
Subgraph Federated Learning with
Missing Neighbor Generation

Ke Zhang1,4, Carl Yang1⇤, Xiaoxiao Li2, Lichao Sun3, Siu Ming Yiu4

1Emory University, 2University of British Columbia, 3Lehigh University, 4University of Hong Kong
kzhang2@cs.hku.hk, j.carlyang@emory.edu,

xiaoxiao.li@ece.ubc.ca, lis221@lehigh.edu, smyiu@cs.hku.hk

Abstract

Graphs have been widely used in data mining and machine learning due to their
unique representation of real-world objects and their interactions. As graphs
are getting bigger and bigger nowadays, it is common to see their subgraphs
separately collected and stored in multiple local systems. Therefore, it is natural to
consider the subgraph federated learning setting, where each local system holds
a small subgraph that may be biased from the distribution of the whole graph.
Hence, the subgraph federated learning aims to collaboratively train a powerful
and generalizable graph mining model without directly sharing their graph data. In
this work, towards the novel yet realistic setting of subgraph federated learning, we
propose two major techniques: (1) FedSage, which trains a GraphSage model based
on FedAvg to integrate node features, link structures, and task labels on multiple
local subgraphs; (2) FedSage+, which trains a missing neighbor generator along
FedSage to deal with missing links across local subgraphs. Empirical results on four
real-world graph datasets with synthesized subgraph federated learning settings
demonstrate the effectiveness and efficiency of our proposed techniques. At the
same time, consistent theoretical implications are made towards their generalization
ability on the global graphs.

1 Introduction

Graph mining leverages links among connected nodes in graphs to conduct inference. Recently, graph
neural networks (GNNs) have gained applause with impressing performance and generalizability in
many graph mining tasks [29, 11, 16, 20, 32]. Similar to machine learning tasks in other domains,
attaining a well-performed GNN model requires its training data to not only be sufficient but also fol-
low the similar distribution as general queries. While in reality, data owners often collect limited and
biased graphs and cannot observe the global distribution. With heterogeneous subgraphs separately
stored in local data owners, accomplishing a globally applicable GNN requires collaboration.

Federated learning (FL) [17, 35], targeting at training machine learning models with data distributed in
multiple local systems to resolve the information-silo problem, has shown its advantage in enhancing
the performance and generalizability of the collaboratively trained models without the need of sharing
any actual data. For example, FL has been devised in computer vision (CV) and natural language
processing (NLP) to allow the joint training of powerful and generalizable deep convolutional neural
networks and language models on separately stored datasets of images and texts [19, 6, 18, 39, 13].

Motivating Scenario. Taking the healthcare system as an example, as shown in Fig. 1, residents of
a city may go to different hospitals for various reasons. As a result, their healthcare data, such as
demographics and living conditions, as well as patient interactions, such as co-staying in a sickroom
and co-diagnosis of a disease, are stored only within the hospitals they visit. When any healthcare
problem is to be studied in the whole city, e.g., the prediction of infections when a pandemic occurs,

⇤Corresponding author.
35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Figure 1: A toy example of the distributed subgraph storage system: In this example, there are
four hospitals and a medical administration center. The global graph records, for a certain period, the
city’s patients (nodes), their information (attributes), and interactions (links). Specifically, the left
part of the figure shows how the global graph is stored in each hospital, where the grey solid lines
are the links explicitly stored in each hospital, and the red dashed lines are the cross-hospital links
that may exist but are not stored in any hospital. The right part of the figure indicates our goal that
without sharing actual data, the system obtains a globally powerful graph mining model.

a single powerful graph mining model is needed to conduct effective inference over the entire global
patient network, which contains all subgraphs from different hospitals. However, it is rather difficult
to let all hospitals share their patient networks with others to train the graph mining model due to
conflicts of interests.

In such scenarios, it is desirable to train a powerful and generalizable graph mining model over
multiple distributed subgraphs without actual data sharing. However, this novel yet realistic setting
brings two unique technical challenges, which have never been explored so far.

Challenge 1: How to jointly learn from multiple local subgraphs? In our considered scenario,
the global graph is distributed into a set of small subgraphs with heterogeneous feature and structure
distributions. Training a separate graph mining model on each subgraph may not capture the global
data distribution and is also prone to overfitting. Moreover, it is unclear how to integrate multiple
graph mining models into a universally applicable one that can handle any queries from the underlying
global graph.

Solution 1: FedSage: Training GraphSage with FedAvg. To attain a powerful and generalizable
graph mining model from small and biased subgraphs distributed in multiple local owners, we develop
a framework of subgraph federated learning, specifically, with the vanilla mechanism of FedAvg [21].
As for the graph mining model, we resort to GraphSage [11], due to its advantages of inductiveness
and scalability. We term this framework as FedSage.

Challenge 2: How to deal with missing links across local subgraphs? Unlike distributed systems
in other domains such as CV and NLP, whose data samples of images and texts are isolated and
independent, data samples in graphs are connected and correlated. Most importantly, in a subgraph
federated learning system, data samples in each subgraph can potentially have connections to those
in other subgraphs. These connections carrying important information of node neighborhoods and
serving as bridges among the data owners, however, are never directly captured by any data owner.

Solution 2: FedSage+: Generating missing neighbors along FedSage. To deal with cross-
subgraph missing links, we add a missing neighbor generator on top of FedSage and propose a
novel FedSage+ model. Specifically, for each data owner, instead of training the GraphSage model on
the original subgraph, it first mends the subgraph with generated cross-subgraph missing neighbors
and then applies FedSage on the mended subgraph. To obtain the missing neighbor generator, each
data owner impairs the subgraph by randomly holding out some nodes and related links and then trains
the generator based on the held-out neighbors. Training the generator on an individual local subgraph
enables it to generate potential missing links within the subgraph. Further training the generator in
our subgraph FL setting allows it to generate missing neighbors across distributed subgraphs.

We conduct experiments on four real-world datasets with different numbers of data owners to better
simulate the application scenarios. According to our results, both of our models outperform locally
trained classifiers in all scenarios. Compared to FedSage, FedSage+ further promotes the performance
of the outcome classifier. Further in-depth model analysis shows the convergence and generalization
ability of our frameworks, which is corroborated by our theoretical analysis in the end.

2

2 Related works

Graph mining. Graph mining emerges its significance in analyzing the informative graph data, which
range from social networks to gene interaction networks [31, 33, 34, 24]. One of the most frequently
applied tasks on graph data is node classification. Recently, graph neural networks (GNNs), e.g.,
graph convolutional networks (GCN) [16] and GraphSage [11], improved the state-of-the-art in node
classification with their elegant yet powerful designs. However, as GNNs leverage the homophily
of nodes in both node features and link structures to conduct the inference, they are vulnerable
to the perturbation on graphs [4, 40, 41]. Robust GNNs, aiming at reducing the degeneration in
GNNs caused by graph perturbation, are gaining attention these days. Current robust GNNs focus on
the sensitivity towards modifications on node features [3, 42, 15] or adding/removing edges on the
graph [37]. However, neither of these two types recapitulates the missing neighbor problem, which
affects both the feature distribution and structure distribution.

To obtain a node classifier with good generalizability, the development of domain adaptive GNN
sheds light on adapting a GNN model trained on the source domain to the target domain by leveraging
underlying structural consistency [38, 36, 28]. However, in the distributed system we consider, data
owners have subgraphs with heterogeneous feature and structure distributions. Moreover, direct
information exchanges among subgraphs, such as message passing, are fully blocked due to the
missing cross-subgraph links. The violation of the domain adaptive GNNs’ assumptions on alignable
nodes and cross-domain structural consistency denies their usage in the distributed subgraph system.

Federated learning. FL is proposed for cross-institutional collaborative learning without sharing raw
data [17, 35, 21]. FedAvg [21] is an efficient and well-studied FL method. Similar to most FL methods,
it is originally proposed for traditional machine learning problems [35] to allow collaborative training
on silo data through local updating and global aggregation. The ecently proposed meta-learning
framework [9, 23, 14] that exploits information from different data sources to obtain a general model
attracts FL researchers [8]. However, meta-learning aims to learn general models that easily adapt
to different local tasks, while we learn a generalizable model from diverse data owners to assist
in solving a global task. In the distributed subgraph system, to obtain a globally applicable model
without sharing local graph data, we borrow the idea of FL to collaboratively train GNNs.

Federated graph learning. Recent researchers have made some progress in federated graph learning.
There are existing FL frameworks designed for the graph data learning task [12, 27, 30]. [12]
design graph-level FL schemes with graph datasets dispersed over multiple data owners, which are
inapplicable to our distributed subgraph system construction. [27] proposes an FL method for the
recommendation problem with each data owner learning on a subgraph of the whole recommendation
user-item graph. It considers a different scenario assuming subgraphs have overlapped items (nodes),
and the user-item interactions (edges) are distributed but completely stored in the system, which
ignores the possible cross-subgraph information lost in real-world scenarios. However, we study a
more challenging yet realistic case in the distributed subgraph system, where cross-subgraph edges
are totally missing.

In this work, we consider the commonly existing yet not studied scenario, i.e., distributed subgraph
system with missing cross-subgraph edges. Under this scenario, we focus on obtaining a globally
applicable node classifier through FL on distributed subgraphs.

3 FedSage
In this section, we first illustrate the definition of the distributed subgraph system derived from
real-world application scenarios. Based on this system, we then formulate our novel subgraph FL
framework and a vanilla solution called FedSage.

3.1 Subgraphs Distributed in Local Systems
Notation. We denote a global graph as G = {V,E,X}, where V is the node set, X is the respective
node feature set, and E is the edge set. In the FL system, we have the central server S, and M data
owners with distributed subgraphs. Gi = {Vi, Ei, Xi} is the subgraph owned by Di, for i 2 [M].

Problem setup. For the whole system, we assume V = V1[· · ·[VM . To simulate the scenario with
most missing links, we assume no overlapping nodes shared across data owners, namely Vi \ Vj = ;
for 8i, j 2 [M] and i 6= j. Note that the central server S only maintains a graph mining model with
no actual graph data stored. Any data owner Di cannot directly retrieve u 2 Vj from another data

3

owner Dj . Therefore, for an edge ev,u 2 E, where v 2 Vi and u 2 Vj , ev,u /2 Ei [Ej , that is, ev,u
might exist in reality but is not stored anywhere in the whole system.

For the global graph G = {V,E,X}, every node v 2 V has its features xv 2 X and one label
yv 2 Y for the downstream task, e.g., node classification. Note that for v 2 V , v’s feature xv 2 Rdx

and respective label yv is a dy-dimensional one-hot vector. In a typical GNN, predicting a node’s
label requires an ego-graph of the queried node. For a node v from graph G, we denote the queried
ego-graph of v as G(v), and (G(v), yv) ⇠ DG.

With subgraphs distributed in the system defined above, we formulate our goal as follows.

Goal. The system exploits an FL framework to collaboratively learn on isolated subgraphs in all
data owners, without raw graph data sharing, to obtain a global node classifier F . The learnable
weights � in F is optimized for queried ego-graphs following the distribution of ones drawn from the
global graph G. We formalize the problem as finding �⇤ that minimizes the aggregated risk

�⇤ = argminR(F (�)) =
1

M

MX

i

Ri(Fi(�))),

where Ri is the local empirical risk defined as
Ri(Fi(�)) := E(Gi,Yi)⇠DGi

[`(Fi(�;Gi), Yi))],

where ` is a task-specific loss function

` :=
1

|Vi|
X

v2Vi

l(�;Gi(v), yv).

3.2 Collaborative Learning on Isolated Subgraphs

To fulfill the system’s goal illustrated above, we leverage the simple and efficient FedAvg framework
[21] and fix the node classifier F as a GraphSage model. The inductiveness and scalability of
the GraphSage model facilitate both the training on diverse subgraphs with heterogeneous query
distributions and the later inference upon the global graph. We term the GraphSage model trained
with the FedAvg framework as FedSage.

For a queried node v 2 V , a globally shared K-layer GraphSage classifier F integrates v and its
K-hop neighborhood on graph G to conduct prediction with learnable parameters � = {�k}K

k=1.
Taking a subgraph Gi as an example, for v 2 Vi with features as h0

v
= xv , at each layer k 2 [K], F

computes v’s representation hk

v
as

hk

v
= �

�
�k ·

�
hk�1
v

||Agg
��

hk�1
u

, 8u 2 NGi(v)
 ���

, (1)
where NGi(v) is the set of v’s neighbors on graph Gi, || is the concatenation operation, Agg(·) is the
aggregator (e.g., mean pooling) and � is the activation function (e.g., ReLU).

With F outputting the inference label eyv = Softmax(hK

v
) for v 2 Vi, the supervised loss function

l(�|·) is defined as follows
Lc = l(�|Gi(v), yv) = CE(eyv, yv) = � [yv log eyv + (1� yv) log (1� eyv)] , (2)

where CE(·) is the cross entropy function, Gi(v) is v’s K-hop ego-graph on Gi, which contains the
information of v and its K-hop neighbors on Gi.

In FedSage, the distributed subgraph system obtains a shared global node classifier F parameterized
by � through ec epochs of training. During each epoch t, every Di first locally computes �i
�� ⌘r`(�|{(Gi(v), yv)|v 2 V t

i
}), where V t

i
✓ Vi contains the sampled training nodes for epoch t,

and ⌘ is the learning rate; then the central server S collects the latest {�i|i 2 [M]}; next, through
averaging over {�i|i 2 [M]}, S sets � as the averaged value; finally, S broadcasts � to data owners
and finishes one round of training F . After ec epochs, the entire system retrieves F as the outcome
global classifier, which is not limited to or biased towards the queries in any specific data owner.

Unlike FL on Euclidean data, nodes in the distributed subgraph system can have potential interactions
with each other across subgraphs. However, as the cross-subgraph links cannot be captured by
any data owner in the system, incomplete neighborhoods, compared to those on the global graph,
commonly exist therein. Thus, directly aggregating incomplete queried ego-graph information
through FedSage restricts the outcome F from achieving the desideratum of capturing the global
query distribution.

4

dGen FNNGNN fGen
GNN!"! , $%! !"!

#̅! , &'! ℒ!, ℒ" ℒ##! , &!

ℎ+,-

.$.%
NeighGen 2345ℎ	7-8,+89 :

#!", &!"

Figure 2: Joint training of missing neighbor generation and node classification.

4 FedSage+

In this section, we propose a novel framework of FedSage+, i.e., subgraph FL with missing neighbor
generation. We first design a missing neighbor generator (NeighGen) and its training schema via
graph mending. Then, we describe the joint training of NeighGen and GraphSage to better achieve the
goal in Section 3.1. Without loss of generality, in the following demonstration, we take NeighGeni,
i.e., the missing neighbor generator of Di, as an example, where i 2 [M].

4.1 Missing Neighbor Generator (NeighGen)

Neural architecture of NeighGen. As shown in Fig. 2, NeighGen consists of two modules, i.e.,
an encoder He and a generator Hg . We describe their designs in details in the following.

He: A GNN model, i.e., a K-layer GraphSage encoder, with parameters ✓e. For node v 2 Vi on the
input graph Gi, He computes node embeddings Zi = {zv|zv = hK

v
, zv 2 Rdz , v 2 Vi} according to

Eq. (1) by substituting �, G with ✓e and Gi.

Hg: A generative model recovering missing neighbors for the input graph based on the node
embedding. Hg contains dGen and fGen, where dGen is a linear regression model parameterized
by ✓d that predicts the numbers of missing neighbors eNi = {env|env 2 N, v 2 Vi}, and fGen is a
feature generator parameterized by ✓f that generates a set of eNi feature vectors eXi = {exv|exv 2
Renv⇥dx , env 2 eNi, v 2 Vi}. Both dGen and fGen are constructed as fully connected neural networks
(FNNs), while fGen is further equipped with a Gaussian noise generator N(0, 1) that generates
dz-dimensional noise vectors and a random sampler R. For node v 2 Vi, fGen is variational, which
generates the missing neighbors’ features for v after inserting noises into the embedding zv , while R
ensures fGen to output the features of a specific number of neighbors by sampling env feature vectors
from the feature generator’s output. Mathematically, we have

env = �((✓d)T · nv), and exv = R
�
�
�
(✓f)T · (zv +N(0, 1))

�
, env

�
. (3)

Graph mending simulation. For each data owner in our system, we assume that only a particular
set of nodes have cross-subgraph missing neighbors. The assumption is realistic yet non-trivial for it
both seizing the quiddity of the distributed subgraph system, and allowing us to locally simulate the
missing neighbor situation through a graph impairing and mending process. Specifically, to simulate a
graph mending process during the training of NeighGen, in each local subgraph Gi, we randomly hold
out h% of its nodes V h

i
⇢ Vi and all links involving them Eh

i
= {euv|u 2 V h

i
or v 2 V h

i
} ⇢ Ei, to

form an impaired subgraph, denoted as Ḡi. Ḡi = {V̄i, Ēi, X̄i} contains the impaired set of nodes
V̄i = Vi \ V h

i
, the corresponding nodes features X̄i = Xi \Xh

i
and edges Ēi = Ei \ Eh

i
.

Accordingly, based on the ground-truth missing nodes V h

i
and links Eh

i
, the training of NeighGen on

the impaired graph Ḡi boils down to jointly training dGen and fGen as below.

Ln = �
dLd + �

fLf = �
d 1

|V̄i|
X

v2V̄i

L
S
1 (env � nv) + �

f 1

|V̄i|
X

v2V̄i

X

p2[env]

min
u2NGi

(v)\V h
i

(||exp
v � xu||22), (4)

where LS

1 is the smooth L1 distance [10] and exp

v
2 Rdx is the p-th predicted feature in exv . Note that,

NGi(v) \ V h

i
contains nv nodes that are v’s neighbors on Gi missing into V h

i
. NGi(v) \ V h

i
, which

can be retrieved from V h

i
and Eh

i
, provides ground-truth for training NeighGen.

5

Neighbor Generation. To retrieve G0
i

from Gi, data owner Di performs two steps, which are also
shown in Fig. 2: 1) Di trains NeighGen on the impaired graph Ḡi w.r.t. the ground-true hidden
neighbors V h

i
; 2) Di exploits NeighGen to generate missing neighbors for nodes on Gi and then

mends Gi into G0
i

with generated neighbors. On the local graph Gi alone, this process can be
understood as a data augmentation that further generates potential missing neighbors within Gi.
However, the actual goal is to allow NeighGen to generate the cross-subgraph missing neighbors,
which can be achieved via training NeighGen with FL and will be discussed in Section 4.3.

4.2 Local Joint Training of GraphSage and NeighGen

While NeighGen is designed to recover missing neighbors, the final goal of our system is to train a
node classifier. Therefore, we design the joint training of GraphSage and NeighGen, which leverages
neighbors generated by NeighGen to assist the node classification by GraphSage. We term the
integration of GraphSage and NeighGen on the local graphs as LocSage+.

After NeighGen mends the graph Gi into G0
i
, the GraphSage classifier F is applied on G0

i
, according

to Eq. (1) (with Gi replaced by G0
i
). Thus, the joint training of NeighGen and GraphSage is done by

optimizing the following loss function

L = Ln + �cLc = �dLd + �fLf + �cLc, (5)

where Ld and Lf are defined in Eq. (4), and Lc is defined in Eq. (2) (with Gi substituted by G0
i
).

The local joint training of GraphSage and NeighGen allows NeighGen to generate missing neighbors
in the local graph that are helpful for the classifications made by GraphSage. However, like GraphSage,
the information encoded in the local NeighGen is limited to and biased towards the local graph,
which does not enable it to really generate neighbors belonging to other data owners connected by
the missing cross-subgraph links. To this end, it is natural to train NeighGen with FL as well.

4.3 Federated Learning of GraphSage and NeighGen

Similarly to GraphSage alone, as described in Section 3.2, we can apply FedAvg to the joint training of
GraphSage and NeighGen, by setting the loss function to L and learnable parameters to {✓e, ✓d, ✓f ,�}.
However, we observe that cooperation through directly averaging weights of NeighGen across the
system can negatively affect its performance, i.e., averaging the weights of a single NeighGen model
does not really allow it to generate diverse neighbors from different subgraphs. Recalling our goal
of constructing NeighGen, which is to facilitate the training of a centralized GraphSage classifier
by generating diverse missing neighbors in each subgraph, we do not necessarily need a centralized
NeighGen. Therefore, instead of training a single centralized NeighGen, we train a local NeighGeni
for each data owner Di. In order to allow each NeighGeni to generate diverse neighbors similar to
those missed into other subgraphs Gj , j 2 [M] \ {i}, we add a cross-subgraph feature reconstruction
loss into fGeni as follows:

Lf
i =

1

|V̄i|
X

v2V̄i

X

p2[env]

0

@ min
u2NGi

(v)\V h
i

(||exp
v � xu||22) + ↵

X

j2[M]/i

min
u2Vj

(||Hg
i (zv)

p � xu||22)

1

A , (6)

where u 2 Vj , 8j 2 [M] \ {i} is picked as the closest node from Gj other than Gi to simulate the
neighbor of v 2 V̄i missed into Gj .

As shown above, to optimize Eq. (6), Di needs to pick the closest u from Gj . However, di-
rectly transmitting node features Xj in Dj to Di not only violates our subgraph FL system con-
straints on no direct data sharing but also is impractical in reality, as it requires each Di to hold
the entire global graph’s node features throughout training NeighGeni. Therefore, to allow Di to
update NeighGeni using Eq. (6) without direct access to Xj , for v 2 V̄i, Dj locally computesP

p2[env]
minu2Vj (||H

g

i
(zv)p � xu||22) and sends the respective gradient back to Di.

During this process, for v 2 V̄i, to federated optimize Eq. (6), only Hg

i
, Hg

i
’s input zv , and the Dj’s

locally computed model gradients of loss term
P

p2[env]
minu2Vj (||H

g

i
(zv)p� xu||22) are transmitted

among the system via the server S. For data owner Di, the gradients received from Dj are then
weighted by ↵ and combined with the local gradients as in Eq. (6) to update the parameters of Hg

i

of NeighGeni In this way, Di achieves the federate training of NeighGeni without raw graph data

6

sharing. Note that, due to NeighGen’s architecture of a concatenation of He and Hg, the locally
preserved GNN He

i
can prevent other data owners from inferring xv by only seeing zv. Through

Eq. (6), NeighGeni is expected to perceive diverse neighborhood information from all data owners, so
as to generate more realistic cross-subgraph missing neighbors. The expectedly diverse and unbiased
neighbors further assist the FedSage in training a globally applicable classifier that satisfies our goal
in Section 3.1.

Note that, to reduce communications and computation time incurred by Eq. (6), batch training can be
applied. Appendix A shows the pseudo code of FedSage+.

5 Experiments

We conduct experiments on four datasets to verify the effectiveness of FedSage and FedSage+ under
different testing scenarios. We further conduct case studies to visualize how FedSage and FedSage+
assist local data owners in accommodating queries from the global distribution. Finally, we also
provide more in-depth studies on the effectiveness of NeighGen in Appendix D.

5.1 Datasets and experimental settings

We synthesize the distributed subgraph system with four widely used real-world graph datasets,
i.e., Cora [25], Citeseer [25], PubMed [22], and MSAcademic [26]. To synthesize the distributed
subgraph system, we find hierarchical graph clusters on each dataset with the Louvain algorithm [2]
and use the clustering results with 3, 5, and 10 clusters of similar sizes to obtain subgraphs for data
owners. The statistics of these datasets are presented in Table 1.

Table 1: Statistics of the datasets and the synthesized distributed subgraph systems with M = 3, 5,
and 10. #C row shows the number of classes, |Vi| and |Ei| rows show the averaged numbers of nodes
and links in all subgraphs, and �E shows the total number of missing cross-subgraph links.

Data Cora Citeseer PubMed MSAcademic

#C 7 6 3 15
|V | 2708 3312 19717 18333
|E| 5429 4715 44338 81894

M 3 5 10 3 5 10 3 5 10 3 5 10

|Vi| 903 542 271 1104 662 331 6572 3943 1972 6111 3667 1833
|Ei| 1675 968 450 1518 902 442 12932 7630 3789 23584 13949 5915
�E 403 589 929 161 206 300 5543 6189 6445 11141 12151 22743

We implement GraphSage with two layers using the mean aggregator [5]. The number of nodes
sampled in each layer of GraphSage is 5. We use batch size 64 and set training epochs to 50. The
training-validation-testing ratio is 60%-20%-20% due to limited sizes of local subgraphs. Based
on our observations in hyper-parameter studies for ↵ and the graph impairing ratio h, we set
h% 2 [3.4%, 27.8%] and ↵=1. All �s are simply set to 1. Optimization is done with Adam with a
learning rate of 0.001. We implement FedSage and FedSage+ in Python and execute all experiments
on a server with 8 NVIDIA GeForce GTX 1080 Ti GPUs.

Since we are the first to study the novel yet important setting of subgraph federated learning, there
are no existing baselines. We conduct comprehensive ablation evaluation by comparing FedSage and
FedSage+ with three models, i.e., 1) GlobSage: the GraphSage model trained on the original global
graph without missing links (as an upper bound for FL framework with GraphSage model alone), 2)
LocSage: one GraphSage model trained solely on each subgraph, 3) LocSage+: the GraphSage plus
NeighGen model jointly trained solely on each subgraph.

The metric used in our experiments is the node classification accuracy on the queries sampled from the
testing nodes on the global graph. For globally shared models of GlobSage, FedSage, and FedSage+,
we report the average accuracy over five random repetitions, while for locally possessed models of
LocSage and LocSage+, the scores are further averaged across local models.

5.2 Experimental results

Overall performance. We conduct comprehensive ablation experiments to verify the significant
promotion brought by FedSage and FedSage+ for local owners in global node classification, as

7

Table 2: Node classification results on four datasets with M = 3, 5, and 10. Besides averaged accuracy,
we also provide the corresponding std.

Cora Citesser

Model M=3 M=5 M=10 M=3 M=5 M=10

LocSage 0.5762 0.4431 0.2798 0.6789 0.5612 0.4240
(±0.0302) (±0.0847) (±0.0080) (±0.054) (±0.086) (±0.0859)

LocSage+ 0.5644 0.4533 0.2851 0.6848 0.5676 0.4323
(±0.0219) (±0.047) (±0.0080) (±0.0517) (±0.0714) (±0.0715)

FedSage 0.8656 0.8645 0.8626 0.7241 0.7226 0.7158
(±0.0043) (±0.0050) (±0.0103) (±0.0022) ±0.0066) (±0.0053)

FedSage+ 0.8686 0.8648 0.8632 0.7454 0.7440 0.7392
(±0.0054) (±0.0051) (±0.0034) (±0.0038) (±0.0025) (±0.0041)

GlobSage 0.8701 (±0.0042) 0.7561 (±0.0031)
PubMed MSAcademic

Model M=3 M=5 M=10 M=3 M=5 M=10

LocSage 0.8447 0.8039 0.7148 0.8188 0.7426 0.5918
(±0.0047) (±0.0337) (±0.0951) (±0.0331) (±0.0790) (±0.1005)

LocSage+ 0.8481 0.8046 0.7039 0.8393 0.7480 0.5927
(±0.0041) (±0.0318) (±0.0925) (±0.0330) (±0.0810) (±0.1094)

FedSage 0.8708 0.8696 0.8692 0.9327 0.9391 0.9262
(±0.0014) (±0.0035) (±0.0010) (±0.0005) (±0.0007) (±0.0009)

FedSage+ 0.8775 0.8755 0.8749 0.9359 0.9414 0.9314
(±0.0012) (±0.0047) (±0.0013) (±0.0005) (±0.0006) (±0.0009)

GlobSage 0.8776(±0.0011) 0.9681(±0.0006)

(a) Hyper-parameter study for ↵ with h = 15%. (b) Hyper-parameter study for h with ↵ = 1.

Figure 3: Node classification results on four datasets under different ↵ and h values with M=3.

shown in Table 2. The most important observation emerging from the results is that FedSage+
not only clearly outperforms LocSage by an average of 23.18%, but also distinctly overcomes the
cross-subgraph missing neighbor problem by reducing the average accuracy drop from the 2.11% of
FedSage to 1.28%, when compared with GlobSage (absolute accuracy difference).

The significant gaps between a locally obtained classifier, i.e., LocSage or LocSage+, and a federated
trained classifier, i.e., FedSage or FedSage+, assay the benefits brought by the collaboration across
data owners in our distributed subgraph system. Compared to FedSage, the further elevation brought
by FedSage+ corroborates the assumed degeneration brought by missing cross-subgraph links and the
effectiveness of our innovatively designed NeighGen module. Notably, when the graph is relatively
sparse (e.g., see Citeseer in Table 1), FedSage+ significantly exhibits its robustness in resisting the
cross-subgraph information loss compared to FedSage. Note that the gaps between LocSage and
LocSage+ are comparatively smaller, indicating that our NeighGen serves more than a robust GNN
trainer, but is rather uniquely crucial in the subgraph FL setting.

8

(a) Local model predictions (b) Global ground-truth vs. model predictions

Figure 4: Label distributions on the PubMed dataset with M=5.

(a) Accuracy curves (b) Loss curves (c) Training time
Figure 5: Training curves of different frameworks (GlobSage provides an upper bound).

Hyper-parameter studies. We compare the downstream task performance under different ↵ and h
values with three data owners. Results are shown in Fig. 3, where Fig. 3 (a) shows results when h is
fixed as 15%, and Fig. 3 (b) shows results under ↵=1.

Fig. 3 (a) indicates that choosing a proper ↵, which brings the information from other subgraphs in
the system, can constantly elevate the final testing accuracy. Across different datasets, the optimal ↵
is constantly around 1, and the performance is not influenced much unless ↵ is set to extreme values
like 0.1 or 10. Referring to Fig. 3 (b), we can observe that either a too-small (1%) or a too-large
(30%) hiding portion can degrade the learning process. A too-small h can not provide sufficient data
for training NeighGen, while a too-large h can result in sparse local subgraphs that harm the effective
training of GraphSage. Referring back to the graph statistics in Table 1 in the paper, the portion
of actual missing edges compared to the global graph is within the range of [3.4%, 27.8%], which
explains why a value like 15% can mostly boost the performance of FedSage+.

Case studies. To further understand how FedSage and FedSage+ improve the global classifier over
LocSage, we provide case study results on PubMed with five data owners in Fig. 4. For the studied
scenario, each data owner only possesses about 20% of the nodes with rather biased label distributions,
as shown in Fig. 4 (a). Such bias is due to the way we synthesize the distributed subgraph system
with Louvain clustering, which is also realistic in real scenarios. Local bias essentially makes it
hard for any local data owner with limited training samples to obtain a generalized classifier that
is globally useful. Although with 13.9% of the links missing among the system, both FedSage and
FedSage+ empower local data owners in predicting labels that closely follow the ground-true global
label distribution as shown in Fig. 4 (b). The figure clearly evidences that our FL models exhibit
their advantages in learning a more realistic label distribution as our goal in Section 3.1, which is
consistent with the observed performances in Table 2 and our theoretical implications in Section 6.

For Cora dataset with five data owners, we visualize testing accuracy, loss convergence, and runtime
along 100 epochs in obtaining F with FedSage, FedSage+, GlobSage, LocSage and LocSage+. The
results are presented in Fig. 5. Both FedSage and FedSage+ can consistently achieve convergence
with rapidly improved testing accuracy. Regarding runtime, even though the classifier from FedSage+
learns from distributed mended subgraphs, FedSage+ does not consume observable more training
time compared to FedSage. Due to the additional communications and computations in subgraph FL,
both FedSage and FedSage+ consume slightly more training time compared to GlobSage.

9

6 Implications on Generalization Bound
In this section, we provide a theoretical implication for the generalization error associated with number
of training samples, i.e., nodes in the distributed subgraph system, following Graph Neural Tangent
Kernel (GNTK) [7] on universal graph neural networks. Thus, we are motivated to promote the
FedSage and FedSage+ algorithms that include more nodes in the global graph through collaborative
training with FL.

Setting. Our explanation builds on a generalized setting, where we assume a GNN F with layer-
wise aggregation operations and fully-connected layers with ReLU activation functions, which
includes GraphSage as a special case. The weights of F , �, is i.i.d. sampled from a multivariate
Gaussian distribution N(0, I). For Graph G = {V,E,X}, we define the kernel matrix of two nodes
u, v 2 V as follows. Here we consider F is in the GNTK format.

Definition 6.1 (Informal version of GNTK on node classification (Definition B.2)) Considering

in the overparameterized regime for an GNN F , F is trained using gradient descent with infinite

small learning rate. Given n nodes with corresponding labels as training samples, we denote

⇥ 2 Rn⇥n
as the the kernel matrix of GNTK. ⇥uv is defined as

⇥uv = E�⇠N(0,I)

⌧
@F (�, G, u)

@�
,
F (�, G, v)

@�

��
2 R.

Full expression of ⇥ is shown in the Appendix B. The generalization ability in the GNTK regime
depends on the kernel matrix ⇥. We present the generalization bound associated with the number of
training samples n in Theorem 6.2.

Theorem 6.2 (Generalization bound) Given n training samples of nodes (ui, yi)
n

i=1 drawn i.i.d.

from the global graph G, consider any loss function l : R ⇥ R 7! [0, 1] that is 1-Lipschitz in the

first argument such that l(y, y) = 0. With probability at least 1 � � and constant c 2 (0, 1), the

generalization error of GNTK for node classification can be upper-bounded by

LD(F) = E(u0,y)⇠G[l(F (G, u0), y)] . O(1/nc).

Following the generalization bound analysis in [7], we use a standard generalization bound of kernel
methods of [1], which shows the upper bound of our GNTK formation error depends on that of
y>⇥(�1)y and tr(⇥), where y is the label vector. Appendix C shows the full version of the proofs.

Implications. We show the error bound of GNTK on node classification corresponding to the
number of training samples. Under the assumptions in Definition 6.1, our theoretical result indicates
that more training samples bring down the generalization error , which provides plausible support for
our goal of building a globally useful classifier through FL in Eq. (3.1). Such implications are also
consistent with our experimental findings in Fig. 4 where our FedSage and FedSage+ models can
learn more generalizable classifiers that follow the label distributions of the global graph through
involving more training nodes across different subgraphs.

7 Conclusion
This work aims at obtaining a generalized node classification model in a distributed subgraph system
without direct data sharing. To tackle the realistic yet unexplored issue of missing cross-subgraph
links, we design a novel missing neighbor generator NeighGen with the corresponding local and
federated training processes. Experimental results evidence the distinguished elevation brought by
our FedSage and FedSage+ frameworks , which is consistent with our theoretical implications.

Though FedSage manifests advantageous performance, it confronts additional communication cost
and potential privacy concerns. As communications are vital for federated learning, properly reducing
communication and rigorously guaranteeing privacy protection in the distributed subgraph system
can both be promising future directions.

Acknowledgments and Disclosure of Funding

This work is partially supported by the internal funding and GPU servers provided by the Computer
Science Department of Emory University. We thank Dr. Pan Li from Purdue University for the
suggestions on the design of our NeighGen mechanism.

10

References
[1] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds

and structural results. JMLR, 3:463–482, 2002.

[2] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. JSTAT, 2008(10):P10008, 2008.

[3] Liang Chen, Jintang Li, Qibiao Peng, Yang Liu, Zibin Zheng, and Carl Yang. Understanding
structural vulnerability in graph convolutional networks. In IJCAI, 2021.

[4] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data. In ICML, 2018.

[5] CSIRO’s Data61. Stellargraph machine learning library. https://github.com/
stellargraph/stellargraph, 2018.

[6] Qi Dou, Tiffany Y So, Meirui Jiang, Quande Liu, Varut Vardhanabhuti, Georgios Kaissis,
Zeju Li, Weixin Si, Heather HC Lee, Kevin Yu, et al. Federated deep learning for detecting
covid-19 lung abnormalities in ct: a privacy-preserving multinational validation study. NPJ

digital medicine, 4:1–11, 2021.

[7] Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In
NeurIPS, 2019.

[8] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A
meta-learning approach. NeurIPS, 2020.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, 2017.

[10] Ross Girshick. Fast r-cnn. In ICCV, 2015.

[11] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In NeurIPS, 2017.

[12] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang
He, Liangwei Yang, Philip S Yu, Yu Rong, Peilin Zhao, Junzhou Huang, Murali Annavaram,
and Salman Avestimehr. Fedgraphnn: A federated learning system and benchmark for graph
neural networks. arXiv preprint arXiv:2104.07145, 2021.

[13] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetransformer:
Automated elastic pipelining for distributed training of transformers. arXiv preprint

arXiv:2102.03161, 2021.

[14] Timothy M Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J Storkey. Meta-learning
in neural networks: A survey. TPAMI, 2021.

[15] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In SIGKDD, 2020.

[16] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[17] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE SPM, 37:50–60, 2020.

[18] Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. Federated transfer reinforce-
ment learning for autonomous driving. arXiv preprint arXiv:1910.06001, 2019.

[19] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg: Federated domain
generalization on medical image segmentation via episodic learning in continuous frequency
space. arXiv preprint arXiv:2103.06030, 2021.

11

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

[20] Gongxu Luo, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip Yu, and Lifang He. Graph
entropy guided node embedding dimension selection for graph neural networks. In IJCAI, 2021.

[21] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.

[22] Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. In MLG workshop, 2012.

[23] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[24] Saif Ur Rehman, Asmat Ullah Khan, and Simon Fong. Graph mining: A survey of graph mining
techniques. In ICDIM, 2012.

[25] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[26] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[27] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn: Federated
graph neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925,
2021.

[28] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In WWW, 2020.

[29] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. TNNLS, 2020.

[30] Han Xie, Jing Ma, Li Xiong, and Carl Yang. Federated graph classification over non-iid graphs.
In NeurIPS, 2021.

[31] Carl Yang, Haonan Wang, Ke Zhang, Liang Chen, and Lichao Sun. Secure deep graph generation
with link differential privacy. In IJCAI, 2021.

[32] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network
representation learning: A unified framework with survey and benchmark. In TKDE, 2020.

[33] Carl Yang, Jieyu Zhang, and Jiawei Han. Co-embedding network nodes and hierarchical labels
with taxonomy based generative adversarial nets. In ICDM, 2020.

[34] Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. In NeurIPS, 2019.

[35] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. TIST, 10(2):1–19, 2019.

[36] Yizhou Zhang, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. DANE: domain adaptive
network embedding. In IJCAI, 2019.

[37] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In SIGKDD, 2019.

[38] Qi Zhu, Yidan Xu, Haonan Wang, Chao Zhang, Jiawei Han, and Carl Yang. Transfer learning
of graph neural networks with ego-graph information maximization. In NeurIPS, 2021.

[39] Xinghua Zhu, Jianzong Wang, Zhenhou Hong, and Jing Xiao. Empirical studies of institutional
federated learning for natural language processing. In EMNLP, 2020.

[40] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In SIGKDD, 2018.

[41] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In ICLR, 2019.

[42] Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph
convolutional networks. In SIGKDD, 2019.

12

A FedSage+ Algorithm

Referring to Section 4.3, FedSage+ includes two phases. Firstly, all data owners in the distributed
subgraph system jointly train NeighGen models through sharing gradients. Next, after every local
graph mended with synthetic neighbors generated by the respective NeighGen model, the system
executes FedSage to obtain the generalized node classification model. Algorithm 1 shows the pseudo
code for FedSage+.

Algorithm 1 FedSage+: Subgraph federated learning with missing neighbor generation
1: Notations. Data owners set {D1, . . . , DM}, server S, epochs for jointly training NeighGen eg,

epochs for FedSage ec, learning rate for FedSage ⌘.
2: For t = 1! eg , we iteratively run procedure A, procedure C, procedure D, and procedure E
3: Every Di 2 {D1, . . . , DM} retrieves G0

i
from FL trained NeighGeni

4: S initializes and broadcasts �
5: For t = 1! ec, we iteratively run procedure B and procedure F
6:
7: On the server side:

8: procedure A SERVEREXCECUTIONFORGEN(t) . FL of NeighGen on epoch t
9: Collect (Zt

i
, Hg

i
) LOCALREQUEST(Di, t) from every data owner Di, where i 2 [M]

10: Send {(Zt

j
, Hg

j
)|j 2 [M] \ {i}} to every data owner Di, where i 2 [M]

11: for Di 2 {D1, . . . , DM} in parallel do
12: {rLf

i,1, . . . ,rL
f

i,M
} \ {rLf

i,i
} FEEDFORWARD(Di, {(Zt

j
, Hg

j
)|j 2 [M] \ {i}})

13: for Di 2 {D1, . . . , DM} in parallel do
14: Aggregate gradients as rLf

i,J

P

j2[M]\{i}rL
f

i,j

15: Send rLf

i,J
to Di for UPDATENEIGHGEN(Di,rLf

i,J
)

16: procedure B SERVEREXCECUTIONFORC(t) . FedSage for mended subgraphs on epoch t
17: Collect �i LOCALUPDATEC(Di,�, t) from all data owners
18: Broadcast � 1

M

P
i2[M] �i

19:
20: On the data owners side:

21: procedure C LOCALREQUEST(Di, t) . Run on Di

22: Sample a V t

i
2 V̄ t

i
and get Zt

i
 {He

i
(Ḡi(v))|v 2 V t

i
}

23: Send Zt

i
, Hg

i
to Server

24: procedure D FEEDFORWARD(Di, {(Zt

j
, Hg

j
)|j 2 [M] \ {i}}) . Run on Di

25: for j 2 [M] \ {i} do
26: Lf

j,i
 1

|Zt
j |
P

zv2Z
t
j

P
p2[|Hg

j (zv)|]
�
minu2Vi(||H

g

j
(zv)p � xu||22)

�
. A part of Eq. (6)

27: Compute and send {rLf

1,i, . . . ,rL
f

M,i
} \ {rLf

i,i
} to Sever

28: procedure E UPDATENEIGHGEN(Di,rLf

i,J
) . Run on Di

29: Train NeighGeni by optimizing Eq. (6).
30: procedure F LOCALUPDATEC(Di,�, t) . Run on Di

31: Sample a V t

i
✓ Vi

32: �i �� ⌘rl(�|{(G0
i
(v), yv)|v 2 V t

i
})

33: Send �i to Sever

13

B Full Version of Definition 6.1

Notation. We denote the whole graph G = {V,E,X} and |V | = n. To perform node classification
on G, we consider a GNN F with K aggregation operations2 and each aggregation operation contains
R fully-connected layers. We describe the aggregation operation below.

Definition B.1 (Aggregation operation, (AGG)) For 8k 2 [K], AGG aggregates the information

from the previous layer and performs R times non-linear transformation. With denoting the initial

feature vector for node u 2 V as h(0,R)
u = xu 2 Rd

, for an AGG with R = 2 fully-connected layers,

the AGG can be written as:

h(k,0)
u

= cu

r
c�
m

�

0

@�k,2

r
c�
m

�

0

@�k,1 · cu
X

v2N (u)[u

h(k�1,0)
v

1

A

1

A ,

where c� 2 R is a scaling factor related initialization, cu 2 R is a scaling factor associated

with neighbor aggregation, �(·) is ReLU activation, and learnable parameter �k,r 2 Rm⇥m
for

8(k, r) 2 [K]⇥ [R]\{(1, 1)} as �1,1 2 Rk⇥d
.

For notation simplicity, GNN F here is considered in GNTK format. The weights of F , � is
i.i.d. sampled from a multivariate Gaussian distribution N (0, I). For node u 2 V , we denote u’s
computational graph as Gu = {Vu, Eu, Xu} and |Vu| = nu. Let ha, bi denote inner-product of
vector a and b. We are going to define the kernel matrix of two nodes u, v 2 V as follows.

Definition B.2 (GNTK for node classification) Considering in the overparameterized regime for

an GNN F , F is trained using gradient descent with infinite small learning rate. Given n training

samples of nodes with corresponding labels, we denote ⇥ 2 Rn⇥n
as the the kernel matrix of GNTK.

For 8u, v 2 V , ⇥uv is the u, v entry of ⇥ and defined as

⇥uv = E�⇠N (0,I)

⌧
@F (�, G, u)

@�
,
F (�, G, v)

@�

��

= E�⇠N (0,I)

⌧
@F (�, Gu, u)

@�
,
F (�, Gv, v)

@�

��
2 R.

In GNTK formulation, an AGG B.1 needs to calculate 1) a covariance matrix ⌃(Gu, Gv); and 2) the
intermediate kernel values ⇥(Gu, Gv) Now, we specify the pairwise value in ⌃(Gu, Gv) 2 Rnu⇥nv

and ⇥(Gu, Gv) 2 Rnu⇥nv . For 8k 2 [K] and 8r 2 [R], ⌃(k)
(r)(Gu, Gv) and ⇥(k)

(r)(Gu, Gv) indicate
the corresponding covariance and intermediate kernel matrix for rth transformation and kth layers.
Initially, we have [⌃(0)

(R)(Gu, Gv)]uv = [⇥(0)
(R)(Gu, Gv)]uv = hhu, hvi, where hu, hv 2 Rd are the

input features of node u and v. Denote the scaling factor for node u as cu. ⇥(l)
(R)(Gu, Gv) can

be calculated recursively through the aggregation operation given in [7]. Specifically, we have the
following two steps.

Step 1: Neighborhood Aggregation As the AGG we defined above, in GNTK, the aggregation
step can be performed as:

h
⌃(k)

(0)(Gu, Gv)
i

uv

= cucv
X

u02N (u)[{u}

X

v02N (v)[{v}

h
⌃(k�1)

(R) (Gu, Gv)
i

u0v0
,

h
⇥(k)

(0)(Gu, Gv)
i

uv

= cucv
X

u02N (u)[{u}

X

v02N (v)[{v}

h
⇥(k�1)

(R) (Gu, Gv)
i

u0v0
.

Step 2: R transformations Now, we consider the R ReLU fully-connected layers which perform
non-linear transformations to the aggregated feature generated in step 1. The ReLU activation function

2In Graphsage, this is equivalent to having K graph convectional layers.

14

�(x) = max{0, x}’s derivative is denoted as �̇(x) For r 2 [R], u, v 2 V , we define covariance
matrix and its derivative as

h
⌃(k)

(r) (Gu, Gv)
i

uv

= c�E(a,b)⇠N
⇣
0,
h
A(k)

(r)
(Gu,Gv)

i

uv

⌘[�(a)�(b)],
h
⌃̇

(k)
(r) (Gu, Gv)

i

uv

= c�E(a,b)⇠N
⇣
0,
h
A(k)

(r)
(Gu,Gv)

i

uv

⌘[�̇(a)�̇(b)],

where [A(k)
(r)(Gu, Gv)]uv is an intermediate variable that

h
A(k)

(r)(Gu, Gv)
i

uv

=

0

@

h
⌃(k)

(r�1)(Gu, Gu)
i

uu

h
⌃(k)

(r�1)(Gu, Gv)
i

uvh
⌃(k)

(r�1)(Gu, G)
i

uv

h
⌃(k)

(r�1)(Gv, Gv)
i

vv

1

A 2 R2⇥2

Thus, we have
h
⇥(l)

(r)(Gu, Gv)
i

uv

=
h
⇥(k)

(r�1)(Gu, Gv)
i

uv

h
⌃̇(k)

(r)(Gu, Gv)
i

uv

+
h
⌃(k)

(r)(Gu, Gv)
i

uv

.

⇥ = ⇥(l)
(R)(Gu, Gv) can be viewed as kernel matrix of GNTK for node classification. The general-

ization ability in the NTK regime and depends on the kernel matrix.

C Missing Proofs for Theorem 6.2

In this section, we provide the detailed version and proof of Theorem 6.2.

Theorem C.1 (Full version of generalization bound Theorem 6.2) Given n training data sam-

ples (hi, yi)
n

i=1 drawn i.i.d from Graph G, we consider any loss function l : R ⇥ R 7! [0, 1]
that is 1-Lipschitz in the first argument such that l(y, y) = 0. With a probability at least 1� � and a

constant c 2 (0, 1), the generalization error of GNTK for node classification can be upper-bounded

by

LD(F) = E(G,y)⇠D[l(F (G), y)] = O

 p
y>⇥(�1)y · tr(⇥)

n
+

r
log(1/�)

n

!
.

To prove the generalization bound, we make the following assumptions about the labels.

Assumption C.2 For each i 2 [n], the labels yi = [y]i 2 R satisfies

yi = ↵1hh̄>
u
,�1i+

1X

l=1

↵2lhh̄>
u
,�2li2l,

where ↵1,↵2, · · · ,↵2k 2 R, �1,�2, · · · ,�2k 2 Rd
, and h̄u = cu

P
v2N (u)[{u} hv 2 Rd

.

The following Lemma C.3 and C.4 give the bounds for
p

y>⇥(�1)y and tr(⇥).

Lemma C.3 (Bound on
p
y>⇥(�1)y) Under the Assumption C.2, we have

p
y>⇥(�1)y 2|↵1|k�1k2 +

1X

l=1

p
2⇡(2k � 1)|↵2l|k�2lk2l2 = o(n)

Proof. Without loss of generality, we consider a simple GNN (K = 1, R = 1) in Section B and
define the kernel matrix for on the computational graph Gu, Gv node u, v 2 V as

⇥uv =
h
⌃(1)

(0)(Gu, Gv)
i

uv

h
⌃̇(1)

(1)(Gu, Gv)
i

uv

+
h
⌃(1)

(1)(Gu, Gv)
i

uv

.

15

We decompose ⇥ 2 Rn⇥n into ⇥ = ⇥0 +⇥00, where

⇥0
uv

=
h
⌃(1)

(0) (Gu, Gv)
i

uv

h
⌃̇

(1)
(1) (Gu, Gv)

i

uv

, and ⇥00
uv

=
h
⌃(1)

(1)(Gu, Gv)
i

uv

.

Following the proof in [7] and assuming kh̄uk2 = 1, we have

h
⌃̇

(1)
(1) (Gu, Gv)

i

uv

=
⇡ � arccos

⇣h
⌃(1)

(0) (Gu, Gv)
i

uv

⌘

2⇡
,

h
⌃(1)

(1) (Gu, Gv)
i

uv

=
⇡ � arccos

⇣h
⌃(1)

(0) (Gu, Gv)
i

uv

⌘
+

r
1�

h
⌃(1)

(0) (Gu, Gv)
i2
uv

2⇡
.

Then,

⇥0 =
1

4

h
⌃(1)

(0) (Gu, Gv)
i

uv

+
1

2⇡

h
⌃(1)

(0) (Gu, Gv)
i

uv

arcsin
⇣h

⌃(1)
(0) (Gu, Gv)

i

uv

⌘

=
1

4

h
⌃(1)

(0) (Gu, Gv)
i

uv

+
1

2⇡

1X

l=1

(2k � 3)!!

(2k � 2)!! · (2k � 1)
·
h
⌃(1)

(0) (Gu, Gv)
i2k
uv

=
1

4
h̄>
u
h̄v +

1

2⇡

1X

l=1

(2k � 3)!!

(2k � 2)!! · (2k � 1)
·
�
h̄>
u
h̄v

�2k
.

We denote �2k as the feature map of the kernel at degree 2k that hhu, hvi(2k) = �2k(hu)>�2k(hv).
Following the proof in [7], we have

⇥0 =
1

4
h̄>
u
h̄u0 +

1

2⇡

1X

l=1

(2k � 3)!!

(2k � 2)!! · (2k � 1)
· �2k(h̄u)

>�2k(h̄v).

As ⇥00 is a positive semidefinite matrix, we have

y>⇥(�1)y y>⇥0(�1)
y.

We define y(0)
i

= ↵1

�
h̄>
u

�
�1 and y(2k)

i
= ↵2k�2k

�
h̄u

�>
�2k(�2k) for each k � 1. Under Assump-

tion C.2, label yi can be rewritten as

yi = y(0)
i

+
1X

k=1

y(2k)
i

.

Then we have
p

y>⇥(�1)y
q
y>⇥0(�1)y

q
(y(0))>⇥0(�1)y(0) +

1X

k=1

q
(y(2k))>⇥0(�1)y(2k).

When k = 0, we have
q
(y(0))>⇥0(�1)y(0) 4|↵1|k�1k2.

When k � 1, we have
q
(y(2k))>⇥0(�1)y(2k)

p
2⇡(2k � 1)|↵2k|k�2k(�2k)k2 =

p
2⇡(2k � 1)|↵2k|k�2kk2l2 .

Thus,
p
y>⇥(�1)y 2|↵1|k�1k2 +

1X

l=1

p
2⇡(2k � 1)|↵2l|k�2lk2l2 = o(n)

The bound of tr(⇥) is simpler to prove.

Lemma C.4 (Bound on tr(⇥)) Let n denote as the number of training samples. Then tr(⇥) 2n.

16

Proof. We have ⇥ 2 Rn⇥n. For each u, v 2 V , as Lemma C.3 shown that

h
⌃̇

(1)
(1) (Gu, Gv)

i

uv

=
⇡ � arccos

⇣h
⌃(1)

(0) (Gu, Gv)
i

uv

⌘

2⇡
 1

2
and

h
⌃(1)

(1) (Gu, Gv)
i

uv

=
⇡ � arccos

⇣h
⌃(1)

(0) (Gu, Gv)
i

uv

⌘
+

r
1�

h
⌃(1)

(0) (Gu, Gv)
i2
uv

2⇡
 1,

we have
⇥uv 2.

Thus,
tr(⇥) 2n.

Combine Combining Theorem C.1, Lemma C.3 and Lemma C.4, it is easy to see for a constant
c 2 (0, 1) :

LD(F) = E(v,y)⇠G[l(F (G, v), y)] . O(1/nc).

D Detailed ablation studies of NeighGen

In this section, we provide in-depth NeighGen studies to empirically explain its power in the
cross-subgraph missing neighbor generation. Specifically, we first show the intermediate results of
NeighGen by boiling down the generation process into the missing cross-subgraph link generation by
dGen and the missing cross-subgraph neighbor feature generation by fGen. Next, we experimentally
verify the necessity of training locally specialized NeighGen. Finally, we provide FL training
hyper-parameter study on batch size and local epoch to emphasize the robustness of FedSage+.

D.1 Intermediate results of dGen and fGen.

In this section, we study the two generative components in NeighGen, i.e., dGen and fGen, to explore
their expressiveness in reconstructing missing neighbors. Especially, we analyze the outputs from
dGen and fGen separately to explain how NeighGen assists in the missing cross subgraph neighbor
generation process.

As described in Section 4, both dGen and fGen are constructed as fully connected neural networks
(FNNs) whose depths can be varied according to the target dataset. In principle, due to the expressive-
ness of FNNs [29], dGen and fGen with even very few layers have the power to approximate complex
functions. The node degree and feature distributions, on the other hand, are often highly relevant to
the graph structure and less complex in nature. In Fig. 6 and Table 3, we provide intermediate results
on how dGen and fGen are able to recover missing neighbor numbers and features, respectively.

Additional details for dGen. Fig. 6 shows the break-down performance of dGen on the MSAca-
demic dataset with M=3, which clearly shows the effectiveness of dGen in recovering the true number
of missing neighbors. Notably, though the original output of dGen is a float number, we simply apply
the round function to retrieve the integer number of missing neighbors for reconstruction.

Additional details for fGen. As described in Section 4.1, based on the number of missing neigh-
bors generated by dGen, fGen further generates the feature of missing neighbors, thus recovering the
incomplete neighborhoods resulting from the subgraph federated learning scenario. Regarding to
our ultimate mission in missing neighbor generation as described in Section 4, i.e., locally modeling
the original global graph during graph convolution, we evaluate fGen by comparing the NeighGen
generated neihgbors with the neihgbors drawn from original whole graph and the ones from original
subgraph. Specifically, we present the L2 distance between the averaged feature distributions of
neighborhoods from these three types of graphs to show how the NeighGen generated missing
neighbors narrow the gap. For simplicity, we use N(v), Ni(v), and N 0

i
(v) to represent the first-order

neighbors of nodes v 2 V drawn from the global graph G, the original subgraph Gi, and the mended
subgraph G0

i
respectively. Smaller values indicate the locally drawn neighbors (Ni(v) or N 0

i
(v))

being more similar to the true neighbors from the global graph (N(v)). The results in Table 3 clearly
show the effectiveness of fGen in recovering the true features of missing neighbors.

17

Figure 6: Prediction of dGen for nodes in MSAcademic with M=3.
Table 3: Intermediate prediction evaluation for fGen.

M=3 Cora CiteSeer PubMed MSAcademic

L2(N
0
i(v), N(v))± std 0.0124±0.0140 0.0074±0.0097 0.0034 ±0.0047 1.1457 ±1.580

L2(Ni(v), N(v))± std 0.0168±0.0182 0.0101±0.0131 0.0046 ±0.0053 1.8690±1.8387

M=5 Cora CiteSeer PubMed MSAcademic

L2(N
0
i(v), N(v))± std 0.0262±0.0885 0.0065±0.0083 0.0040±0.0054 1.1245 ±1.5801

L2(Ni(v), N(v))± std 0.0309 ±0.0897 0.0083±0.0115 0.0053±0.0060 1.8806±1.9695

M=10 Cora CiteSeer PubMed MSAcademic

L2(N
0
i(v), N(v))± std 0.0636±0.2100 0.1569±0.3310 0.0056±0.0170 2.7136 ± 4.5595

L2(Ni(v), N(v))± std 0.0687±0.2093 0.1586 ±0.3307 0.0065±0.0171 3.2985±4.5686

D.2 Usage of local specialized NeighGens

To empirically explain why we need separate NeighGen functions, we contrast the downstream task
performances between FedSage with a globally shared NeighGen, i.e., FedSage with NeighGen
obtained with FedAvg, and FedSage with FL obtained local specialized NeighGens, i.e., FedSage+.
We conduct ablation experiments on four datasets with M=3, and the results are in Table 4. The
results clearly assert our explanation in Section 4.3, i.e., directly averaging NeighGen weights across
the system degenerates the downstream task performance, which indicates the insufficiency of FedAvg
in assisting local data owners in the diverse neighbor generation.

Table 4: Contrast results in node classification accuracy under M=3
Model Cora CiteSeer PubMed MSAcademic

FedSage 0.8656 0.7393 0.8708 0.9327
(without NeighGen) (±0.0064) (±0.0034) (±0.0014) (±0.0005)

FedSage 0.8619 0.7326 0.8721 0.9210
with globally shared NeighGen (±0.0034) (±0.0055) (±0.0012) (±0.0016)

FedSage+ 0.8686 0.7454 0.8775 0.9414
(with local specialized NeighGens) (±0.0054) (±0.0038) (±0.0012) (±0.0006)

D.3 Experiments on Local Epoch and Batch Size

For the proposed FedSage and FedSage+, we further explore the association between the outcome
classifiers’ performances and different training hyper-parameters, i.e., batch size and local epoch
number, which are often concerned in federated learning frameworks.

The experiments are conducted on the PubMed dataset with M = 5. To control the variance, we
fix the model parameters’ updating times. Specifically, for subgraph FL methods, i.e., FedSage and
FedSage+, we fix the communication round as 50, while for the centralized learning method, i.e.,
GlobSage, we train the model for 50 epochs. Under different scenarios, we train the GlobSage model
with all utilized training samples in M data owners. Test accuracy indicates how models perform on
the same set of global test samples. Results are shown in Table 5 and 6. Every result is presented as
Mean (± Std Deviation).

18

Table 5: Node classification accuracy under different batch sizes with local epoch number as 1.
Batch Size FedSage FedSage+ GlobSage

1 0.8682(±0.0012) 0.8782(±0.0012) 0.8751(±0.001)
16 0.8733(±0.0018) 0.8814(±0.0023) 0.8736(±0.0013)
64 0.8696(±0.0035) 0.8755(±0.0047) 0.8776(±0.0011)

Table 6: Node classification accuracy under different local epoch numbers with batch size as 64. Note
that GlobSage is trained with 50 epochs.

Local Epoch FedSage FedSage+ GlobSage

1 0.8696(±0.0035) 0.8755(±0.0047)
3 0.8663(±0.0003) 0.8740(±0.0015) 0.8776(±0.0011)
5 0.8591(±0.0012) 0.8740(±0.0011)

Table 5 and 6 both evidence the reliable, repeatable therapeutic effects that FedSage+ consistently
further elevates FedSage in the global node classification task. Notably, in Table 5, when batch sizes
are as small as 16 and 1, FedSage+ accomplishes even higher classification results compared to the
centralized model GlobSage due to the employment of NeighGen.

Table 5 reveals the graph learning model can be affected by different batch sizes. As GlobSage is
trained on a whole global graph, rather than a set of subgraphs, compared to FedSage and FedSage+,
it suits a larger batch size, i.e., 64, than 1 or 16. Both FedSage and FedSage+, where every data owner
samples on a limited subgraph, fit better in batch sizes 16. Remarkably, when the batch size equals 1,
FedSage is prone to overfit to local biased distribution, while FedSage+ resists the overfitting problem
under the NeighGen’s assistance, i.e., generating cross-subgraph missing neighbors.

Table 6 provides the relation between the local epoch number and the downstream task performance.
For FedSage, more local epochs degenerate the outcome model with more biased aggregated local
weights, while FedSage+ maintains a relatively more stable performance in the downstream task.
Table 6 empirically evidences that the missing neighbor generator in FedSage+ provides further
generalization and robustness in resisting rapid accuracy loss brought by higher local epochs.

Similar to results in Table 2, Section 5, FedSage and FedSage+ exhibit competitive performance
even compared to the centralized model. Findings in Table 5 and 6 further contribute to a better
understanding of the robustness in FedSage+ compared to vanilla FedSage.

19

	Introduction
	Related works
	FedSage
	Subgraphs Distributed in Local Systems
	Collaborative Learning on Isolated Subgraphs

	FedSage+
	Missing Neighbor Generator (NeighGen)
	Local Joint Training of GraphSage and NeighGen
	Federated Learning of GraphSage and NeighGen

	Experiments
	Datasets and experimental settings
	Experimental results

	Implications on Generalization Bound
	Conclusion
	FedSage+ Algorithm
	Full Version of Definition 6.1
	Missing Proofs for Theorem 6.2
	Detailed ablation studies of NeighGen
	Intermediate results of dGen and fGen.
	Usage of local specialized NeighGens
	Experiments on Local Epoch and Batch Size

