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Abstract

Federated Graph Learning (FGL) has emerged as a so-
lution to address real-world privacy concerns and data silos
in graph learning, which relies on Graph Neural Networks
(GNNs). Nevertheless, the homophily level discrepancies
within the local graph data of clients, termed homophily
heterogeneity, significantly degrade the generalizability of
a global GNN. Existing research ignores this issue and suf-
fers from unpromising collaboration. In this paper, we pro-
pose FedSPA, an effective hyperparameter-free framework
that addresses homophily heterogeneity from the perspec-
tives of homophily conflict and homophily bias, concepts
that have yet to be defined or explored. In the first place,
the homophily conflict arises when training on inconsistent
homophily levels across clients. Correspondingly, we pro-
pose Subgraph Feature Propagation Decoupling (SFPD),
thereby achieving collaboration on unified homophily lev-
els across clients. To further address homophily bias, we
design Homophily Bias-Driven Aggregation (HBDA) which
emphasizes clients with lower biases. It enables the adap-
tive adjustment of each client contribution to the global
GNN based on its homophily bias. The superiority of
FedSPA is validated through extensive experiments.

1. Introduction
Federated learning (FL) [26, 28, 29, 52, 55, 60, 83] of-
fers the ability to conduct distributed collaborative machine
learning without leaking privacy [24, 30–33]. However, in
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Figure 1. Problem illustration. The homophily level of a graph
determines the proportion of edges connecting nodes with the
same label. Discrepancies in homophily levels across clients,
namely homophily heterogeneity, introduce two main challenges.
(a) Homophily conflict: Under inconsistent homophily levels,
client i tends to overfit its local level hi, resulting in a conflict
of feature propagation scheme and degrading global generalizabil-
ity. (b) Homophily bias: client i with lower homophily level bias
di = |hg−hi| is more closely aligned with the global optimization
direction, thus having a greater contribution to the globe.

real-world scenarios, a considerable amount of data gener-
ated by edge devices are graph-structured [6, 74, 75, 79],
such as epidemiology [48] and scene graph [3, 9, 78, 91].
Therefore, Federated Graph Learning (FGL) emerges to
address the challenges of leaking privacy and data silos
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Figure 2. Phenomenon Demonstration. (a) Accuracy curves under a uniform distribution of client homophily levels with the same mean
but varying gaps. It reveals that inconsistent homophily levels across clients lead to intensified homophily conflict, thereby significantly
degrading generalizability. (b) There is no direct relationship between node count and local performance. (c) The lower the homophily
bias, the higher the local performance. It indicates a closer optimization direction and greater contribution to the global GNN.

[17, 21, 47, 86] and has become a promising direction.
Nevertheless, most existing research overlooks the in-

consistency in homophily levels across clients. The ho-
mophily level, which dictates the proportion of edges con-
necting nodes within the same class, has a substantial im-
pact on the feature propagation scheme within the graph.
We innovatively define this phenomenon as homophily het-
erogeneity. Furthermore, we are the first to investigate
this issue from two novel perspectives. First, discrepan-
cies in feature propagation schemes create diverse optimiza-
tion directions across clients, defined as homophily biases.
Additionally, GNNs tend to overfit to the local homophily
level, thus undermining generalizable collaboration, termed
as homophily conflict. A detailed illustration of these two
challenges is provided in Fig. 2. Nevertheless, most non-iid
FGL methods [27, 65, 70, 82] primarily improve from the
perspective of structure. While a few studies [43] have ac-
knowledged variations in homophily levels, they have nei-
ther fully examined the effects nor presented targeted so-
lutions As a result, existing approaches fail to sufficiently
address the homophily conflict and homophily bias, limit-
ing the potential for effective collaboration.

To examine the impact of homophily conflict, we investi-
gate using the widely used synthetic dataset CSBM [12]. As
shown in Fig. 2 (a), the homophily levels of clients are uni-
formly distributed with the same means but varying gaps. It
indicates that increased conflict significantly degrades gen-
eralizability, as GNNs tend to overfit the local homophily
levels and feature propagation schemes. Drawing from the
analysis above, we raise question I): How can we address
homophily conflict under inconsistent homophily levels?

In addition, global generalizability benefits from clients
with optimization directions that align more clo sely with
the global objective, resulting in unequal contributions from
different clients. Conventional aggregation based solely on
node count, as shown in Fig. 2 (b), is therefore unreason-
able. We propose that clients with lower homophily biases
to the globe are more valuable for the global GNN. For ver-

ifying, we empirically reveal in Fig. 2 (c) that clients with
lower homophily biases from the globe exhibit greater per-
formance growth. This suggests that such clients align more
closely with the global optimization directions and have
greater contributions to global generalizability. Based on
this, we pose question II): How can we design an appro-
priate aggregation strategy that reasonably considers client
contributions under homophily biases?

To start with, we aim to address the homophily conflict
outlined in question I), which arises from training on incon-
sistent levels of homophily. To resolve the issue, we pro-
pose a targeted Subgraph Feature Propagation Decoupling
(SFPD) that decouples feature propagation on homophilic
and heterophilic edges using distinct channels. Specifically,
Subgraph Feature Propagation Decoupling assigns separate
channels to focus on local subgraphs of homophily levels of
zero or one (fully heterophilic or homophilic). It facilitates
collaboration on a unified homophily level for each type of
channel, effectively mitigating the homophily conflict. Fur-
thermore, considering invisible labels, a harmonizer inte-
grates the process of the two channels for edges of uncertain
relationships. While the concept of decoupling homophily
and heterophily has been explored in some graph learning
methods, these approaches primarily aim to improve GNN
performance on heterophilic edges. In contrast, our strategy
introduces a novel mechanism that enables effective collab-
oration at unified homophily levels across clients, signifi-
cantly mitigating homophily conflicts in FGL.

To answer question II), we aim to qualify client con-
tribution under homophily bias. Based on our SFPD ar-
chitecture, we innovatively summarize homophily bias into
two aspects: First, channel harmonizers focus on inconsis-
tent unknown homophily levels across clients, which we
define as prior distribution bias for the levels. Moreover,
these biases still influence the structural properties of sub-
graphs for the two channels, which can be potentially re-
flected in parameter updates. We refer to this as posterior
parameter bias. Considering the two aspects, we design



Homophily Bias-Driven Aggregation (HBDA) to empha-
size clients with lower bias and increase their weight during
aggregation. For prior distribution bias, we first provide a
theoretical proof of the negative correlation between graph
high-frequency area and its homophily level in Appendix A.
Correspondingly, the high-frequency area is exploited for
quantifying the biases and the reweighing instead of the un-
available homophily level due to invisible labels. For pos-
terior parameter bias, we investigate the Fisher Informa-
tion Matrix (FIM) [1, 16, 51] which enables the quantify-
ing of parameter sensitivity distribution disparity between
a client and the globe. Combining these two strategies for
distinct components in GNNs, HBDA facilitates a reason-
able reweighing, enabling the global GNN to benefit more
from clients with lower homophily biases.

In conclusion, our key contributions are:
• To the best of our knowledge, we are the first to define

and explore homophily conflict and homophily biases.
• We discover two unrevealed phenomena of homophily

heterogeneity: First, the conflict under inconsistent ho-
mophily levels degrades generalizability. Second, a lower
homophily bias of a client indicates greater contribution.

• We innovatively design two hyperparameter-free strate-
gies based on our motivation, including a decoupling
strategy SFPD and an aggregation approach HBDA.

• Experiments on homophilic and heterophilic datasets val-
idate the superiority of our framework FedSPA.

2. Related Work

2.1. Federated Learning

Federated learning(FL) provides a distributed machine-
learning framework that does not require data sharing [34,
59, 80, 93, 94]. Nevertheless, clients may have diverse la-
bel and feature distributions due to their various behaviors
and habits [14, 46, 58, 64], which poses the non-iid issue to
traditional FL [37, 38, 68, 90]. To address the issue, Fed-
Prox designs convergence guarantees [41], FedNova miti-
gates objective inconsistency problems [72], MOON con-
ducts model-level contrastive learning [40]. Meanwhile,
many approaches aim to customize models that perform op-
timally for each client locally, namely Personalized Feder-
ated Learning (pFL) [2, 81, 95]. For example, FedALA
[87] proposed personalized masks while FedCP [88] sep-
arates global and personal knowledge through model split-
ting. Furthermore, FedPHP preserves historical information
[45], APPLE proposes core models for collaboration and
employing directed relationship vectors for personalization
[50], FedRoD [8] learns with two heads for both global and
personalized tasks. Nevertheless, due to their lack of tai-
lored design for graph data, FL methods often partially lose
their superiority in FGL [15, 23, 57, 63, 76].

2.2. Federated Graph Learning

Federated Graph Learning (FGL) [7, 21] addresses data si-
los while safeguarding graph data privacy [20, 39, 42, 73].
Current FGL research can generally be categorized into two
types: inter-graph FGL and intra-graph FGL. In inter-graph
FGL, various clients aim to obtain a globally generalizable
model or optimize local models by training GNNs on differ-
ent local graphs and collaborating in FL scenarios [65, 82].
In intra-graph FGL, clients collaborate to accomplish tasks
such as missing link prediction [10], subgraph community
detection [4, 89], and node classification [27, 44, 70]. Nev-
ertheless, existing FGL algorithms overlook the homophily
level heterogeneity in real-world FGL scenarios, thereby in-
evitably losing the global generalizability due to homophily
conflict and homophily bias. This paper primarily focuses
on inter-graph FGL scenarios under homophily heterogene-
ity, innovatively revealing the unexplored impacts of ho-
mophily heterogeneity. We effectively address the issue
from two aspects: promoting training on unified homophily
levels across clients and enhancing the global emphasis on
clients with lower homophily bias.

2.3. Homophilic and Heterophilic Graphs

Homophilic graphs are characterized by nodes with simi-
lar attributes tending to be connected, whereas heterophilic
graphs have connections between nodes of dissimilar fea-
tures and distinct class labels. Extensive research has
achieved significant success in graph modeling [35, 71, 84,
85], such as GCN [36] and GraphSAGE [19]. Addition-
ally, GAT [69], AGNN [67], and Geom-GCN [56] have
further strengthened the effectiveness of GNNs in captur-
ing graph features. However, many of these traditional
studies have focused on strong graph homophily assump-
tions. Recently, numerous studies have considered het-
erophilic graphs, where GNNs have traditionally underper-
formed [92, 98]. For instance, H2GNN proposed three
key designs for heterophily [96], and BM-GCN leverages
pseudo labels in the graph convolution [22]. CPGNN incor-
porates an interpretable compatibility matrix for modeling
the heterophily or homophily level [97], while ACM-GCN
leverages an adaptive channel mixing [49]. Despite exten-
sive exploration in handling graph data [13, 18, 61], ho-
mophily heterogeneity in FGL remains unaddressed. Corre-
spondingly, we investigate from unexplored perspectives on
homophily conflict and homophily bias. Furthermore, ex-
periments on both homophilic and heterophilic graphs vali-
date the superiority of our framework FedSPA.

3. Problem Statement
3.1. Preliminary

Notations. Consider the graph data represented as G =
(V, E), where V denotes the set of nodes comprising |V| =



N vertices, and the edge set E ⊆ V × V indicates the con-
nections between them. The adjacency matrix is denoted as
A ∈ RN×N , where Auv = 1 represents the existing edge
euv ∈ E and Auv = 0 otherwise. The normalized form
of the adjacency matrix is given by Â = D−1/2AD−1/2,
where the degree matrix D is defined as Duu =

∑
v Auv .

The Laplacian matrix L = D − A, while the symmetric
normalized Laplacian matrix is L̃ = I − Â, with I be-
ing the identity matrix. The symmetric normalized Lapla-
cian matrix can be decomposed as L̃ = UΛU⊤, in which
Λ = diag(λ0, . . . , λN−1) is a diagonal matrix of eigenval-
ues satisfying 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2, and U is a
unitary matrix whose columns are the eigenvectors.
Graph Homophily Level h: For a given graph G = (V, E)
with nodes labeled by the vector y, the graph homophily is
a measure of the similarity of connected nodes. It is defined
as the ratio of edges that connect nodes with the same label
to the total number. Formally, the homophily h of graph G
is calculated as:

h =

∑
(u,v)∈E I(yu = yv)

|E|
, (1)

where |E| is the total count of edges, and I(yu = yv) is a
function that returns 1 if yu = yv and 0 otherwise.
High-frequency Area Shigh: The high-frequency area
Shigh is the integral of 1 − f(t) over the interval from 0 to
N , mathematically expressed as Shigh =

∫ N

0
(1 − f(t))dt,

where t ∈ [λk, λk+1) and 1 ≤ k ≤ N − 1. According
to [66], Shigh can be calculated through simple algebraic
manipulations without eigen-decomposition:

Shigh =

∑N
k=1 λkx̂

2
k∑N

k=1 x̂
2
k

=
xTLx

xTx
. (2)

Homophily Heterogeneity in FGL: The homophily
level determines the proportion of homophilic edges
that connect nodes from the same class, significantly
influencing the feature propagation schemes of GNNs.
Nevertheless, the homophily levels are inconsistent
across clients, leading to homophily heterogeneity.
Homophily conflict: Clients overfit their local ho-
mophily level and feature propagation schemes, re-
sulting in conflict during collaboration. Homophily
Bias: Homophily level discrepancy between a client
and the globe is defined as homophily bias. Based on
HBDA GNN architecture, we attribute it to prior dis-
tribution bias and posterior parameter bias. A lower
homophily bias indicates a closer alignment with the
global optimization direction and higher contribution.

Motivation of Decoupling. Homophily heterogeneity in-
evitably introduces biases in feature propagation schemes
across clients. As a result, GNNs tend to overfit local ho-

mophily levels leading to homophily conflicts during col-
laboration. We empirically demonstrate that the conflict
under inconsistent homophily levels degrades the global
generalizability in Fig. 2(a). Specifically, the widely-used
Contextual Stochastic Block Model (CSBM) is utilized to
generate graphs with varying homophily levels for simu-
lating, please refer to Appendix C for a detailed descrip-
tion. To address it, our Homophily Bias-Driven Aggrega-
tion (HBDA) strategy decouples the feature propagation on
fully homophilic and heterophilic subgraphs with distinct
channels. The two channels focus on homophily levels of 0
and 1, respectively, ensuring that clients collaborate within
unified homophily levels. Furthermore, a harmonizer inte-
grates outputs of the two channels for subgraphs where edge
relationships are unknown due to invisible labels.

Motivation of High-frequency area. We posit that clients
with lower homophily bias have optimization directions
that are closer to the global objective. Therefore, they
are expected to contribute more to a generalizable global
GNN. As demonstrated in Fig. 2(c), clients with lower ho-
mophily bias experience greater performance growth. It in-
dicates that the lower the homophily bias of a client, the
closer its optimization direction aligns with the global ob-
jective, leading to greater contribution to global collabora-
tion. Based on this observation, while it is intuitive to use
the homophily level directly to quantify client contribution,
the overall local homophily levels are inaccessible due to
partially visible labels. Alternatively, we investigate graph
spectral high-frequency areas to measure the bias from a
novel spectral perspective. Specifically, we theoretically
prove the negative correlation between the high-frequency
area Shigh and the homophily level h (refer to Appendix A
for the full proof). Therefore, the homophily biases can
be quantified through high-frequency area discrepancies be-
tween clients and the globe. To address this, we design Prior
Bias-Driven Aggregation, the first component in HBDA,
which identifies the clients with lower high-frequency area
bias to the global, thus placing greater emphasis on them.
This strategy is applied to the channel harmonizer to ad-
dress the prior homophily level distribution bias issue.

Motivation of Fisher Information Matrix. Addition-
ally, we aim to address posterior parameter bias in the
homophilic and heterophilic channels which have avoided
prior homophily biases. Specifically, the FIM is exploited
[1, 16, 51] for measuring the GNN parameters sensitiv-
ity distributions bias between local GNNs and the globe,
thereby identifying the clients with lower homophily bias.
The FIM quantifies the information carried by observable
random variables about the unknown parameters of the tar-
get distribution. Let G represent the observed graph data
and θ represent the parameters of the distribution p(G|θ).
Due to the impracticality of directly computing the FIM in
over-parameterized networks, we approximate it using the



empirical distribution as follows:

Idiag(θ) ≈ EG∼p(G|θ)

[(
∂ log p(G|θ)

∂θ

)2
]
. (3)

It serves as a measure of the relative sensitivity of each pa-
rameter in the model and is applied to the two channels
where prior distribution bias has been addressed through
SFPD. Based on this, we propose Posterior Bias-Driven Ag-
gregation, the second component of HBDA. For the com-
prehensive explanation of FIM, please refer to Appendix B.

4. Methodology
Overview. In Subgraph Feature Propagation Decoupling,
we decouple the feature propagation on homophilic and het-
erophilic subgraphs through distinct channels. Correspond-
ingly, the channels respectively focus on the a unified ho-
mophily level across clients, either 0 for the homophilic or
1 for the heterophilic. In addition, considering invisible la-
bels, a harmonizer is designed to combine the two channels
for subgraphs whose edges are of unknown relationship.
In Homophily Bias-Driven Aggregation, we consider prior
and posterior biases under homophily biases. For harmo-
nizers that focus on unknown relationships, the homophily
level distribution bias explicitly exists across clients. To
address it, prior bias-driven aggregation based on spec-
tral high-frequency area enables the global GNN to benefit
more from clients with lower bias. For homophilic and het-
erophilic channels that have already avoided the prior ho-
mophily biases, posterior bias-driven aggregation based on
the Fisher Information Matrix (FIM) raises the weights of
those beneficial clients with smaller posterior biases from
the perspective of parameter sensitivity. Please refer to
Fig. 3 for a comprehensive framework illustration.

4.1. Subgraph Feature Propagation Decoupling

First and foremost, our SFPD model architecture decouples
the handling of fully homophilic and heterophilic subgraphs
by distinct channels, ensuring these two channels are trained
on unified homophily levels across clients, mitigating ho-
mophily conflict during collaboration.

Assuming node v has a neighbor u, the features propa-
gation process from u to v can be expressed as follows:

zlu→v =


fhom(z

l−1
u ; θhom) if yu = yv

fhet(z
l−1
u ; θhet) if yu ̸= yv

funk(z
l−1
u ; θunk) if yu = ∅ or yv = ∅,

(4)

where the terms fhom, fhet, and funk process the features
from the homophilic, heterophilic, and unknown neighbor
u respectively. y represent the node label, while ∅ denot-
ing that the label is invisible. Specifically, an unknown re-
lationship occurs when the label of either node in a con-
nected pair is not visible. Ultimately, zlu→v represents the

feature passed from neighbor u to the center node v. No-
tably, fhom and fhet are the functions that own their respec-
tive parameters, while θunk is integrated from θhom and θhet
through a harmonizer, enabling the mixed feature propaga-
tion from unknown neighbors via the homophilic and het-
erophilic channels. It can be presented as follows:

α = τ(ϕ(zl−1
v ); θϕ), θunk = α·θhom+(1−α)·θhet, (5)

where α represents the output of a sigmoid function τ ap-
plied to the result of channel harmonizer ϕ on the feature
zl−1
v of node v from the previous layer. The parameter θunk

is then derived by a weighted combination of θhom and θhet,
where α serves as the weight for θhom and 1 − α as the
weight for θhet. The updated feature for node v from un-
known neighbors, zl,unk

u→v , is then computed by aggregating
the features from its unknown neighbors u ∈ N unk

v utilizing
funk with the combined parameter θunk in Eq. (6).

To present the feature propagation process in our strategy
SFPD, feature aggregation of a given node v in our graph
convolution can be implemented as follows:

zlv = fself(z
l−1
v ; θself) +

∑
u∈N hom

v

fhom(z
l−1
u ; θhom)

+
∑

u∈N het
v

fhet(z
l−1
u ; θhet) +

∑
u∈N unk

v

funk(z
l−1
u ; θunk),

(6)
where zlv represents the feature of node v after feature
propagation by graph convolution layer l. The function
fself(z

l−1
v ; θself) updates the feature of node v based on its

own feature from the previous layer l − 1. Following our
design in Eq. (4), u denotes neighbors of node v and be-
longs to the corresponding neighbor set N hom

v , N het
v , or

N unk
v . By extending the node-level operations to the entire

local graphs, clients can achieve feature propagation decou-
pling for homophilic and heterophilic subgraphs. It pro-
motes the training of GNN with unified homophily levels
across clients, thereby mitigating homophily conflict.

4.2. Homophily Bias-Driven Aggregation

Prior Bias-Driven Aggregation For channel harmonizer
parameters θϕ training on subgraphs of unknown rela-
tionships where exists prior homophily level distribution
bias across clients, we investigate graph spectra in high-
frequency areas to reasonably measure client importance for
a suitable aggregation strategy. First and foremost, high-
frequency area S for each client is firstly formulated as:

S =
1

F

F∑
f=1

sf =
1

F

F∑
f=1

XT
:,fLX:,f

XT
:,fX:,f

, (7)

where F denotes the feature dimension and sf represents
high-frequency area for the f -th feature dimension. Here,
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Figure 3. Framework illustration. The left box (a) refers to Subgraph Feature Propagation Decoupling (SFPD), which mitigates ho-
mophily conflict by ensuring that each channel focuses on a unified homophily level across clients, either 1 for the homophilic channel
fhom or 0 for the heterophilic channel fhet. Harmonizer ϕ integrates fhom and fhet to process subgraphs where edge relationships are un-
known due to invisible labels. The right box (b) denotes Homophily Bias-Driven Aggregation (HBDA). It is applied to harmonizers ϕ and
the two channels fhom and fhet distinctively. HBDA sets higher weights for clients with lower homophily biases from the globe.

X ∈ RN×F is the node feature matrix, where X:,f denotes
the f -th column of X, corresponding to the feature vector
for all nodes at the f -th dimension. L ∈ RN×N represents
the graph Laplacian matrix. S is obtained by averaging over
all feature dimensions and normalizing by F . Specifically,
the homophily bias of client i from the prior distribution
bias perspective is calculated as follows:

δi =

∣∣∣∣Si −
∑n

i=1 NiSi∑n
i=1 Ni

∣∣∣∣ , (8)

where δi represents the bias and Si denotes the high-
frequency area of client i. n denotes the total number of
clients and Ni denotes local node count for client i. The bias
δi measures how much the high-frequency area of the client
i deviates from the globe. Specifically, the larger the bias
δi, the less the client contribution. Furthermore, to measure
the weight for aggregation, γ(δi, δ) is calculated as follows:

γ(δi, δ) =
δi ·min(δ)

max(δ) ·min(δ)
, (9)

where δ represents the set of all high-frequency area dispar-
ities. Based on γ(δi, δ) which ensures all disparities are on
the same scale, the ultimate weight wi

h for the harmonizer
parameters θϕ of the client i is calculated as follows:

wi
h =

exp(−γ(δi, δ))∑n
i=1 exp(−γ(δi, δ))

, (10)

where γ(δi, δ) represents the normalized disparity. The uti-
lization of the negative exponential function is intended to
convert disparities into weights, where a larger disparity re-
sults in a smaller value. It ensures that clients with smaller
biases have greater importance. wi

h represents the ultimate
weights qualified by high-frequency areas that adequately
evaluate prior homophily bias from a spectral perspective.

Posterior Bias-Driven Aggregation For homophilic and
heterophilic channels that have already overcome prior
homophily level distribution bias, we consider posterior
parameter bias as the implicit impact of homophily bi-
ases. Within a unified architecture, graphs with various
homophily levels lead to distinctive parameter sensitivity.
For our previously designed dual-channel GNN architecture
that decouples subgraphs, homophily biases affect different
subgraph channels differently. Correspondingly, parame-
ter sensitivity distribution for each channel is calculated in-
dividually for aggregation. To begin with, the distribution
bias for client i is formulated as follows:

∆i =
1

m

m∑
j=1

∣∣∣∣∣Ii − 1∑n
i=1 |Ni|

N∑
i=1

|Ni|Ii

∣∣∣∣∣ , (11)

where ∆i measures the difference between the parameter
sensitivity distribution Ii of the client i by the FIM in Eq. (3)
and the aggregated global sensitivity distribution. m repre-
sents the dimension number of Ii and Ig . Therefore, mean
deviation ∆i provides a scalar value that quantifies how
much the sensitivity distribution of a client deviates from
the global. Subsequently, we normalize ∆i using the max-
min normalization Eq. (9). Then the same method is em-
ployed to determine weights w based on the parameter sen-
sitivity distribution bias as follows:

wi
f =

exp(−γ(∆i,∆))∑n
i=1 exp(−γ(∆i,∆))

, (12)

where the weight wi
f is obtained through same procedure

as wi
h. Correspondingly, ∆ denotes the set of all distri-

bution biases, while ∆i representing bias of client i. As
discussed in the motivation, considering the inconsistent
impact of homophily bias on feature propagation in differ-
ent subgraphs, we compute wi

f independently for the ho-
mophilic and heterophilic channels by FIM.



5. Experiments

5.1. Experimental Settings

Baselines. We compare FedSPA with several state-of-the-
art approaches. (1) FedAvg [54]; Two traditional FL meth-
ods, including (2) FedProx [41] which address hetero-
geneity issues in FL and (3) FedNova [72] which focus
on objective inconsistency; One personalized FL algorithm
(4) FedFa [95] which address the negative impact of fea-
ture shift; Seven FGL algorithms, including (5) FedSage+
[89], (6) FedStar [65], (7) FedPub [4](8) FGSSL [27], (9)
FedGTA [44], (10) AdaFGL [43], and (11) FGGP [70]
which provide targeted solution for FGL.

Datasets. We conducted experiments on both homophilic
and heterophilic graph datasets to validate the superior-
ity of our framework FedSPA. The homophilic datasets
include Cora [53], Coauthor-CS, Coauthor-Physics [62],
while the heterophilic datasets comprise Cornell, Wiscon-
sin [11], Minesweeper [5], and Arxiv-Year [25]. Detailed
descriptions of these datasets can be found in Appendix D.

Evaluation Metric. Following mainstream research prac-
tices [27, 43, 44, 70], we utilize the accuracy of the node
classification task as the evaluation metric.

Implement Details. The experiments are conducted on the
framework FLGo [77]. Following the mainstream research,
the community detection Louvain algorithm is leveraged
to simulate the subgraph systems. Despite the large graph
dataset arxiv-year, we split the nodes of other datasets into
the train, valid, and test sets, where the ratio is 0.6, 0.2,
and 0.2, while the radio is 0.05, 0.475, and 0.475 for arxiv-
year. Considering the graph size, different client scales are
set for each dataset. Specifically, Cornell and Wisconsin
have 5 clients each, Arxiv-Year has 30 clients, and the other
datasets are set to 10 clients to reasonably simulate real-
world subgraph-FL environments. Furthermore, we con-
duct experiments five times and reported the average accu-
racy of the last five communication epochs as the test perfor-
mance. We conduct experiments with the ACM-GCN [49],
which achieves a strong ability on both homophilic and het-
erophilic graph datasets. We utilize the ACM-GCN with 2
layers, with the hidden layer size of 128.

5.2. Performance Comparison

We demonstrate the federated node classification perfor-
mance with different graph datasets and summarize the final
average test accuracy in Tab. 1. These results indicate that
FedSPA outperforms all other baselines in six of the seven
settings. Specifically, algorithms tailored for FGL such as
FedStar, FedPub, and FedGTA outperform traditional FL
algorithms due to their designs for graph-structure data.

(a) Homophilic (b) Heterophilic

Figure 4. Analysis of the performance growth between FedSPA
and Fedavg under different homophily gaps and average node de-
grees (average neighbor count of a node), where d denotes the
average node degree and Gap refers to the range where client local
homophily levels uniformly distribute.

5.3. Varying Homophily Gaps and Node Degrees

We explore the performance improvement of our method
compared to FedAvg in both homophilic and heterophilic
FGL under different homophily gaps. Specifically, Fig. 4
presents the accuracy growth of our method under three dif-
ferent average node degrees and homophily gaps. We derive
two conclusions: firstly, the greater the average node de-
gree, the more significant the impact of homophily level on
the feature propagation of GNNs, thus enabling FedSPA to
experience greater improvements. Furthermore, our method
maintains its advantage across different homophily gaps.
For implementation details, we conduct our experiments
with the widely used synthetic graph dataset CSBM. Specif-
ically, scenarios of both homophilic and heterophilic graphs
are demonstrated. In the homophilic scenario, the average
homophily of clients is set to 0.75, while in the heterophilic
scenario, it is set to 0.25. The gap represents the distribution
range of client local homophily levels, with they uniformly
distributed within it. Furthermore, d = 2, 5, 10 denotes the
average node degree, and node count in the graph randomly
varies between 1,000 and 5,000.

5.4. Ablation Study

Effects of Key Components Mechanism of FedSPA: To
better understand the impact of specific components on the
overall performance of FedSPA, we conduct an ablation
study where we vary these components of Coauthor-CS,
Minesweeper, and Arxiv-year. As shown in Tab. 2, com-
pared to FedAvg, SFPD significantly enhances accuracy
when applied independently. Furthermore, HBDA attains a
notable improvement in performance as it reasonably quan-
tifies client importance based on SFPD architecture and ad-
dresses homophily biases adequately.
Effects of Key Components Mechanism of HBDA: we
also conduct an ablation study where we vary components



Methods Cora CS Physics Cornell Winsconsin Minesweeper Arxiv-year

Homophily Level 0.81 0.81 0.93 0.30 0.20 0.68 0.22

FedAvg [ASTAT17] 80.8 ± 0.6 91.8 ± 0.3 94.3 ± 0.6 72.3 ± 4.3 85.7 ± 3.5 81.1 ± 0.2 35.6 ± 0.6

FedProx [arXiv18] 80.9 ± 0.4 ↑0.1 91.9 ± 0.5 ↑0.1 94.4 ± 0.5 ↑0.1 71.9 ± 3.7 ↓0.4 86.2 ± 3.7 ↑0.5 81.5 ± 0.1 ↑0.4 35.5 ± 0.7 ↓0.1

FedNova [NeurIPS20] 80.6 ± 0.7 ↓0.2 91.7 ± 0.4 ↓0.1 94.5 ± 0.3 ↑0.2 71.9 ± 3.4 ↓0.4 86.3 ± 5.1 ↑0.6 81.4 ± 0.2 ↑0.3 35.8 ± 0.8 ↑0.2

FedFa [ICLR23] 82.1 ± 0.3 ↑1.3 92.2 ± 0.1 ↑0.4 93.9 ± 0.3 ↓0.4 72.5 ± 5.2 ↑0.2 86.1 ± 3.9 ↑0.4 81.3 ± 0.1 ↑0.2 36.3 ± 0.4 ↑0.7

FedSage+ [NeurIPS19] 81.5 ± 0.7 ↑0.7 92.6 ± 0.2 ↑0.8 94.5 ± 0.9 ↑0.2 73.1 ± 3.3 ↑0.8 88.2 ± 4.8 ↑2.5 81.8 ± 0.2 ↑0.7 35.8 ± 1.0 ↑0.2

FedStar [AAAI23] 81.4 ± 0.5 ↑0.6 92.0 ± 0.4 ↑0.2 94.0 ± 0.6 ↓0.3 74.3 ± 2.7 ↑2.0 87.9 ± 3.7 ↑2.2 81.2 ± 0.1 ↑0.1 36.9 ± 0.6 ↑1.3

FedPub [ICML23] 81.0 ± 0.8 ↑0.2 92.3 ± 0.2 ↑0.5 94.4 ± 0.3 ↑0.1 73.4 ± 3.5 ↑1.1 86.5 ± 3.2 ↑0.8 81.3 ± 0.2 ↑0.2 36.6 ± 0.4 ↑1.0

FGSSL [IJCAI23] 82.8 ± 0.7 ↑2.0 93.1 ± 0.3 ↑1.3 94.7 ± 0.6 ↑0.4 73.6 ± 4.6 ↑1.3 86.3 ± 3.5 ↑0.6 81.7 ± 0.7 ↑0.6 36.8 ± 0.3 ↑1.2

FedGTA [VLDB24] 82.0 ± 0.4 ↑1.2 91.9 ± 0.4 ↑0.1 94.6 ± 0.4 ↑0.3 72.6 ± 4.2 ↑0.3 86.0 ± 4.2 ↑0.3 81.4 ± 0.3 ↑0.3 37.1 ± 0.6 ↑1.5

AdaFGL [ICDE24] 81.2 ± 0.7 ↑0.4 92.3 ± 0.5 ↑0.5 94.8 ± 0.7 ↑0.5 74.9 ± 3.2 ↑2.6 88.0 ± 3.9 ↑2.3 81.3 ± 0.1 ↑0.2 36.9 ± 0.5 ↑1.3

FGGP [AAAI24] 82.0 ± 0.4 ↑1.2 92.8 ± 0.4 ↑1.0 94.7 ± 0.5 ↑0.4 73.8 ± 2.8 ↑1.5 87.4 ± 4.7 ↑1.7 81.9 ± 0.4 ↑0.8 36.7 ± 0.6 ↑1.1

FedSPA (ours) 82.5 ± 0.8 ↑1.7 94.4 ± 0.1 ↑2.6 95.3 ± 0.3 ↑1.0 77.0 ± 2.9 ↑4.7 90.3 ± 2.5 ↑4.6 83.2 ± 0.2 ↑2.1 38.1 ± 0.3 ↑2.5

Table 1. Comparison with the state-of-the-art methods on both homophilic and heterophilic graph datasets. We report node classification
accuracies for downstream task performance. Best in bold and second with underline. The growth or reduction is compared to FedAvg.

Dataset
SFPD HBDA

CS Minesweeper Arxiv-year

✗ ✗ 91.78± 0.31 81.14± 0.21 35.60± 0.56

✓ ✗ 92.29± 0.45 81.62± 0.12 37.26± 0.88

✓ ✓ 94.37± 0.13 83.21± 0.21 38.12± 0.30

Table 2. Ablation study of key components (SFPD, HBDA) of
FedSPA on Coauthor-CS, Minesweeper, and Arxiv-year.

of HBDA. As shown in Tab. 3, compared to only leverag-
ing SFPD, prior and posterior bias-driven aggregation en-
hances the performance respectively. Consequently, their
combined leveraging results in the optimal effectiveness,
validating that HBDA effectively assesses the homophily
bias and adjusts the client weights reasonably.

Dataset
Prior Posterior

CS Minesweeper Arxiv-year

✗ ✗ 92.29± 0.45 81.62± 0.12 37.26± 0.88

✓ ✗ 93.31± 0.39 82.39± 0.42 37.77± 0.52

✗ ✓ 93.56± 0.74 82.67± 0.23 37.42± 0.68

✓ ✓ 94.37± 0.13 83.21± 0.21 38.12± 0.30

Table 3. Ablation study of key components (Prior Bias-Driven
Aggregation and Posterior Bias-Driven Aggregation) of HBDA on
Coauthor-CS, Minesweeper, and Arxiv-year.

5.5. Convergence

Fig. 5 shows curves of the average test accuracy during
training across five random runs with the minesweeper and
arxiv-year datasets. The comparison demonstrates the su-
periority of our framework FedSPA through its outstanding
performance and stable convergence.

Figure 5. Visualization of training curves of the average test ac-
curacy of FedSPA and other FL, pFL, and FGL algorithms on
datasets minesweeper (left) and arxiv-year (right).

5.6. Varying Client Scales

The Fig. 6 demonstrates the performance of the FedAvg,
FGGP, and FedSPA algorithms across different client scales
on the graph datasets Minesweeper and Arxiv-Year. Our
results show that FedSPA consistently outperforms other
methods even as the client scale varies. For different graph
sizes, the number of clients is adjusted accordingly.

(a) Minesweeper (b) Arxiv-year

Figure 6. Analysis of performance under different client numbers.

6. Conclusion

In this paper, we innovatively identify the issue of ho-
mophily heterogeneity in FGL and address it from ho-
mophily conflict and bias perspectives. In the first place, we



propose SFPD which decouples feature propagation on ho-
mophilic and heterophilic subgraphs through distinct chan-
nels, thus attaining training on unified homophily levels
across clients for each type of channel, either one or zero.
In addition, considering invisible labels, subgraphs whose
edges are of unknown relationship are processed by both
channels through a harmonizer. Furthermore, existing ag-
gregation based on node count fails to reasonably quantify
client contribution under homophily bias. Instead, we in-
novatively summarize the bias into prior distribution bias
and posterior parameter bias. Correspondingly, an aggrega-
tion strategy HBDA that adequately addresses homophily
bias is proposed to emphasize clients with lower homophily
bias, thereby allowing the global GNN to benefit more from
them. Combining these strategies, we propose FedSPA
and conduct extensive experiments on homophilic and het-
erophilic graph datasets to validate its superiority.
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A. Proof: Correlation Between High-
frequency Area Shigh and Homophily
Level h

We aim to prove the negative correlation between the high-
frequency area of the graph spectrum, denoted as Shigh, and
the homophily level h. To begin with, according to the
graph Laplacian energy, we have:

xTLx =
∑

(u,v)∈E

(xu − xv)
2 = Ediff,

where Ediff represents the sum of signal differences across
edges. The expected value of the sum is given by:

E[Ediff] = E

 ∑
(u,v)∈E

(xu − xv)
2

 .

Assuming that the difference (xu−xv)
2 between connected

nodes u and v in graph G is independent and identically
distributed (i.i.d) and that its expectation is influenced by
the homophily level h, we have:

E[(xu − xv)
2 | yu = yv] ≪ E[(xu − xv)

2 | yu ̸= yv],

where yu and yv denote the labels of nodes u and v, re-
spectively. Therefore, the overall expectation of the signal
difference is approximately:

E[(xu − xv)
2] ≈ (1− h) · E[(xu − xv)

2 | yu ̸= yv].

E[Ediff] ≈ |E| · (1− h) · E[(xu − xv)
2 | yu ̸= yv],

where |E| is the number of edges in the graph. Assuming
that the signal x has length F and its elements xf are i.i.d.
following a normal distribution P(0, σ2), we have:

E[xTx] = E

 F∑
f=1

x2
f

 =

F∑
f=1

E[x2
f ] = Fσ2.

Consequently, the expected value of Shigh is expressed as:

E[Shigh] = E
[
Ediff

Fσ2

]
≈ |E| · (1− h) · E[(xu − xv)

2|yu ̸= yv]

Fσ2
,

E[Shigh] ∝ (1− h),

which shows the negative correlation between the high-
frequency area Shigh and the homophily level h.

B. Fisher Information Matrix
Parameter sensitivity is quantified using the Fisher Infor-
mation Matrix (FIM) [1, 16, 51], which provides a measure
of the amount of information that the observed data carries

about the GNN parameters. Let G represent the graph data,
and let θ represent the parameters of the distribution p(G|θ)
underlying the GNN. The FIM is defined as:

I(θ) = EG∼p(G|θ)

[(
∂ log p(G|θ)

∂θ

)(
∂ log p(G|θ)

∂θ

)⊤
]
,

(13)
where the expectation is taken over the distribution of the
observed graph data. The FIM essentially captures the cur-
vature of the likelihood function in the parameter space, in-
dicating how sensitive the likelihood is to small changes in
the parameters. This sensitivity is crucial in various appli-
cations, including parameter estimation, uncertainty quan-
tification, and model selection.

Nevertheless, the FIM for GNNs is computationally in-
feasible due to the high dimensionality of the parameter
space. Therefore, an approximation is leveraged in our
method. Specifically, the FIM can be approximated using
an empirical distribution derived from the observed data.
This approximation, particularly its diagonal form, simpli-
fies the computation significantly:

Idiag(θ) ≈ EG∼p(G|θ)

[(
∂ log p(G|θ)

∂θ

)2
]
. (14)

To further motivate, we consider the effect of small per-
turbations in the model parameters on the output of the
GNN. This relationship can be rigorously quantified using
the Kullback-Leibler (KL) divergence, which measures the
difference between the original distribution and a perturbed
distribution. Specifically, if the parameters are perturbed by
a small amount δ, the second-order Taylor expansion of the
KL divergence leads to the following approximation:

EG [DKL (p(G|θ)∥p(G|θ + δ))] ≈ 1

2
δ⊤I(θ)δ, (15)

where δ is a small perturbation in the parameter space. This
result shows that the FIM not only measures the sensitiv-
ity of the likelihood function to parameter changes but also
quantifies the expected change in model output as a result
of these parameter perturbations. In other words, the FIM
provides a fundamental connection between the parameter
space and the output space of the GNN.

In summary, the Fisher Information Matrix serves as a
measure of parameter sensitivity for GNNs. By approxi-
mating the FIM, we can quantify the posterior parameter
sensitivity bias between a client and the globe. Correspond-
ingly, a posterior bias-driven aggregation is proposed for
reasonably measuring client contribution and enabling the
global GNN to benefit more from those with lower biases.

C. Contextual Stochastic Block Model
In this research, we utilize the Contextual Stochastic Block
Model (CSBM) [12] to generate synthetic graphs. These



graphs feature variable edge probabilities both within and
between different groups. The primary idea is that nodes of
the same class share a uniform feature distribution. The re-
sulting graph is denoted as G ∼ CSBM(N,F, σ, µ), where
n is the total number of nodes, F represents the feature di-
mension, and σ and µ are the hyperparameters. These hy-
perparameters, σ and µ, control the influence of the graph
structure and node features respectively. We consider two
equal-sized classes, c1 and c0, each with N/2 nodes.

The CSBM produces features of a node u as follow:

xu =

√
µ

N
yuζ +

qu√
F
, (16)

where yu ∈ {−1,+1} indicates the class label of node
vu, µ represents the mean of the Gaussian distribution,
ζ ∼ N (0, I/F ), and qu consists of independently dis-
tributed standard normal variables. The average degree of
the generated graph is denoted as d, and the adjacency ma-
trix A for the CSBM graph is defined by:

P (Auv = 1) =

{
1
N
(d+ σ

√
d) if yu = yv

1
N
(d− σ

√
d) if yu ̸= yv.

(17)

The level of homophily h can be tuned by adjusting σ =√
d(2h− 1), within the range −

√
d ≤ σ ≤

√
d. A fully

heterophilic graph is represented by σ = −
√
d, while a

fully homophilic graph is described by σ =
√
d.

D. Datasets
We perform experiments on node classification tasks on
both homophilic and heterophilic graph datasets to demon-
strate the superiority of our proposed method FedSPA.
Cornell, Wisconsin: These datasets are subsets of the We-
bKB dataset [11]. The WebKB dataset was introduced in
1998, comprising web pages from the computer science de-
partments of various universities, including Cornell Univer-
sity and the University of Wisconsin. These pages are cat-
egorized into five classes: student, faculty, course, project,
and staff. In this dataset, each node represents a webpage,
and edges denote hyperlinks between them. The dataset is
commonly used for tasks such as webpage classification and
link prediction, serving as a benchmark for evaluating ma-
chine learning models in graph-based learning scenarios.
Cora: The Cora dataset [53] is a widely used benchmark
in machine learning and graph analysis, particularly for
tasks like node classification and link prediction. It com-
prises 2,708 scientific publications categorized into seven
classes: Case-Based Reasoning, Genetic Algorithms, Neu-
ral Networks, Probabilistic Methods, Reinforcement Learn-
ing, Rule Learning, and Theory. Each publication is repre-
sented as a node, and edges between nodes denote citation
relationships, forming a citation network with 5,429 links.
Node features are binary vectors indicating the presence or
absence of 1,433 unique words from the publication’s con-

tent. This dataset is instrumental in evaluating the perfor-
mance of various graph-based algorithms and models.
Coauthor-CS, Coauthor-Physics: The Coauthor-CS and
Coauthor-Physics datasets [62] are derived from the Mi-
crosoft Academic Graph and were used in the KDD Cup
2016 challenge. In these datasets, nodes represent au-
thors, and edges denote co-authorship relationships. The
Coauthor-CS dataset contains 18,333 nodes and 81,894
edges, with node features representing the keywords of pa-
pers authored by each individual and labels indicating clas-
sification into 15 fields of study. The Coauthor-Physics
dataset includes 34,493 nodes and 247,962 edges, with sim-
ilar node features and labels representing classification into
5 main research areas. These datasets are widely used for
node classification tasks in graph neural network research
as standard benchmarks to evaluate model performance.
Minesweeper: The Minesweeper dataset [5] is a synthetic
graph dataset inspired by the classic Minesweeper game.
In this dataset, the graph is structured as a regular 100x100
grid, where each node represents a cell connected to its eight
neighboring nodes, except for edge nodes which have fewer
neighbors. Approximately 20% of the nodes are randomly
designated as mines. The primary task is to predict which
nodes contain mines. Node features are one-hot encoded
to represent the number of neighboring mines. However,
for a randomly selected 50% of the nodes, these features
are unknown, indicated by a separate binary feature. This
dataset is commonly used to evaluate the performance of
GNNs under heterophily.
ArXiv-year: The arXiv-year dataset [25] is a benchmark
dataset designed for graph learning tasks, consisting of a
citation network with nodes, edges, node features, and tem-
poral labels. Each node represents a paper from the arXiv
repository, and the edges denote citation relationships be-
tween papers, forming an undirected graph. The node fea-
tures are typically embeddings related to the content of the
paper, such as text-based representations. The node labels
correspond to the publication year of each paper.
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