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Introduction
• The broader impact of functional MRI (fMRI) remains limited by challenges in reproducibility and transferability.
• Medical foundation models show promise for addressing these challenges through scalable pretraining and cross-task generalization.
• We propose a fMRI foundation model "NeuroSTORM" pretrained on >65k scans, featuring 1) Shifted-Window Mamba backbone for

efficient 4D processing, 2) Spatiotemporal Redundancy Dropout to mitigate redundancy in voxel-wise signals, and 3) Task-specific Prompt Tuning
for parameter-efficient adaptation.

• We constructed a comprehensive, independent benchmark of five tasks to evaluate the performance of NeuroSTORM.

Methods
NeuroSTORM is built on a Shifted-Window
Mamba backbone, which efficiently processes
4D fMRI volumes
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The Spatiotemporal Redundancy Dropout
module encourages the model to focus on cap-
turing complex long-range relationships within
4D fMRI sequences
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Task-specific Prompt Tuning introduces
learnable prompt parameters for each down-
stream task while keeping the backbone param-
eters fixed
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Results
To validate the performance and applicability of NeuroSTORM, we established five benchmark
datasets, each representing a distinct downstream task: a) Age/Gender prediction, b) Phenotype
prediction, c) Disease diagnosis, d) fMRI retrieval, and e) task fMRI state classification.
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Conclusion
• Our study addresses two fundamental

challenges in fMRI research through sys-
tematic innovations in data curation, ar-
chitecture design, and benchmarking;

• NeuroSTORM exhibits satisfied perfor-
mance across all tasks, highlighting the po-
tential of the fMRI foundation model;

• NeuroSTORM creates new opportunities
for integrating fundamental brain theories

Dataset Corpus

The model is pre-trained on a
collection of publicly available
datasets, including over 500,000
rsfMRI and 16,000 tfMRI se-
quences. All data are aligned
to 2mm MNI152 space to create
standardized 4D volumes
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