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Abstract

Federated Learning (FL) on knowledge graphs
(KGs) has yet to be as well studied as other
domains, such as computer vision and natural
language processing. A recent study FedE first
proposes an FL framework that shares entity
embeddings of KGs across all clients. How-
ever, compared with model sharing in vanilla
FL, entity embedding sharing from FedE would
incur severe privacy leakage. Specifically, the
known entity embedding can be used to infer
whether a specific relation between two enti-
ties exists in a private client. In this paper,
we first develop a novel attack that aims to re-
cover the original data based on embedding
information, which is further used to evaluate
the vulnerabilities of FedE. Furthermore, we
propose a Federated learning paradigm with
privacy-preserving Relation embedding aggre-
gation (FEDR) to tackle the privacy issue in
FedE. Compared to entity embedding sharing,
relation embedding sharing policy can signif-
icantly reduce the communication cost due to
its smaller size of queries. We conduct exten-
sive experiments to evaluate FEDR with five
different embedding learning models and three
benchmark KG datasets. Compared to FedE,
FEDR achieves similar utility and significant
(nearly 2×) improvements in both privacy and
efficiency on link prediction task.

1 Introduction

Knowledge graphs (KGs) are critical data struc-
tures to represent human knowledge, and serve
as resources for various real-world applications,
such as recommendation (Gong et al., 2021), ques-
tion answering (Liu et al., 2018), disease diagno-
sis (Chai, 2020), etc. However, most KGs are usu-
ally incomplete and naturally distributed to differ-
ent clients. Despite each client can explore the
missing links with their own KGs by knowledge
graph embedding (KGE) models (Lin et al., 2015),
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Figure 1: FedE aggregates entity embeddings from
clients while FEDR aggregates relation embeddings.
Since in FEDR, there would be infinite embedding pairs
of head and tail given a relation embedding, the infer-
ence attack would fail.

exchanging knowledge with others can further en-
hance completion performance because the over-
lapping elements are usually involved in different
KGs (Chen et al., 2021; Peng et al., 2021).

Federated Learning (FL) allows different clients
to collaboratively learn a global model without shar-
ing their local data (McMahan et al., 2017). The
first FL framework for KG – FedE is recently pro-
posed, which learns the global-view and shared
entity embeddings without collecting entire local
KGs from different clients to a center server. How-
ever, at the very beginning in FedE, the server will
collect the entity sets of every client for entity align-
ment (Chen et al., 2021), which will lead to unin-
tentional privacy leakage.
Data leakage problem in FedE. Since the server
maintains a complete table of entity embeddings
with the user IDs, it could easily (1) identify client’s
users and (2) infer the relation embeddings by using
the scoring function in KGE models, which could
be defined as f(h, r, t) ≤ 0 for all triples (h, r, t).
The details of scoring function are described in
Table 7. As shown in Figure 1, for the server in
FedE, the relation embeddings on each client can
be obtained by calculating r′ = argmax

r
f(h, r, t).

https://github.com/taokz/FedR


Since the aligned local head and tail entity embed-
dings in different clients are identical with each
other after aggregation. Once the server can access
the name of entities and relations by colluding with
a single client, the local data of any target client
including entities, relations, and the corresponding
embeddings will be exposed.

To tackle the privacy issue in FedE, we propose
FEDR based on relation embedding aggregation
as illustrated in Figure 1. In FEDR, it would be
impossible for the server to infer local entity em-
beddings given only relation embeddings. For ex-
ample, we can not calculate t′ = argmax

t
f(h, r, t)

merely based on known r but without h. Besides,
the number of entities is usually much greater
than the number of relations in real-world graph
databases, so sharing relation embedding is much
more communication-efficient.

We summarize the following contributions of
our work. 1) We present a KG reconstruction at-
tack method and reveal that FedE suffers a poten-
tial privacy leakage due to a malicious server and
its colluded clients. 2) We propose FEDR, an ef-
ficient and privacy-preserving FL framework on
KGs. Experimental results on three benchmark
datasets demonstrate that FEDR has the competi-
tive performance compared with FedE, but gains
nearly 2× improvements in terms of privacy pro-
tection and communication efficiency.

2 Methodology

2.1 Knowledge Graph Reconstruction

The purpose of this attack is to recover original
entities and relations in a KG given traitor’s infor-
mation including parital or all triples and the corre-
sponding embeddings, namely element-embedding
pairs. We summarize the method into 4 steps:
(1) The server colludes with one client C1 to obtain
its element-embedding pairs ⟨(E, e), (R, r)⟩.
(2) Infer the target client’s element embedding
such as relation embedding by calculating r′ =
argmax

r
f(h, r, t) where h, r ∈ e.

(3) Measure the discrepancy between the inferred
element embedding such as relation embedding r′

and all known r with cosine similarity.
(4) Infer the relation R′ as R, E′ as E with corre-
sponding largest similarity scores.

The whole attack progress in different cases are
included in Appendix B. Note that in the step (1)
mentioned above, the server could also collude

LR 30% 50% 100%

ERR TRR ERR TRR ERR TRR

C1 0.3000 0.0647 0.5000 0.2045 1.0000 0.7682
C2 0.2904 0.0607 0.4835 0.1951 0.9690 0.7378
C3 0.2906 0.0616 0.4846 0.1956 0.9685 0.7390

Table 1: Privacy leakage on FB15k-237 with TransE.

with any malicious clients.
Privacy leakage quantization in FedE. We define
two metrics: Triple Reconstruction Rate (TRR) and
Entity Reconstruction Rate (ERR). TRR measures
the ratio of correctly reconstructed triples by in-
ferring relations between two entities as described
above. ERR measures the ratio of entities that the
server can reveal their names to the whole num-
ber of entities. We let the server owns 30%, 50%,
100% trained element-embedding pairs from C1,
the traitor, to reconstruct entities and triples of oth-
ers. In FedE, ERR simply reflects the portion of
entities that C1 shares with the server. The results
of privacy leakage on FB15k-237 (Toutanova et al.,
2015) over three clients are summarized in Table
1. LR in tables denotes information (entities, the
corresponding relations and relation embeddings)
leakage ratio from C1. It is clear that the server
only needs to collude with one client to obtain most
of the information of KGs on other clients. In a
word, FedE is not privacy-preserving.

2.2 FEDR

Compared to single-silo learning, FEDR and FedE
learn better representations by taking advantage of
the complementary capabilities from cross-clients
information. To protect the data privacy in FL on
KGs, FEDR adopts two strategies: (1) Before ag-
gregation works, the server acquires all IDs of the
unique relations from local clients and maintains a
relation table via Private Set Union (PSU), which
computes the union of relations, without revealing
anything else, for relation alignment (Kolesnikov
et al., 2019). Therefore, although the server still
maintains the relation table, the server does not
know the relations each client holds. (2) Different
from sharing entity embeddings, in FEDR, each
client first trains its own entity and relation embed-
dings locally, and only sends relation embeddings
to the server. The server will aggregate the aligned
relation embeddings and dispense them to clients
for further local updates. The client-side embed-
ding training depends on the type of local KGE
models such as translation distance models and se-



mantic matching models (Sun et al., 2020). More
details are described in Appendix A.
Privacy Enhancement. Although the relation pri-
vacy could be achieved by PSU, the server still
can roughly infer the relation by comparing the
uploaded relation embedding with the one stored
in the relation table. Therefore, to further guar-
antee no raw data leakage, Secure Aggregation
(Bonawitz et al., 2017) is exploited to protect the
privacy of any individual relation embeddings. The
fundamental idea behind it is to mask the uploaded
embeddings such that the server cannot obtain the
actual ones from each client. However, the sum
of masks can be canceled out, so we still have the
correct aggregation results.

3 Experiments

We carry out several experiments to explore
FEDR’s performance in link prediction, in which
the tail t is predicted given head h and relation r.
Datasets. We evaluate our framework through ex-
periments on three public datasets, FB15k-237,
WN18RR (Dettmers et al., 2018) and a disease
database – DDB14 (Wang et al., 2021). To build
federated datasets, we randomly split triples to each
client without replacement, then divide the local
triples into the train, valid, and test sets with a ratio
of 80/10/10. The statistics of datasets after split is
described in Table 2.
KGE Algorithms. Four commonly-used KGE al-
gorithms – TransE (Bordes et al., 2013), RotatE
(Sun et al., 2019), DisMult (Yang et al., 2014) and
ComplEx (Trouillon et al., 2016) are utilized in
the paper. We also implement federated NoGE
(Nguyen et al., 2022), a GNN-based algorithm.

Note that, although random split makes data ho-
mogeneous among all the clients to some extent, it
ensures fair comparison between FedE and FEDR.
Otherwise, if we build subgraphs in terms of rela-
tion types using non-iid partition, FedE will defi-
nitely outperform FEDR because of less overlap-
ping relations among clients.

3.1 Effectiveness Analysis

The commonly-used metric for link prediction,
mean reciprocal rank (MRR), is exploited to eval-
uate FEDR’s performance. We take FedE and
Local, where embeddings are trained only on
each client’s local KG, as the baselines. Table
3 shows the link prediction results under settings
of different number of clients C. We observe that

Dataset #C #Entity #Relation

DDB14

5 4462.20±1049.60 12.80±0.84

10 3182.60±668.89 12.60±0.70

15 2533.86±493.47 12.50±0.74

20 2115.59±385.56 12.35±0.75

WN18RR

5 21293.20±63.11 11.00±0.00

10 13112.20±46.70 11.00±0.00

15 9537.33±45.45 11.00±0.00

20 7501.65±31.72 11.00±0.00

FB15k-237

5 13359.20±27.36 237.00±0.00

10 11913.00±31.56 237.00±0.00

15 10705.87±36.93 236.87±0.35

20 9705.95±44.10 236.80±0.41

Table 2: Statistics of federated datasets. The subscripts
denote standard deviation. # denotes “number of”.

FEDR comprehensively surpasses Local under all
settings of the number of clients, which indicates
that relation aggregation makes sense for learning
better embeddings in FL. Take NoGE as an exam-
ple, FEDR gains 29.64±0.037%, 22.13±0.065%,
and 11.84±0.051% average improvement in MRR
on three dataset. Compared with FedE, FEDR
usually has the better or similar results with the
KGE models of DistMult and its extensive version
ComplEx on all datasets. We also observe that
FedE fails to beat Local setting and even per-
forms catastrophically with these two KGE models
on both DDB14 and WN18RR. Although FedE
performs better than FEDR with TranE and RotatE,
the absolute performance reductions between FedE
and FEDR are mostly (13/16 = 81%) within 0.03
in MRR on both DDB14 and FB15k-237, which
illustrates that FEDR is still effective. The theo-
retical explanations behind these results w.r.t data
heterogeneity, and characteristics of FL and KGE
models need further studies.

3.2 Privacy Leakage Analysis

Compared with entity aggregation, additional
knowledge is required to make privacy leakage
in FEDR because it is almost impossible to infer
any entity or triple from relation embeddings only.
Therefore, we assume the server can access part
or all entity embeddings from clients. The infor-
mation leakage ratio of local entity embeddings
(LLR) set as 30%, 50%, 100% respectively in the
experiment. For simplicity, we let the server holds
all entity embeddings from C1 in Section 2.1, i.e.,
LLR=100%. Besides, for fair comparison, any en-
cryption techniques mentioned in Section 2 are not
taken into account in this privacy analysis.

Figure 2 presents the privacy leakage quantiza-



Dataset DDB14 WN18RR FB15k-237
Model Setting C = 5 C = 10 C = 15 C = 20 C = 5 C = 10 C = 15 C = 20 C = 5 C = 10 C = 15 C = 20

TransE
Local 0.4206 0.2998 0.2464 0.2043 0.0655 0.0319 0.0378 0.0285 0.2174 0.1255 0.1087 0.0874
FedE 0.4572 0.3493 0.3076 0.2962 0.1359 0.1263 0.1204 0.1419 0.2588 0.2230 0.2065 0.1892
FEDR 0.4461 0.3289 0.2842 0.2761 0.0859 0.0779 0.0722 0.0668 0.2520 0.2052 0.1867 0.1701

RotatE
Local 0.4187 0.2842 0.2411 0.2020 0.1201 0.0649 0.0513 0.0155 0.2424 0.1991 0.1526 0.0860
FedE 0.4667 0.3635 0.3244 0.3031 0.2741 0.1936 0.1287 0.0902 0.2682 0.2278 0.2199 0.1827
FEDR 0.4477 0.3184 0.2765 0.2681 0.1372 0.1271 0.1074 0.0912 0.2510 0.2080 0.1854 0.1586

DistMult
Local 0.3037 0.2485 0.2315 0.1877 0.1137 0.0946 0.0766 0.0670 0.1133 0.0773 0.0765 0.0689
FedE 0.2248 0.1145 0.0764 0.0652 0.0654 0.0517 0.0548 0.0374 0.1718 0.1129 0.0901 0.0753
FEDR 0.4219 0.3146 0.2685 0.2577 0.1350 0.1202 0.1198 0.0898 0.1670 0.0999 0.0884 0.0814

ComplEx
Local 0.3595 0.2838 0.2411 0.1946 0.0153 0.0115 0.0108 0.0122 0.1241 0.0694 0.0571 0.0541
FedE 0.3406 0.2025 0.1506 0.1247 0.0035 0.0013 0.0003 0.0022 0.1603 0.1161 0.0944 0.0751
FEDR 0.4287 0.3235 0.2747 0.2611 0.0203 0.0152 0.0152 0.0166 0.1716 0.1174 0.1075 0.0993

NoGE
Local 0.3178 0.2298 0.1822 0.1580 0.0534 0.0474 0.0371 0.0372 0.2315 0.1642 0.1246 0.1042
FedE 0.3193 0.3171 0.2678 0.2659 0.0789 0.0697 0.0632 0.0533 0.2412 0.1954 0.1730 0.1637
FEDR 0.4312 0.3127 0.2604 0.2452 0.0669 0.0543 0.0530 0.0499 0.2432 0.1822 0.1448 0.1282

Table 3: Link prediction results (MRR) with C = 5, 10, 15 and 20. Bold number denotes FEDR performs better
than or close to (within 3% performance decrease) FedE. Underline number denotes the better result between FEDR
and Local.

GEE LEE GRE LRE

FedE " " % %

FedR % " " "

Table 4: Summary of adversary knowledge in knowl-
edge graph reconstruction attack. “G” represents
“Global”, “L” represents “Local”. “EE” and “RE” repre-
sent entity and relation embeddings, respectively.

tion in FEDR over three clients on FB15k237, in
which the scale of the Y-axis is in 10−4. The results
demonstrate that relation aggregation can guaran-
tee both entity-level and graph-level privacy even
if providing additional local entity embeddings. In
addition, we summarize the difference of adversary
knowledge in FedE and FEDR in Table 4. We ob-
serve that despite the relation embedding can be
exploited directly in FEDR instead of inference,
the privacy leakage rates in FEDR are still substan-
tially lower than the ones in FedE. For example,
according to Table 1, for C2, FEDR obtains re-
duction (9690 − 145.43 = 9544.57) × 10−4 and
(7378 − 35.04 = 7342.96) × 10−4 in ERR and
TRR (which is about 98.50% and 99.52% relative
reduction) on FB15k237, respectively. To explain
the result intuitively, in FEDR, local entity embed-
dings of the same entity in each client usually vary.
Therefore, calculating the similarity between em-
beddings to reconstruct KGs does not work.

Results of privacy leakage quantization (LLR =
100%) on other datasets are shown in Table 5. We
observe that both ERRs and TRRs on two datasets
are very low, which is consistent with the results
on FB15k-237. Therefore, FEDR can successfully
defense against KG reconstruction attack and gain
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Figure 2: Privacy leakage in FEDR on FB15k-237.

Dataset WN18RR DDB14

ERR TRR ERR TRR

C2 22.00 9.89 19.39 10.10
C3 18.44 9.23 8.87 5.05

Table 5: Privacy leakage in FEDR on WN18RR and
DDB14 (×10−4) when LLR = 100%.

small privacy leakage rates.

3.3 Communication Efficiency Analysis
In this section, the product of data sizes and com-
munication rounds is calculated to measure the
communication cost. Considering the performance
difference between FEDR and FedE, for fair com-
parison of communication efficiency, we count the
communication rounds when the model reaches a
pre-defined MRR target on the validation dataset,
specifically, we set two different MRR targets: 0.2
and 0.4. Since all models perform well on DDB14,
we take the setting with C = 5 on DDB14 as an
example in this section. The required communi-
cation rounds for each model are depicted in Fig-
ure 3. We observe that FEDR reaches the target
with much less communication rounds compared
with FedE. For instance, FEDR-DistMult reaches
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Figure 3: Number of communication rounds to reach a
target MRR for FedE and FEDR with a fixed C = 5.

the target MRR = 0.4 within 10 communication
rounds while FedE uses 45 rounds. Also, accord-
ing to statistics of federated datasets in Table 2,
the average of the number of unique entities in
FedE and unique relations in FEDR are 4462.2
and 12.8, respectively. We ignore the embedding
size and just use the number of entities/relations
to reflect data size. By using relation aggregation,
99.89± 0.029% of communication cost is reduced
in average for all clients when the target MRR is
0.2, while 99.90± 0.042% of communication cost
is reduced in average when the target MRR is 0.4.
These results demonstrate that our proposed frame-
work is much more communication-efficient.

4 Discussion

One potential concern will be discussed: can differ-
ential privacy (DP) used against KG reconstruction
attack? To answer this question, we employ the
vanilla local Laplace DP to mask the uploaded en-
tity embeddings in FedE, where the sensitivity is
set as 2 because the value of components in an
embedding ranges from -1 to 1.

In this experiment, we evaluate FedE-DP on
DDB14 dataset with TransE KGE model while we
set LR = 100%. The experimental results of C2 w.r.t
MRR and TRR based on different privacy budgets
ϵ are shown in Table 6. We can see that the TRRs
drop from 0.5091 to approximately 0.04 when ap-
plying DP. However, although DP can defend the
KG reconstruction, it also degrades the model per-
formance on the link prediction task, where the
MRR drops from 0.5954 to less than 0.1. In this
case, we can conclude that vanilla local Laplace
DP is not a effective solution for reconstruction
attack in FedE.

Besides, there are some interesting but unsolved
problems left in our work, which provide future
research opportunities: 1) What’s the explicit or
implicit relations among data heterogeneity, aggre-

ϵ 0.5 1 5 10 w/o

MRR 0.0035 0.0072 0.0589 0.0693 0.5954
TRR 0.0412 0.0421 0.0490 0.0521 0.5091

Table 6: Experimental results with and without DP.

gation stretegies, and KGE methods? 2) Could
the success rate of the KG reconstruction attack
transfer to the privacy level of any formal privacy
guarantee such as differential privacy?

5 Conclusion

In this paper, we conduct the first empirical quanti-
zation of privacy leakage to federated learning on
knowledge graphs, which reveals that recent work
FedE is susceptible to reconstruction attack based
on shared element-embedding pairs when there
are dishonest server and clients. Then we propose
FEDR, a privacy-preserving FL framework on KGs
with relation embedding aggregation that defenses
against reconstruction attack effectively. Experi-
mental results show that FEDR outperforms FedE
w.r.t data privacy and communication efficiency but
also keeps similar utility.
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A Federated Knowledge Graph
Embedding Framework

The federated knowledge graph embedding
(FKGE) framework consists of two processes in
one communication round: 1) server-side aggrega-
tion and 2) client-side update, which are summa-
rized in Algorithm 1, where {Pc} denotes the set of
permutation matrices and {vc} denotes existence
vectors. More specifically, Pc

i,j = 1 indicates that
the i-th element in element table is aligned with the
j-th element of client c, while vc

i = 1 shows that
the i-th element in element table exists in client c.
Besides, ⊘ is element-wide division, ⊗ is element-
wide multiplication, and 1 is an all-one vector.

Algorithm 1: A summary of FKGE that uses conven-
tional KGE models and GNN-based KGE methods.

Input : local datasets T c, number of clients C,
number of local epochs E, learning rate η

Server excutes:
1 initialize E∗

0

* denotes r – use FEDR or e – use FEDE
2 for round t = 0, 1, ... do
3 Sample a set of clients Ct

4 for c ∈ Ct do in parallel
5 Send permuted relation embedding
6 matrix to client c : E∗,c

t ← PcEt

7 E∗,c
t+1 ← Update(c,Et)

8 E∗
t+1 ← (1⊘

Ct∑
c=1

vc)⊗
Ct∑
c=1

PcE∗,c
t+1

9 return E∗

Client excutes Update(c,E):
10 for each local epoch e = 1, 2, ..., E do
11 for each batch b = (h, r, t) of T c do
12 i) E← E− η∇L
13 ii) w ← w − η∇L

only one of i) and ii) will be implemented
14 return E∗,c ∈ E := {Ee,c,Er,c}

B Knowledge Graph Reconstruction

We summarize the knowledge graph reconstruction
attack in Algorithm 2. Note that in the algorithm,
i) and ii) refer to different operations, and only one
will be performed in FedE or FEDR.

C Implementation Details

For TransE, RotatE, DistMult, and ComplEx, we
follow the same setting as FedE (Chen et al., 2021).
Specifically, the number of negative sampling, mar-
gin γ and the negative sampling temperature α
are set as 256, 10 and 1, respectively. Note that,
we adopt a more conservative strategy for embed-
ding aggregation where local non-existent entities

will not be taken as negative samples compared to
FedE. For NoGE, we use GCN (Kipf and Welling,
2016) as encoder and QuatE (Zhang et al., 2019)
as decoder. Once local training is done in a com-
munciation round, the embeddings are aggregated
and the triplet is scored by the decoder. The hidden
size of 1 hidden layer in NoGE is 128.

Algorithm 2: Knowledge graph reconstruction in-
cluding attack in FEDE/FEDR.

Adversary knowledge: Local entity embeddings –
LEE, local relation embeddings – LRE,
element-embedding paris from a client – EEP, type
of the used KGE model.

Entity reconstruction:
1 for entity embedding ê ∈ LEE do
2 for entity-embedding (E, e) ∈ EEP do
3 Calculate similarity between e and ê

4 Update the inferred entity Ê = E with the
greatest similarity score

5 return the reconstructed entity set {Ê}
Triple reconstruction:
only one of i) and ii) will be implemented

6 i) for entity embeddings (ĥ, t̂) ∈ LEE do
7 Calculate relation embedding r̂ based on the

scoring function of used KGE model, e.g.
r̂ = t̂− ĥ with TransE

8 for relation-embedding(R, r) ∈ EEP do
9 Calculate similarity between r and r̂

10 Update the inferred relation R̂ = R with the
greatest similarity score

11 return the reconstructed relation set {R̂}
12 ii) for relation embedding r̂ ∈ LRE do
13 for relation-embedding(R, r) ∈ EEP do
14 Calculate similarity between r and r̂

15 Update the inferred relation R̂ = R with the
greatest similarity score

16 return the reconstructed relation set {R̂}

17 Utilize {Ê} and {R̂} to reconstruct triples.

Since the aggregated information is not exploited
in the local training in NoGE, we also implement
KB-GAT (Nathani et al., 2019), the other GNN
model but it can take advantages of both graph
structure learning and global-view information ag-
gregation. However, Fed-KB-GAT is memory-
consuming. For KB-GAT, we use GAT (Veličković
et al., 2018) as encoder and ConvKB (Nguyen et al.,
2017) as decoder. Although the input to KB-GAT
is the triple embedding, this model update neural
network weights to obtain the final entity and rela-
tion embeddings. In each communication, we let
the aggregated embeddings be the new input to KB-
GAT, we find using small local epoches lead to bad
performance because the model is not fully trained



to produce high-quality embeddings. Therefore,
we set local epoch of GAT layers as 500, while
local epoch of convlutional layers as 150. Embed-
ding size is 50 instead of 128 like others since we
suffers memory problem using this model.

If not specified, the local update epoch is 3, the
embedding dimension of entities and relation is
128. Early stopping is utilized in experiments. The
patience, namely the number of epochs with no im-
provement in MRR on validation data after which
training will be stopped, is set as 5. We use Adam
with learning rate 0.001 for local model update.

C.1 Scoring Function

Model Scoring Function

TransE −∥h+ r− t∥
RotatE −∥h ◦ r− t∥

DistMult h⊤ diag(r)t
ComplEx Re

(
h⊤ diag(r)t

)
NoGE ⟨a′

h, at⟩+ ⟨b′h, bt⟩+ ⟨c′h, ct⟩+ ⟨d′h, dt⟩
KB-GAT

(
∥Ωm=1 ReLU

([
h⃗i, g⃗k, h⃗j

]
∗ ωm

))
·W

Table 7: A list of scoring functions for KGE models
implemented in this paper. The scoring function used in
NoGE comes from QuatE (Zhang et al., 2019).

D Additional Results

D.1 Convergence Analysis

The convergence curves considering four KGE
models and three dataset are shown in Figure 4.
The solid and dashed lines represent curves w.r.t
FEDR and FedE, respectively. We do not show the
curves of NoGE because the aggregated embed-
dings does not influence local training. We observe
that FEDR usually converge faster than FedE.

D.2 Experiment result with KB-GAT

We conduct KB-GAT with both entity aggregation
and relation aggregation on DDB14 with C = 3

Model Setting MRR Hit@1 Hit@3 Hit@10

RotatE
Local 0.5347 0.5311 0.5459 0.5912
FedE 0.6087 0.5070 0.6774 0.7916
FEDR 0.5834 0.5583 0.5852 0.6326

KB-GAT
Local 0.5507 0.5361 0.5529 0.5754
FedE 0.7907 0.7366 0.7522 0.8650
FEDR 0.7501 0.7124 0.7620 0.8328

Table 8: Extensive experimental resutls on DDB14 with
C = 3. Bold number denotes the best result in FedE and
underline number denotes the best result in FEDR.

0 20 40 60 80 100
Communication Rounds

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Tr
ai

ni
ng

 L
os

s

TransE
RotatE
ComplEx

DistMult
FedR
FedE

(a) DDB14

0 20 40 60 80 100
Communication Rounds

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Tr
ai

ni
ng

 L
os

s

TransE
RotatE
ComplEx

DistMult
FedR
FedE

(b) WN18RR

0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 L

os
s

TransE
RotatE
ComplEx

DistMult
FedR
FedE

(c) FB15k-237

Figure 4: Training loss versus communication (C = 5).

as shown in Table 8. Due to the good performance
of RotatE, we also compare KB-GAT with RotatE.
Hit@N is also utilized in the evaluation. From
the table, KB-GAT beats RotatE in regard of all
evaluation metrics in both FedE and FedR setting.
However, how to implement federated KB-GAT in
a memory-efficient way is still an open problem.


