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Introduction:

Functional Magnetic Resonance Imaging (fMRI) is essential for studying brain function and

neurological disorders, yet its analysis is hindered by low signal-to-noise ratio, test-retest variability,

complex preprocessing, and limited dataset sizes. These challenges contribute to a reproducibility
crisis and limit model transferability across tasks and populations. In response, we introduce fMRI-
GPT, a foundation model for fMRI analysis, pre-trained on 55,000+ multi-site fMRI 4D volumes.
Evaluation on a diverse array of downstream tasks shows that fMRI-GPT achieves state-of-the-art
performance while requiring fewer training samples. By learning whole-brain voxel-wise
representations, fMRI-GPT provides a scalable and generalizable framework for fMRI analysis. It
enhances brain function decoding for perception, memory, emotion, and decision-making, while
improving reproducibility across studies. Bridging deep learning with neuroimaging, fMRI-GPT
advances precision psychiatry, brain-computer interfaces, and early disease detection.
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‘Overview of the proposed fMRI-GPT model.
Methods:

fMRI-GPT is pre-trained on 55,000+ fMRI sequences from multi-center datasets, including UK
Biobank, ABCD, and HCP, covering diverse demographics and clinical conditions. Data preprocessing
includes motion correction, slice timing correction, spatial normalization to MNI152 space, and Z-
score intensity normalization. The model employs a Masked Autoencoder (MAE) framework to learn
latent representations of brain activity. A Spatiotemporal Redundancy Dropout (STRD) module
enhances noise resilience by filtering redundant information, improving test-retest reliability. The
Shifted-Window Mamba Backbone optimizes 4D volume processing, reducing GPU memory usage
while preserving long-range dependencies in brain signals.
Pretraining follows a self-supervised approach, where the model reconstructs masked fMRI
sequences to learn intrinsic brain activity patterns. Fine-tuning is performed using Task-specific
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Prompt Tuning, which updates only a small subset of parameters, allowing efficient adaptation to
new tasks with minimal labeled data. fMRI-GPT is evaluated across five key fMRI tasks: age and
gender prediction, phenotype prediction, disease diagnosis, fMRI retrieval, and task-state
classification. Performance is compared against state-of-the-art ROI-based and volume-based
models using accuracy, Pearson correlation, mean squared error (MSE), and area under the curve
(AUQ).

Results:

fMRI-GPT achieves state-of-the-art (SOTA) performance across five key fMRI tasks while requiring
significantly fewer training samples. For age prediction, it reduces mean squared error (MSE) by
12.5% compared to SwiFT (Kim et al., 2023), the best-performing volume-based method. In gender
classification, it outperforms BrainGNN (Li et al., 2021), achieving 93.3% accuracy (vs. 85.6% for
BrainGNN). For phenotype prediction, fMRI-GPT surpasses existing models, achieving a 0.429
Pearson Correlation Coefficient (PCC) in emotion-related phenotype estimation, 15.2% higher than
previous SOTA models such as BrainLM (Ortega Caro et al., 2023). In disease diagnosis, it
outperforms BrainLM and Com-BrainTF (Kan et al., 2022) on schizophrenia classification (HCP-EP
dataset), reaching 75.2% accuracy, a 15.3% improvement over ROI-based approaches. Notably,
fMRI-GPT is the first model to perform 4D volume-based fMRI retrieval, achieving 79.4% accuracy.
In comparison, the SOTA method MindEyeV2 (Scotti et al., 2024) relies on pre-defined vision-related
ROIs. In task-state classification, it attains 92.6% accuracy, exceeding SwiFT's 88.1%.

Conclusions:

fMRI-GPT introduces a new paradigm in fMRI analysis by leveraging large-scale data and a powerful
pre-trained model. It provides a scalable and versatile solution with broad applications in cognitive
neuroscience, precision psychiatry, and brain-computer interfaces.
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Was this research conducted in the United States?
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Were any human subjects research approved by the relevant Institutional Review
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Not applicable

Were any animal research approved by the relevant IACUC or other animal research
panel? NOTE: Any animal studies without TACUC approval will be automatically
rejected.

Not applicable
Please indicate which methods were used in your research:

Functional MRI

For human MRI, what field strength scanner do you use?

If Other, please list - varies

Which processing packages did you use for your study?
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