client communication. To deal with this, we propose to
leverage the GNN encoder and generate deep embeddings
of missing neighbors that can capture their multi-hop local
contexts in the corresponding subgraphs. Fig. 2 illustrates this
technical motivation, regarding the toy example in Fig. 1.

1) Deep Neighbor Generation: Inspired by the design of
NeighGen in FedSage, we propose a deep neighbor generator
DGen, whose architecture is shown in the middle of Fig. 3.
θe and {θd, θf} are the learnable parameters of DGen’s two
components, i.e., the GNN encoder He and the embedding
generator Hg , respectively.
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Fig. 2: Technical motivation of FedDEP against FedSage.
FedDEP generates information of multiple hops of neighbors
to provide the subgraph with richer information for local
nodes, compared to the missing neighbor features generated
by FedSage. Hence, FedDEP assists the local subgraph to
correctly capture both patterns.

Unlike NeighGen which generates node features of missing
neighbors, DGen generates node embeddings instead. Particu-
larly, for a node v on graph Gi, we have its generated missing
deep neighbors as

ñv = σ(θd⊤ ·He(GK
i (v); θe)),

z̃v = Berr
(
σ
(
θf⊤ · [He(GK

i (v); θe) +N(0, 1)]
)
, ñv

)
,

(1)

where ñv ∈ N, z̃v ∈ Rñv×dz , and dz is the dimension of node
embeddings. Berr(a, b) is a Bernoulli sampler that indepen-
dently samples b records from a following Ber(r), with r as
a constant. In this process, based on the original neighborhood
of v, DGen first predicts the number of its missing neighbors
nv and then samples ñv embedding vectors for them. Sampling
allows the whole process to be generative and trained through
variational inference for enhanced robustness [45].

2) Embedding-fused Graph Convolution: After mending
the local subgraph with generated deep neighbors, i.e., attach-
ing the 1-hop neighbors with deep embeddings, every client
obtains its mended local subgraph G̃i = {Vi, Ẽi, Xi, Z̃i}.
Recall that our ultimate goal is to obtain a node classifier F
for node classification tasks. Obviously, existing GNNs with
vanilla graph convolution process is incapable to incorporate
the mended nodes with deep embeddings as node features,
due to the difference between their feature spaces. To properly
conduct node classification on G̃i, we propose the embedding-
fused graph convolution mechanism.
a) Downstream Classifier F: We specify the downstream
classifier F as a model of K-layer embedding-fused graph
convolution. For a queried node v ∈ V , F integrates nodes
together with all mended embedding sets on v’s K-hop ego-
graph G̃K

i (v) from G̃i. The entire convolution is achieved
by learnable weights W = {W (k)|k ∈ [0,K]}, where
W (0) ∈ Rdh×(dx+dz), for k ∈ [K − 1], W (k) ∈ Rdh×(dh+dz),
and W (K) ∈ Rdy×(dh+dz). dh is the dimension of hidden
representation xk

v , for node v at layer k ∈ [0,K − 1]. For a
node v ∈ Vi, its initial representation x0

v is

x0
v = σ

(
W (0) × [xv||Agg(z̃v)]

⊤
)⊤

, (2)
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Fig. 3: Overview of the proposed FedDEP framework (with the novel DGen, Proto, and NFDP components highlighted)

and at each layer k ∈ [K], embedding-fused graph convolu-
tion computes v’s representation xk

v as

xk
v = σ

(
W (k) × [Agg({xk−1

u |u ∈ G1
i (v)})⊤||Agg(z̃v)]

⊤
)⊤

,

(3)

where Agg is specified as a mean aggregator, and || is
the concatenating function. After K layers, F outputs the
inference label as ỹv = Softmax(xK

v ). We formally analyze the
correctness of embedding-fused graph convolution as shown
below, whose proof is omitted due to the space limit and
provided in an online appendix.1

Statement 1 (Correctness of embedding-fused graph convolu-
tion). For a node v, at each layer of embedding-fused graph
convolution, it aggregates nodes on the impaired ego-graph
with the corresponding mended deep neighbor embeddings
with separate learnable weights.

b) Inference: For a node v on the global graph G without
mended deep neighbors, F predicts its label with Eq. (2) and
Eq. (3), where all z̃v’s are simply set to zero vectors.

We further justify that F with K layers of embedding-fused
graph convolution in aggregating real neighbors and generated
deep neighbors of L-hop local contexts, has a similar capacity
as the original one in aggregating an (K+L)-hop ego-graph as
shown below. The proof is also omitted due to the space limit
and provided in an online appendix1.

Statement 2 (Comparison between embedding-fused graph
convolution and original graph convolution). For a node v, we
denote the prediction, computed by K layers of embedding-
fused graph convolution on its K-hop impaired ego-graph
mended with deep neighbors of L-hop local contexts, as ỹ′v ,
and the prediction, computed by (K+L) layers of graph convo-
lution on its (K+L)-hop ego-graph, as ỹv , where K,L ∈ N∗.
ỹ′v and ỹv encode the same local context of v.

3) FL for the Joint Model of DGen and F : To achieve a
satisfying classification performance for F on nodes drawn
from the global graph, it is natural to consider jointly training
DGen and F through FL. Within the joint model, DGen
can enrich local nodes’ neighborhoods to approximate the

1Appendix accessible in https://anonymous.4open.science/r/FedDEP-6F08/.

complete ones on the unobservable global graph, for F to
conduct accurate and generalized node classification, while F
can supply DGen with task-oriented supervision.

The FL training on the joint model can boil down to two
parts, one is learning from a client’s local subgraph, i.e.,
local deep neighbor reconstruction, and the other is learning
from others, i.e., cross-subgraph deep neighbor reconstruction.
W.l.o.g., we illustrate how Di federally trains its DGeni on
node v ∈ V̄i as follows.
a) Local Deep Neighbor Reconstruction: First of all, Di pre-
computes its local node embeddings Zi = {zv|v ∈ Gi} via
an L-layer GCN (e.g., GraphSage) trained with mini-batch
neighbor sampling, where L is a hyper-parameter.

To locally train a DGen, the corresponding owner, e.g., Di,
constructs the ground truth of local missing deep neighbors
by impairing its local graph Gi. Specifically, it impairs Gi

by hiding its h% nodes V h
i and corresponding embeddings

Zh
i , and all related links Eh

i . Then Di retrieves the impaired
subgraph Ḡi = {V̄i, Ēi, X̄i} and corresponding remaining
node embeddings Z̄i, where V̄i = Vi \ V h

i , Ēi = Ei \ Eh
i ,

X̄i = Xi \ Xh
i , and Z̄i = Zi \ Zh

i . The hidden information
enables Di to locally supervise its DGen. Then, Di computes
the local reconstruction loss Ln

i,i as

Ln
i,i =

1

|V̄i|
∑
v∈V̄i

[λdLS
1 (ñv − nv) + λf

∑
p∈[ñv ]

min
u∈N̄i(v)

(||z̃pv − zu||22)],

where z̃pv is the p-th generated embeddings in z̃v .
b) Cross-subgraph Deep Neighbor Reconstruction: Between
two clients Di and Dj , the computation consists of three steps.

1) Di sends the generated z̃v to server S for broadcasting.
2) Then, every Dj sends a set of |z̃v| closest embeddings zj ⊂

Zj back to the server, and the server forwards all zj’s to
Di. For zpj ∈ zj , p ∈ [|z̃v|], zpj = argminzu∈Zj

||z̃pv−zu||22.
3) Finally, on receiving all zj’s, Di computes the cross-

subgraph deep neighbor reconstruction loss between Di

and Dj as Ln
i,j = λn 1

|V̄i|
∑

v∈V̄i

∑
p∈[|z̃v|](||z̃

p
v − zpj ||22),

where λn is a constant.
The system minimizes the following aggregated loss func-

tion to obtain FL-trained DGen models and the final global
classifier F .

L∗ =
1

M

∑
i∈[M ]

(Lc
i +

∑
j∈[M ]

Ln
i,j), (4)



where every Lc
i is the cross-entropy loss as

Lc
i = l(W |G̃i, Yi) =

1

|Vi|
∑
v∈Vi

− [yv log ỹv + (1− yv) log (1− ỹv)] ,

(5)
where G̃i is the subgraph mended by generated deep neigh-

bors, and Yi is local node label set.

B. Efficiency Elevation through Proto

When the system conducts FL over the joint model of DGen
and F , it encounters significant overhead regarding intra-
client computations for closest potential neighbor search and
inter-client communications for frequent gradient/embedding
exchange. To fundamentally reduce both costs, we propose
pseudo-FL with deep neighbor prototype generation. We term
this combination as Proto.

1) Deep Neighbor Prototype Generation: Technically, ev-
ery client Di locally groups pre-computed embeddings Zi into
C clusters by a clustering function. Then, Di obtains its proto-
type set as Z ′

i = {mean(zv|v ∈ Vi, zv in cluster c)|c ∈ [C]}.
Subsequently, the cross-subgraph prototype reconstruction

loss Ln
i is computed on the prototype sets instead of the

original node sets as

Ln
i =

1

|V̄i|
∑
v∈V̄i

[βdLS
1 (ñv − nv) + βf

∑
p∈[ñv ]

min
u∈N̄i,z′u∈Z′

i

(||z̃pv − z′u||22)

+ βn
∑

j∈[M ]\{i}

∑
p∈[ñv ]

min
z′u∈Z′

j

(||z̃pv − z′u||22)],

(6)
where β’s are constants. Hence, the intra-client search space

in computing the cross-subgraph deep neighbor reconstruction
loss reduces from |V | nodes to M sets of C prototypes.

The FL training of the joint model with prototyping is to
minimize the following objective function

L =
1

M

∑
i∈[M ]

Li =
1

M

∑
i∈[M ]

(Ln
i + Lc

i ), (7)

where Lc
i is computed by Eq. (5) with substituting G̃i to the

deep neighbor prototype mended subgraph.
2) Pseudo-FL with Cross-subgraph Prototype Generation:

To further reduce communication costs without forbidding
clients from learning across the system, we propose pseudo-FL
based on deep neighbor prototype generation.

In pseudo-FL, each Di sends Z ′
i across the system before

the FL process. For every Di, after obtaining Z ′ = {Z ′
j |j ∈

[M ]}, it can conduct the FL process for DGen by locally
computing the cross-subgraph deep neighbor reconstruction
loss Li in Eq. (7) with zero inter-client communication.
Then, among deep neighbor prototype mended subgraphs, the
system conducts a generic FL (e.g., FedAvg) to attain the final
classifier by minimizing L in Eq. (7).
Efficiency Analysis. The main difference between Fed-
Sage/FedDEP and generic FL frameworks (e.g., FedAvg) is
the additional learning of neighbor generators. Therefore, we
analyze the additional overhead caused by the FL training
of the neighbor generators for three different frameworks, as
shown in Table I. The additional computation complexity for
FedDEP is decreased from FedSage due to the reduction in

the generated dimension (for real-world datasets, dx can be a
few thousand [46], while for FedDEP, dz is often less than
300). By prototyping deep neighbors into C clusters, where
C is an independently determined cluster number that can
be rather small such as 10, the computation complexity of
FedDEP is further significantly decreased. Communication-
wise, the cost of FedSage is dominated by the size of the
generator (|θ|), which can be as large as 3MB even for a simple
two-layer GCN model. FedDEP without PROTO reduces the
cost by only sharing the deep neighbors. With pseudo-FL,
FedDEP can further reduce the communication to zero by
sharing O(MCdz) data ahead, for training DGen.

TABLE I: The additional overhead caused by the FL training
of neighbor generators. For simplicity, our analysis is for every
round of updating one generator for one node.

FL scheme comp. comm./epoch total comm.

FedSage O(|V |ñvdx) O(M |θ||hK
v |) O(EgM |θ||hK

v |)
FedDEP w/o Proto O(|V |ñvdz) O(Mñvdz) O(EgMñvdz)

FedDEP O(MC2dz) 0 O(MCdz)

C. Privacy Guarantees through NFDP

We theoretically analyze the edge-LDP property of FedDEP
achieved by our novel noise-free DP mechanism (NFDP).
Even without explicitly injecting random noises into the
original local neighborhoods, our proposed framework sustains
strong privacy protections by rigorous edge-LDP.

Theorem 1 (Noise-free edge-LDP of FedDEP). For a dis-
tributed subgraph system, on each subgraph, given every
node’s L-hop ego-graph with its every L-1 hop neighbors of
degrees by at least D, FedDEP unifies all subgraphs in the sys-
tem to federally train a joint model of a classifier and a cross-
subgraph deep neighbor generator. By learning from deep
neighbor embeddings that are obtained from locally trained
GNNs in N epochs of mini-batch training with a sampling
size for each hop as d, FedDEP achieves (log(1+r(eε̃-1), rδ̃)-
edge-LDP, where

ε̃ = min{LNε,LNε
(eε − 1)

eε + 1
+ εU

√
2LN},

δ̃ = (1− δ)LN (1− δ′), δ′ ∈ [0, 1],

and U = min{
√

ln(e+ ε
√
LN
δ′ ),

√
ln( 1

δ′ )}. r is the expected
value of the Bernoulli sampler in DGen. When d < D, (ε, δ)
are tighter than (ln D+1

D+1−d ,
d
D ); when d ≥ D, (ε, δ) are

tighter than (d ln D+1
D , 1−(D−1

D )d). Both pairs of (ε, δ) serve
as the lower bounds of the edge-LDP protection under the
corresponding cases.

Since both ϵ and δ are simultaneously affected by the
sampling size of local model training, for simplicity, we
choose ϵ to evaluate privacy costs in our experiments. The
proof of the Theorem will follow general noise-free DP [26],
the rule of the composition of DP mechanisms [47], and
privacy amplification by subsampling [48]. Due to the space
limit, the detailed proof is omitted and provided in an online
appendix1.



TABLE II: Statistics of the datasets and the synthesized distributed subgraph systems. |Vi| and |Ei| rows show the averaged
numbers of nodes and links in all subgraphs, and ∆E shows the total number of missing cross-subgraph links.

Dataset Cora Citeseer PubMed MSAcademic

(|V |, |E|) (2708, 5278) (3327, 4552) (19717, 44324) (18333, 81894)
(dx, |Y |) (1433, 7) (3703, 6) (500, 3) (6805, 15)

M 3 5 10 3 5 10 3 5 10 3 5 10

|Vi| 903 542 271 1109 665 333 6572 3943 1972 6111 3667 1833
|Ei| 1594 945 437 1458 866 431 13251 7901 3500 24300 13949 5492
∆E 496 552 912 178 224 247 4570 4818 9323 8995 12149 26973

∆E/|E| 9.40% 10.46% 17.28% 3.91% 4.92% 5.43% 10.31% 10.87% 21.03% 10.98% 14.84% 32.94%

Discussions. Proto does not theoretically tighten the privacy
bound of edge-LDP. However, unlike individual node features
or node embeddings, prototypes in Proto are aggregated data
and do not have a one-to-one correspondence with individual
nodes. Thus, Proto not only benefits FL efficiency, but also
enhances the empirical privacy protection of FedDEP.

V. EXPERIMENTS

We conduct experiments on four real-world graph datasets
to verify the benefits of FedDEP under different scenarios,
with in-depth component studies for DGen, Proto, and NFDP.

A. Experimental Settings

We synthesize the distributed subgraph system with four
widely used graph datasets, i.e., Cora [49], Citeseer [49],
PubMed [50], and MSAcademic [46]. We follow FedSage
[14] to synthesize the distributed subgraph system using the
Louvain Algorithm. We split every dataset into 3, 5, and 10
subgraphs of similar sizes, and the statistics of these datasets
are presented in Table II.

We specify the GNN as a two-layer GraphSage model using
the mean aggregator [27]. For each layer of GraphSage, it
samples 5 nodes. We use batch size 32 and set training epochs
to 50. The same parameters are used for F with embedding-
fused graph convolution. The training-validation-testing ratio
is 60%-20%-20% and the hyper-parameters for weighting loss
values, i.e., αs, λs, and βs, are set to 1. The graph impairing
ratio h is set to 0.5 for all cases. Optimization is done using
SGD with a learning rate of 0.1. We fix embedding dimension
dz as 128 for Cora, 64 for CiteSeer, 256 for both PubMed
and MSAcademic, based on grid search over {64,128,256}.
We implement FedDEP on the FederatedScope platform [51]
in Python. The applied clustering function is DEC [52]. We
execute all experiments on a server with 8 NVIDIA GeForce
GTX 1080 Ti GPUs.2

We conduct comprehensive performance evaluations of Fed-
DEP by comparing the following baselines and ablations:
• Global: A GraphSage model trained on the entire global

graph without missing links (providing the performance
upper bound);

• Local: A set of GraphSage models trained on individual
subgraphs;

2Code is provided in https://anonymous.4open.science/r/FedDEP-6F08/.

• FedAvg (FedDEP without DGen/Proto/NFDP): A Graph-
Sage model trained across subgraphs by FedAvg;

• FedGNN: A GraphSage model trained across subgraphs by
FedGNN [19];

• FedGraph: A GraphSage model trained across subgraphs by
FedGraph [36];

• FedSage: A GraphSage model trained across subgraphs by
FedSage+ [14];

• FedDEP w/o DGen: FedDEP without deep neighbor gener-
ation;

• FedDEP w/o Proto: FedDEP without pseudo-FL or embed-
ding prototype;

• FedDEP w/o NFDP: FedDEP trained with DPSGD instead
of noise-free edge LDP;

• FedDEP: The full FedDEP model with DGen, Proto and
NFDP.

Cluster numbers in FedDEP are chosen by grid search
over C ∈ {3, 5, 10, 15, 20} and will be studied in detail
in Section V-D. For FedGNN and FedDEP w/oNFDP , we
fix their σ as 2.0 to achieve the same level of edge-LDP
protection as other variations of FedDEP. We provide results
with different privacy budgets in Section V-E.

The metric we use is node classification accuracy on the
queries sampled from the testing nodes on the global graph.
For the global and FL-trained models, we report the average
accuracy over three random repetitions. For the locally trained
models, the scores are further averaged across local models.
Besides averaged accuracies, we also provide the correspond-
ing standard deviations.

B. Overall Performances

We conduct comprehensive ablation experiments to verify
the significant elevations brought by our proposed techniques,
as shown in Table III. The most exciting observation is that
besides outperforming local models by an average of 27.13%,
FedDEP distinctly elevates the performance of FedGNN by at
most 2.13%, and FedSage by at most 3.84%, even by requiring
zero communication during the FL of the generators. Notably,
similar to FedSage, FedDEP exhibits its capacities in elevating
beyond the global classifier which is supposed to provide the
performance upper bound, possibly due to the additional model
robustness brought by the missing neighbor generators. As



TABLE III: Node classification results. The top two models are highlighted (except for Global).
Cora Citesser

Model M=3 M=5 M=10 M=3 M=5 M=10

Local 0.5776±0.0250 0.4486±0.1079 0.4334±0.0832 0.6541±0.0284 0.5802±0.0560 0.4200±0.1102
FedAvg 0.8571±0.0146 0.8555±0.0143 0.8528±0.0195 0.7646±0.0109 0.7496±0.0102 0.7350±0.0079

FedGNN 0.8823±0.0166 0.8670±0.0100 0.8675±0.0106 0.7850±0.0133 0.7927±0.0141 0.7823±0.0109
FedGraph 0.8693±0.0015 0.8602±0.0042 0.8507±0.0103 0.7720±0.0334 0.7834±0.0205 0.7633±0.0123
FedSage 0.8708±0.0090 0.8790±0.0093 0.8588±0.0099 0.7818±0.0023 0.7805±0.0169 0.7656±0.0102

FedDEP w/o DGen 0.8718±0.0065 0.8717±0.0039 0.8583±0.0069 0.7616±0.0057 0.7806±0.0048 0.7413±0.0051
FedDEP w/o Proto 0.8911±0.0034 0.8900±0.0028 0.8916±0.0171 0.8107±0.0176 0.7995±0.0094 0.8080±0.0096
FedDEP w/o NFDP 0.8883±0.0178 0.8703±0.0148 0.8747±0.0090 0.7846±0.0176 0.7913±0.0106 0.7882±0.0164

FedDEP 0.8894±0.0164 0.8883±0.0107 0.8801±0.0087 0.7927±0.0141 0.7940±0.0164 0.8040±0.0219

Global 0.8955±0.0043 0.7741±0.0045

PubMed MSAcademic

Model M=3 M=5 M=10 M=3 M=5 M=10

Local 0.8287±0.0079 0.7879±0.0322 0.4364±0.1120 0.7906±0.0114 0.7713±0.0992 0.5445±0.0724
FedAvg 0.7149±0.0121 0.7260±0.0023 0.6954±0.0259 0.6986±0.0019 0.6908±0.0201 0.6705±0.0123

FedGNN 0.9009±0.0059 0.8854±0.0047 0.8576±0.0063 0.9403±0.0017 0.9396±0.0004 0.9362±0.0003
FedGraph 0.8921±0.0022 0.8774±0.0035 0.8581±0.0068 0.9311±0.0016 0.9225±0.0074 0.9244±0.0054
FedSage 0.8877±0.0077 0.8794±0.0031 0.8639±0.0080 0.9359±0.0005 0.9414±0.0006 0.9314±0.0009

FedDEP w/o DGen 0.8440±0.0008 0.8553±0.0075 0.8273±0.0104 0.9434±0.0006 0.9416±0.0009 0.9331±0.0008
FedDEP w/o Proto 0.9090±0.0051 0.8885±0.0020 0.8697±0.0039 0.9504±0.0039 0.9455±0.0009 0.9362±0.0006
FedDEP w/o NFDP 0.9020±0.0074 0.8819±0.0013 0.8605±0.0021 0.9406±0.0007 0.9387±0.0011 0.9339±0.0004

FedDEP 0.9039±0.0069 0.8872±0.0029 0.8662±0.0031 0.9452±0.0012 0.9422±0.0012 0.9351±0.0017

Global 0.8996±0.0005 0.9597±0.0006

shown in the results of CiteSeer in Table III, FedDEP even
excels the global model by at most 2.99%.

Experimental results of comparing FedDEP with FedSage
and FedDEP w/o DGen justify the necessity of generating multi-
hop cross-subgraph neighbors. Specifically, FedDEP exceeds
FedSage by 1.27% on average, and DGen improves FedDEP
by 2.49%. Though Proto can cause slight accuracy loss, i.e.,
0.52% on average between FedDEP and FedDEP w/o Proto, it
both benefits the efficiency (as shown in Figure 6 and reduces
the empirical risks of privacy leakage [24].

Regarding the percentages of missing links in Table II, it
is obvious that the more missing information in the system,
the more likely a larger performance elevation from DGen
can be brought to vanilla FedAvg and FedDEP w/o DGen. For
the MSAcademic dataset with 10 clients, we infer the reason
for FedGNN to slightly exceed FedDEP as the significant
amount of missing inter-subgraph links (32.94%). Under this
circumstance, when FedDEP further abstracts shared infor-
mation through Proto, performance degeneration can be the
result. However, even in this difficult scenario, the generation
of prototyped deep neighbors can still help FedDEP to clearly
outperform FedAVG and FedSage.

Under similar privacy protection, FedDEP on average ex-
ceeds FedGNN and FedDEP w/o NFDP by 0.76% and 0.61%,
respectively. Without Proto, FedDEP w/o Proto on average out-
performs FedGNN and FedDEP w/o NFDP by 1.28% and 1.13%,
respectively. Such gaps justify the advantageous privacy-utility
trade-off of our novel NFDP technique over DPSGD with
noise injection.
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Fig. 4: Component study for DGen in FedDEP with different
depths L of generated neighbor embeddings on four datasets
with different M ’s. L=0 is basically FedSage.
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Fig. 5: Component study
for NFDP with different
levels of edge-LDP privacy
protection on MSAcademic
with different M ’s. Corre-
sponding ε’s are provided.

C. Component Study of DGen

We conduct in-depth studies for DGen with varying depth
L of the generated neighbors in FedDEP. As can be seen in
Fig. 4, L controls the amount of neighborhood information
exchanged within the system, and positive L can constantly



TABLE IV: Component study for Proto in FedDEP with varying cluster numbers C on four datasets with different M ’s.

Cora |Y |=7 Citesser |Y |=6

Model M=3 M=5 M=10 M=3 M=5 M=10

FedAvg 0.8571±0.0146 0.8555±0.0143 0.8528±0.0195 0.7646±0.0109 0.7496±0.0102 0.7350±0.0079
FedDEP w/o Proto 0.8911±0.0034 0.8900±0.0028 0.8916±0.0171 0.8107±0.0176 0.7995±0.0094 0.8080±0.0096

FedDEP w/ C=3 0.8807±0.0147 0.8670±0.0049 0.8686±0.0043 0.7633±0.0075 0.7873±0.0141 0.7827±0.0173
FedDEP w/ C=5 0.8801±0.0143 0.8569±0.0115 0.8593±0.0109 0.7927±0.0141 0.7904±0.0281 0.7886±0.0108

FedDEP w/ C=10 0.8851±0.0028 0.8736±0.0215 0.8659±0.0153 0.7769±0.0187 0.7940±0.0154 0.8040±0.0219
FedDEP w/ C=15 0.8894±0.0164 0.8883±0.0107 0.8801±0.0087 0.7873±0.0116 0.7913±0.0210 0.7963±0.0150
FedDEP w/ C=20 0.8883±0.0199 0.8703±0.0072 0.8599±0.0090 0.7850±0.0077 0.7909±0.0215 0.7724±0.0182

PubMed |Y |=3 MSAcademic |Y |=15

Model M=3 M=5 M=10 M=3 M=5 M=10

FedAvg 0.7149±0.0121 0.7260±0.0023 0.6954±0.0259 0.6986±0.0019 0.6908±0.0201 0.6705±0.0123
FedDEP w/o Proto 0.9090±0.0051 0.8885±0.0020 0.8697±0.0039 0.9504±0.0039 0.9455±0.0009 0.9362±0.0006

FedDEP w/ C=3 0.8996±0.0069 0.8862±0.0097 0.8650±0.0183 0.9354±0.0005 0.9365±0.0010 0.9314±0.0010
FedDEP w/ C=5 0.8929±0.0086 0.8872±0.0029 0.8652±0.0024 0.9353±0.0008 0.9422±0.0012 0.9351±0.0017

FedDEP w/ C=10 0.8995±0.0047 0.8817±0.0054 0.8642±0.0079 0.9353±0.0007 0.9352±0.0006 0.9313±0.0008
FedDEP w/ C=15 0.8961±0.0113 0.8804±0.0038 0.8662±0.0031 0.9452±0.0012 0.9393±0.0013 0.9302±0.0008
FedDEP w/ C=20 0.8917±0.0043 0.8781±0.0061 0.8580±0.0072 0.9351±0.0007 0.9353±0.0008 0.9313±0.0004

elevate testing accuracy, compared with only exchanging
neighbor features in FedSage (L=0). Across different datasets,
the optimal L is usually around 2. When the dataset has too
many missing links between subgraphs, such as when M=10,
large L can introduce more biased deep neighbor embeddings,
leading to worse performances.

D. Component Study of Proto

We compare the downstream task performance of FedDEP
under different numbers of cluster C in Proto. Table IV shows
that choosing a proper C, which controls how abstract the
exchanged information is within the system, can constantly
elevate the final testing accuracy. Across different datasets,
when C is chosen around the number of classes, the perfor-
mance is usually good. C being too small like 3 or too large
like 20 can result in slight performance drops, but FedDEP is
in general insensitive to C in a wide range.

E. Component Study of NFDP

We compare models’ utility under the same differential
privacy guarantees for noise-free frameworks (FedDEP and
FedDEP w/o Proto) and noise-injected frameworks (FedGNN
and FedDEP w/o NFDP), as shown in Fig. 5. Specifically, in
MSAcademic dataset, when M=3, we have d=5, D=15, ε=0.4,
and σ=4.2; when M=5, we have d=5, D=10, ε=0.6, and σ=2.1;
when M=10, we have d=5, D=3, ε=1.4, and σ =0.4. As
shown in Fig. 5, our NFDP technique always outperforms the
noise-injected counterparts when similar levels of edge-LDP
are achieved, which empirically justifies the superior utility-
privacy trade-off of NFDP compared to gradients perturbation-
based approaches such as DPSGD.

F. Convergence Analysis

For the Cora dataset with five data owners, we visualize
testing accuracy, loss convergence, and runtime along 100

20 40 60 80 100
Epoch

0.2

0.4

0.6

0.8
Te

st
 A

cc
ur

ac
y

Accuracy Curves

20 40 60 80 100
Epoch

0.0
0.2
0.5
0.7
1.0
1.2
1.5
1.7
2.0

Lo
ss

 V
al

ue

Loss Curves

Global
Local

FedAvg
FedSage

FedDEP w/o Proto
FedDEP

20 40 60 80 100
Epoch

20

40

60

80

100

Ti
m

e 
(s

)

Training Time

Fig. 6: Training curves of different frameworks on Cora dataset
with M=5. (Best viewed in color.)

epochs in obtaining F with Global, Local, FedAvg, FedSage,
FedDEP w/o Proto, and FedDEP. The results are presented
in Fig. 6. Both FedDEP and FedDEP w/o Proto consistently
achieve satisfactory convergence with rapidly improved testing
accuracy. Regarding runtime, even though the classifiers from
FedDEP w/o Proto and FedDEP learn from distributed mended
subgraphs, they do not consume observable more training time
compared to FedAvg. Compared to FedSage, FedDEP and
its variation reduce the dimension of mended information,
and thus save non-neglectable training time. Thanks to Proto,
FedDEP consumes far less time than FedDEP w/o Proto and only
slightly more time compared to Global and FedAvg.

VI. CONCLUSION

In this work, we study subgraph FL by comprehensively
tackling the unique challenges of utility, efficiency, and pri-
vacy. Promising future directions of FedDEP include the
employment of more powerful GNN models such as based on
graph transformers, pruning of unnecessary graph generation
such as based on model uncertainty, stronger privacy protec-
tion such as regarding node-LDP based on the integration of
noise-free DP and DPSGD, and application studies on other
real-world graph datasets.
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