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ADVANCES IN CARDIOVASCULAR IMAGING

Fusion Modeling: Combining Clinical and Imaging 
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ABSTRACT: In addition to the traditional clinical risk factors, an increasing amount of imaging biomarkers have shown value 
for cardiovascular risk prediction. Clinical and imaging data are captured from a variety of data sources during multiple 
patient encounters and are often analyzed independently. Initial studies showed that fusion of both clinical and imaging 
features results in superior prognostic performance compared with traditional scores. There are different approaches to 
fusion modeling, combining multiple data resources to optimize predictions, each with its own advantages and disadvantages. 
However, manual extraction of clinical and imaging data is time and labor intensive and often not feasible in clinical practice. 
An automated approach for clinical and imaging data extraction is highly desirable. Convolutional neural networks and natural 
language processing can be utilized for the extraction of electronic medical record data, imaging studies, and free-text data. 
This review outlines the current status of cardiovascular risk prediction and fusion modeling; and in addition gives an overview 
of different artificial intelligence approaches to automatically extract data from images and electronic medical records for 
this purpose.
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Cardiovascular disease (CVD) is a major contributor 
to global mortality, representing 31% of all global 
deaths.1 Traditional risk factors obtained from 

population-based studies are used to predict adverse 
cardiac outcomes such as the pooled cohort equations 
CVD risk calculator.2,3

Cardiac imaging may be seen as a bridge between 
upstream risk factors and CVD, as several cardiac imag-
ing modalities are currently clinically well integrated 
for the evaluation of subclinical vascular and ventricu-
lar function. Echocardiography, cardiac nuclear imag-
ing, coronary computed tomography (CT) angiography 
(CCTA), and cardiac magnetic resonance (CMR) imag-
ing play an important role in CVD diagnosis and progno-
sis.4,5 With the rise of artificial intelligence (AI), the role of 
cardiac imaging is being leveraged for several different 
applications, including data analysis, quantification, and 
prognostication.6

Clinical and imaging data are captured from numer-
ous data sources during patient encounters and are 

often analyzed independently of each other. However, 
such models fail to exploit longitudinal and complemen-
tary information from different data streams. Overall, 
AI enables the development of models that combine 
multimodal data from large populations for the predic-
tion of CVD outcomes. Initial studies, integrating both 
clinical and imaging features using an AI-based fusion 
approach, showed superior prognostic performance 
compared with traditional scores to predict major 
adverse cardiac events.7,8 Although the combination of 
multisource shows promising results, manual extraction 
of clinical and imaging data is time and labor inten-
sive and not feasible in clinical practice. Different AI 
approaches can be utilized for the extraction of clinical 
data from electronic medical records (EMRs), imaging 
studies, and the identification of important factors from 
multimodal data.

Automated feature extraction makes fusion modeling 
clinically applicable. This review will discuss the current 
status of cardiovascular risk prediction, multimodality 
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data fusion approaches, and their limitations. In addition, 
it gives an overview of automated AI-based extraction of 
data that can serve as input for fusion modeling.

PROGNOSTICATION USING CLINICAL 
RISK FACTORS AND IMAGING 
BIOMARKERS
Clinical CVD Risk Factors
The use of clinical risk factors for CVD risk prediction 
is a cornerstone of preventive cardiology. Hypertension, 
dyslipidemia, diabetes, smoking, and obesity are among 
the 5 strongest and most common modifiable risk fac-
tors.2,3 Although traditional risk factors are associated 
with a higher incidence of CVD events, there is consid-
erable heterogeneity among people who have elevated 
CVD risk factor burden.9,10 Overall, such data suggest 
that traditional risk factors incompletely explain CVD risk 
and further support the concept of cardiac imaging to 
improve risk stratification.

Imaging-Based CVD Risk Factors
There are several different imaging modalities for CVD 
risk stratification, including ultrasound, CT, CMR, and 
nuclear imaging. The Table summarizes the major fields 
of CVD imaging for each modality and the most relevant 
AI applications.6

Computed Tomography
Cardiac CT has become widely utilized because of its 
nonuser dependence, reproducibility, and short acqui-
sition time.11,12 Noncontrast cardiac CT has emerged 
as a powerful technique because coronary artery 
calcium (CAC) is a direct measure of subclinical ath-
erosclerosis burden, strongly associated with CVD 
risk,13predicting downstream mortality,14,15 and can 
help identify those who are most likely to benefit from 

pharmacotherapy. The most commonly used method 
for quantifying CAC was introduced by Agatston et al16 
(Figure 1A).

CCTA has been recently recommended by several 
societies and guidelines as a first-line diagnostic test 
for patients with suspected stable coronary artery dis-
ease (CAD).5,17 Traditionally, CCTA (Figure 1B) is used 
to exclude CAD, having excellent negative predictive 
value. However, it also has been used to assess ste-
nosis severity and guide follow-up examinations and 
treatment, as outlined in the Coronary Artery Disease-
Reporting and Data System 2.0 classification.18 Stud-
ies have shown that total plaque volume increases the 
accuracy of outcome prediction compared with stenosis 
classification alone.8,19–21 Noncalcified plaque volume 
might indicate more vulnerable plaque and, therefore, 
might be a more accurate biomarker compared with 
calcified plaque volume. However, these analyses are 
time and labor intensive, using AI allows for a stan-
dardized analysis in a time-efficient manner, making it 
more practical to use in clinical practice. Examples of 

Nonstandard Abbreviations and Acronyms

AI artificial intelligence
CAC coronary artery calcium
CAD coronary artery disease
CCTA  coronary computed tomography 

angiography
CMR cardiac magnetic resonance
CT computed tomography
CVD cardiovascular disease
EMR electronic medical records
HFpEF  heart failure with preserved ejection 

fraction
NLP natural language processing

Table. Integration of Common Cardiac Imaging Modalities 
and Artificial Intelligence Applications

Imaging modality Important measures
Select clinical AI-
based applications

Coronary calcium 
computed 
tomography 

Coronary artery calcium Improved workflow 
for traditional 
coronary artery 
calcium scoring 

Extracoronary artery calcium: 
thoracic, aortic, mitral valve

Automation of 
extracoronary artery 
calcium scoring

Cardiac computed 
tomography 
angiography

Calcified and noncalcified 
plaque

Integrating risk 
scores for high-risk 
plaque features

Plaque characteristics: 
number of coronary segments 
with atherosclerosis; high-risk 
plaque features: napkin-ring 
sign, low attenuation plaque, 
and positive remodeling

Echocardiography Systolic function: ejection 
fraction

Deep-learning 
models for 
phenotyping diastolic 
dysfunction for 
early heart failure 
with preserved 
ejection fraction risk 
stratification

Diastolic function: E/e, E/e’, 
isovolumetric relaxation time, 
deceleration time, left atrial 
maximum volume index, peak 
tricuspid regurgitation velocity

Global longitudinal strain

Cardiac magnetic 
resonance 
imaging

Delayed gadolinium 
enhancement

Scar assessment 
for postmyocardial 
infarction and 
sudden cardiac 
death risk 
stratification

Cardiac function Automated left 
ventricular function 
analysis

Nuclear imaging Myocardial perfusion: 
coronary artery disease; 
microvascular disease

Automated perfusion 
quantification
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AI-supported analyses for Coronary Artery Disease-
Reporting and Data System 2.0, plaque volume quan-
tification, and high-risk plaque feature detection are 
shown in Figure 2A through 2D.There are several high-
risk plaque features that are important to consider for 
risk prediction, such as positive remodeling, low atten-
uation plaque, and the napkin-ring sign,22–24 see Fig-
ure 2E and 2F.

Echocardiography, CMR
Beyond atherosclerosis-based imaging, the relationship 
of ventricular structure and function with upstream risk 
factors is also important in CVD risk assessment, par-
ticularly for heart failure with preserved ejection fraction 
(HFpEF), which has a rapidly growing incidence and 
societal burden.25 Although the diagnosis of heart fail-
ure with reduced ejection fraction has become largely 
standardized, the early identification and assessment of 
HFpEF on imaging has been more challenging. This lat-
ter concept has led to an effort to diagnose early dia-
stolic dysfunction using both echocardiography and 
CMR26 and to identify potential risk factors associated 
with this subclinical phenotype to help prevent progres-
sion to HFpEF.

Overall, coronary microvascular dysfunction, systemic 
vascular dysfunction, as well as skeletal muscle, renal, 
and adipose pathophysiology have all been thought to 
be notable pathways involved in HFpEF.25 Speckle track-
ing echocardiographic measurement of global longitudi-
nal strain and myocardial tissue characterization through 

extracellular volume fraction by CMR may also be impor-
tant sensitive tests of diastolic dysfunction and HFpEF 
risk assessment. Of note, CMR also has an important 
role in characterizing heart failure with midrange ejec-
tion fraction, which appears to share many phenotypic 
attributes, including diffuse fibrosis and hyperemic myo-
cardial blood flow, with HFpEF.27 Figure 3 shows an 
example of AI-based left ventricular function and volume 
assessment.

Nuclear Imaging
Nuclear imaging techniques such as single positron 
emission CT and positron emission tomography have 
been the backbone of cardiac imaging and risk predic-
tion for many decades, having the capability to accu-
rately depict myocardial perfusion abnormalities related 
to coronary disease and microvascular dysfunction.28,29 
Myocardial perfusion is a powerful predictor of CVD 
events. The number of cardiac single positron emis-
sion CT and positron emission tomography studies per-
formed annually in the United States still outnumbers 
the CMR and CCTA studies, being the most frequent 
and often first imaging test for noninvasive ischemia 
detection.30

MULTIMODALITY DATA FUSION
Patient information, recorded from different data sources, 
such as genetic information, imaging data, ECG signals, 
and tabular EMR data, is often processed in isolation 

Figure 1. Coronary artery calcium acquisitions and coronary computed tomography angiography (CCTA) allow a direct measure 
of atherosclerosis and plaque vulnerability features strongly associated with cardiovascular disease risk.
A, Agatston calcium and Multi-Ethnic Study of Atherosclerosis score are a powerful cardiovascular risk predictor. B, CCTA can concurrently 
identify obstructive and nonobstructive atherosclerotic lesions. CX indicates circumflex; Equiv., equivalent; LAD, left anterior descending; LM, 
left main; RCA, right coronary artery.

D
ow

nloaded from
 http://ahajournals.org by on January 9, 2024



989

van Assen et al Fusion Artificial Intelligence

Circ Cardiovasc Imaging. 2023;16:e014533. DOI: 10.1161/CIRCIMAGING.122.014533 December 2023

from each other. Current focus is on integrating multi-
ple sources in a single model, often termed as a fusion 
model, to build more comprehensive prediction models 
that outperform single-source models.

Data fusion has several advantages, such as increas-
ing the accuracy of diagnosis, ease of interpretation, and 
summarizing and sharing information. Fusion modeling 
can be used in a multitude of cardiac applications, such 
as multiomics projects including data from genomics, 
radiomics and proteomics, prediction of drug efficacy, 
and drug interactions in addition to prognostication and 
risk stratification.

Clinical Use Cases
Although fusion modeling is mostly used in a research 
setting, there are promising clinical scenarios.

Scenario 1
With increasing options for cardiovascular diagnostics 
and therapy, a more personalized approach seems to 
yield better results. Fusion modeling will allow for an 
additive approach using patients’ symptoms, demograph-
ics, and risk factors, known at first visit to the cardiolo-
gist, combined with later performed follow-up testing, 
such as ECG and CT imaging, see Figure 4. The com-
bination of these features can subsequently be used to 

predict, which course of treatment would benefit this 
specific patient the most and optimize the type of ther-
apy prescribed. With new developments in medication, 
fusion modeling could be used to select the most optimal 
type of medication to get optimal results while reducing 
unnecessary therapy and procedures. This is especially 
relevant with novel expensive drug developments. AI can 
assist in the identification of novel drug targets, design 
and select new drug molecules with favorable drug 
properties, predict drug/target interaction, and assist in 
patient selection for clinical trials or creating virtual tri-
als using existing databases.31 An example is Biotech 
InSilico Medicine using AI to create the drug INS018-
055 to help treat idiopathic pulmonary fibrosis, the first 
drug with both a novel AI-discovered target and AI-gen-
erated design currently undergoing phase 2 testing.

Scenario 2
Fusion modeling can be used to create a digital 
twin for ablation procedures, as utilized by Siemens 
Healthineers. The combination of imaging, ECG, and 
electrophysiology mapping allows for anatomic and 
electrophysiology modeling of the cardiac substrate. 
With the combination of these multisource models, a 
digital twin can be created on which a personalized vir-
tual ablation plan can be created and the most likely 
outcome can be visualized before the actual procedure 

Figure 2. Artificial intelligence (AI)-based algorithms for coronary evaluation and plaque burden quantification on coronary 
computed tomography angiography.
A, AI prototype for automated plaque detection, stenosis severity quantification, and Coronary Artery Disease-Reporting and Data System 
classification (HeartAI Siemens Healthineers). B, Plaque burden quantification and identification of high-risk plaque features (blue arrow) can 
be automated using AI approaches (Cleerly, Inc). C, shows an example of plaque component quantification (Elucid Bioimaging, Inc) and several 
imaging biomarkers of plaque vulnerability that may be used for cardiovascular disease (CVD) risk stratification, including low plaque attenuation 
(D), positive remodeling (E), and spotty calcifications (F). 
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to determine the most successful approach. During the 
procedure, the digital twin can help guide the proce-
dure, see Figure 5.

Current Literature
Fusion modeling has traditionally been performed through 
late, early, or middle fusion32 (Figure 6). Amal et al33 list 
many fusion models designed to improve care for patients 

with CVD. Recently, graph mining frameworks have also 
been developed to fuse and analyze multimodal data,34–36 
where graph convolutional neural networks can jointly pro-
cess multisource data to make predictions, see Figure 7. 
When facing missing data in certain modalities, generative 
models such as generative adversarial networks and deep 
diffusion networks have the potential to jointly enable 
cross-modality data imputation and downstream diagno-
sis/prognosis predictions. Research has also focused on 

Figure 4. The use of demographics, risk factors, symptoms, and clinical risk scores can be combined with information from 
noninvasive imaging tests, such as coronary artery calcium (CAC) and Coronary Artery Disease-Reporting and Data System 
(CAD-RADS) to create a personalized treatment plan.
This includes medication that is predicted to be more beneficial to specific patients, personalized treatment goals, and follow-up schedules. 
ASA indicates aspirin; CAC, coronary artery calcium; CHD, coronary heart disease; CTA, computed tomography angiography; DM2, diabetes 
type 2; hx, helix; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a); and RF, risk factor.

Figure 3. Cardiac magnetic resonance artificial intelligence-based algorithms for ventricular volume and function assessment 
can provide rapid and accurate analysis for cardiovascular risk prediction.
Images show automated cardiac chambers segmentation for left ventricle volumes and segmental contraction evaluation (Circle Cardiovascular 
Imaging, Inc).

D
ow

nloaded from
 http://ahajournals.org by on January 9, 2024



991

van Assen et al Fusion Artificial Intelligence

Circ Cardiovasc Imaging. 2023;16:e014533. DOI: 10.1161/CIRCIMAGING.122.014533 December 2023

combining sequential information collected over multiple 
patient interactions with the health care system at vary-
ing time intervals. Complex representation learning tech-
niques have been designed to fuse several structured data 
modalities that can be later used for CVD risk prediction.

In the field of cardiology, the term fusion modeling 
traditionally referred to AI models that combined clinical 
information such as age, comorbidities, etc with informa-
tion extracted from imaging data. Motwani et al8 inves-
tigated 25 clinical (age, sex, gender, risk factors, and 
Framingham risk score) and 44 CT parameters (seg-
ment stenosis score, segment involvement score, modi-
fied Duke index, number of segments with plaques) for 
prognosis. They showed that a fusion AI approach exhib-
ited higher areas under the curve (0.79) for predicting 
all-cause mortality compared with Framingham risk score 
(0.61) or CT-based scores alone (0.64). Betancur et al37 
fused clinical information with information extracted from 
single positron emission CT myocardial perfusion imaging 
for prediction of major adverse cardiac events, showing 
increased area under the curve for the fusion approach 

compared with imaging only (0.81 versus 0.78). Al’Aref 
et al7 combined clinical factors with CAC score estimated 
from cardiac CT scans for estimating risk of obstructive 
CAD, with areas under the curve of 0.88 for fusion ver-
sus 0.87 for imaging and 0.77 for EMR data only. These 
models, while innovative, fall short of fusing imaging data 
directly with clinical information. Chaves et al38 fused L3 
slices from CT for body composition analysis, and known 
clinical risk factors through late fusion, for opportunistic 
screening for ischemic heart disease. They observed that 
fusion modeling outperforms single-modality models in 
terms of screening performance. Fusion models are not 
limited to EMR and imaging data. Experiments have been 
performed to expand the scope of fusion to include ECG 
signals, phonocardiograms, various wearable sensors, as 
well as genetic data. Li et al39 combined visual features 
from ECG and phonocardiogram to improve the predic-
tion of CVD. Zhao et al40 combined EMR data with genetic 
features through late fusion for CVD event prediction. Ali 
et al41 proposed a smart health care monitoring system 
for prediction of CVD that fuses EMR data with wearable 

Figure 6. Traditional fusion modeling approaches; late fusion, early fusion, and middle fusion.
Late fusion methods can preserve the complete information of each data modality, but they cannot fully explore the interactions among data 
modalities. Early fusion methods, on the other hand, can potentially find complex cross-modality features but are often harder to properly 
supervise. In consequence, middle fusion methods offer a compromise; however, their designs are often ad hoc and require domain knowledge 
toward relations between the modalities.

Figure 5. By using the computed tomography and magnetic resonance imaging images for segmentation and anatomic 
modeling and using ECG and electrophysiology mapping to create a digital twin of the heart, the combination of these data 
sources can be used to identify ablation target and plan out the procedure and visualize the outcomes before the procedure to 
identify the most optimal procedure strategy.
The virtual model can be integrated into the procedure to guide the actual procedure. Figure courtesy of Siemens Healthineers. EAM indicates 
electroanatomic mapping; EP, electrophysiology; and VT, ventricular tachycardia.
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sensors like respiration rate sensor, an oxygen saturation 
sensor, a blood pressure sensor, a cholesterol level sen-
sor, a glucose level sensor, a temperature sensor, an elec-
tromyography, ECG, and electroencephalogram sensor. 
Zhang et al42 developed a screening tool to discriminate 
acute chest pain patients with cardiac cause from and 
noncardiac causes. They fused features from ECG, pho-
nocardiograms, echocardiography, Holter monitors, and 
biological markers in an early fusion setting. Huang et al43 
used the latest graph convolutional neural network-based 
model to predict CAD using vascular biomarkers derived 
from fundus photographs by fusing imaging information 
with patient characteristics.

As with all AI modeling, it is essential to choose the 
right approach for the problem. It is essential to choose 
a model with the highest accuracy and the lowest com-
plexity. Parameter selection will always be an important 
step to avoid overfitting of models.44

Limitations of Manual Data Extraction
The extraction of EMR data and imaging-based biomark-
ers can be time and labor intensive. Because of this, only 
a few studies are performed using a combination of clini-
cal and imaging data on select populations. In addition, 
the a priori selection of parameters greatly limits the 
information available and inherently introduces bias. By 
including only a select few biomarkers, the opportunity 
is missed to create a model that considers thousands 
of different parameters for detecting currently unknown 
patterns and identify novel prognostic variables. The 
use of a large number of variables also requires large 
populations in which this is investigated and validated. 
The labor intensity of creating these populations with-
out automating the process is severely limiting fusion 
modeling. Manual extraction of data also suffers from 
interpretation errors and variability between institutes, 
hospitals, and countries. Automating the process using 
AI could be used to standardize the EMR and imaging 

data extraction process, making it feasible to create large 
diverse populations with standardized biomarkers, allow-
ing large-scale evaluation of patients with CVD using 
fusion modeling.

AUTOMATED DATA EXTRACTION FOR 
FUSION INPUT
Role of Natural Language Processing for EMR 
Data Processing
As health care databases are growing exponentially in size, 
more information is hidden in the form of free-flowing text 
such as clinical notes and radiology reports. The domain 
of natural language processing (NLP) is concerned with 
both the syntactic and semantic understanding of free-
flowing text at multiple levels such as words, sentences, 
paragraphs, and documents. We refer the reader to the 
foundational book of NLP by Jurafsky45 NLP can be used 
in different ways, to extract features that can be relevant 
for the model as a predictive factor or to extract reference 
labels from radiology reports for training AI algorithms 
without needing manual annotations. In addition, NLP can 
be used to mine data on drug properties and literature to 
optimize novel drug development.

NLP Approaches for Cardiology
To provide an overview of the vast amount of literature, 
we will divide NLP models for cardiology into 2 catego-
ries: rule- and AI-based NLP algorithms.

Rule-based NLP algorithms have been generally used 
to extract information from large collections of docu-
ments, such as coronary catheterization reports, radiology 
reports, and clinical notes. Rule-based systems had been 
developed for extraction of coronary anatomy-related 
terms from clinical text, such as coronary catheterization 
reports, as early as 1998.46,47 In early 2000, rule-based 
models were developed to extract useful information, 
including diagnoses of heart failure, chest pain,48 and QT 

Figure 7. Graph neural network for fusion modeling.
Different data elements may be used as node and edge feature vectors. Edge feature vectors of 2 samples are evaluated for similarity to decide 
an edge between the nodes corresponding to these 2 samples. Graph neural network learns updated node representations based on original 
node features, as well as edge structure formed based on edge features, hence, fusing the 2 data elements.
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prolongation49 from EMR and ECG reports. Information 
extraction methods have gone beyond simple extraction 
to understanding relationships between extracted pieces 
of information from large repositories. Hamon et al50 
extracted relationships between pathologies and 22 000 
risk factors from the Medline repository of research papers 
in 2010. Sophisticated concept extraction models, such as 
The Unified Medical Language System, MedTagger, and 
cTAKES51–54 have been developed recently, which have 
been used for the extraction of clinical concepts from thou-
sands of clinical notes.55,56 However, rule-based techniques 
suffer from poor generalization capabilities, in addition to 
requiring input from domain experts to craft these rules. 
Rules defined for one data source may not be applicable to 
another data source. With no automatic method for updat-
ing or fine-tuning rule-based methods, the field of NLP 
started to shift toward statistical machine learning. Often, 
rule-based techniques were used to annotate a data set for 
training a statistical machine learning classifier resulting in 
a hybrid approach.57

AI-based NLP algorithms can be used to automatically 
label cases with a certain disease. More recently, deep-
learning–based models are being applied for information 
extraction. Pandey et al58 labeled CT reports with the pres-
ence or absence of radiological findings like aortic aneu-
rysm or cardiomegaly using a deep-learning–based model. 
Datta et al59 extracted complex relationships between 
radiological findings, their locations, and their characteris-
tics. Instead of extracting relevant information for clinicians 
to process, Sung et al60 created an AI-based NLP model 
to directly predict poor functional outcome among patients 
hospitalized after ischemic stroke using free text of CT 
reports and history of present illness from clinical notes.

AI-based NLP algorithms have been used to extract 
information from unstructured radiology reports for auto-
mated structured reporting. Tariq et al61 developed a 
1-dimensional convolutional neural network classifier to 
predict CAD-Reporting and Data System scores from 
unstructured reports of CCTA reports. Khrystyna et al62 
designed a weakly supervised system for CT report clas-
sification with disease labels covering several organs 
including liver and lungs. Hassanpour et al63 designed 
a pattern mining-based AI-based NLP module to auto-
mate the process of converting free-flowing information 
contained in reports to structured information in well-
designed databases. All these data can be subsequently 
used in fusion models to add high-level image interpreta-
tion to the prediction models.

Role of AI-Based Image Processing
The challenge of processing high-dimensional data 
such as medical images was first tackled by radiomics 
approaches, focused on extracting high-throughput 
quantitative features from medical images using statis-
tical techniques like histograms and texture and fractal 

analysis.64 Radiomics enables the quantification of image 
features like size, shape, heterogeneity, or repetitive 
patterns. Although the field of radiomics is promising, 
radiomic features are known to be subjective to interra-
ter variability and often need manual identification of the 
region of interest.65 Radiomics features have been widely 
used as input for AI models for downstream prediction 
tasks, including diagnosis.66,67

Deep learning greatly enhanced the capabilities of 
image processing by introducing learnable convolutional 
filtering, which allows models to learn spatial character-
istics from images tailored to the downstream predic-
tion tasks while keeping model complexity in check. The 
drawback of this approach is the requirement of large 
training data sets. This problem has been tackled by pre-
training models on large public data sets like ImageNet.

We will divide deep-learning-based architectures into 
3 categories: (1) segmentation models, (2) prediction 
(classification or regression) models, and (3) image gen-
eration models (Figure 8). Models of the first 2 catego-
ries have similar initial layers, that is, multiple convolution 
filtering layers, but differ in the design of their final layers 
and computation of loss for model training. Generative 
adversarial network is the most popular architecture of 
category 3. Litjens et al6 provided a detailed overview of 
the applications of image processing in the cardiovascu-
lar imaging domain.

Segmentation of anatomic regions has been a well-
known barrier for the application of image processing on 
cardiovascular scans. Examples include semiautomated 
segmentation of right ventricle from short-axis CMR,68 
endocardial contouring for left ventricular volume and 
ejection fraction estimation from 3-dimensional trans-
thoracic echocardiography,69 and lumen vessel seg-
mentation from contrast-enhanced imaging modalities 
for atherosclerotic plaque detection.70 Deep learning 
model architectures like U-Net can perform tasks like 
CAC scoring71 and left ventricle function estimation from 
CMR. Chen et al72 provided a detailed survey of the lat-
est segmentation techniques applied to CMR, CT, and 
echocardiography.

For many image processing models for cardiovas-
cular images, the goal is categorical (classification) or 
numerical (regression) output prediction. For example, 
echocardiography has been used for direct classification 
of disease rather than left ventricular volume of ejec-
tion fraction estimation.73,74 Other classification labels 
for echocardiography have included hypertrophic car-
diomyopathy, cardiac amyloidosis (amyloid), pulmonary 
hypertension, presence of pacemaker, and wall motion 
abnormalities.75 Automation of CAC from CCTA has been 
a popular target for prediction models.76 AI-based CAC 
scoring has excellent agreement with human readers in 
a fraction of the time and as a result is being used clini-
cally.77 In addition, several companies have received Food 
and Drug Administration approval for AI-based plaque 
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analysis, enabling plaque burden quantification, as well 
as the identification of different plaque compositions and 
high-risk plaque features.

Regression models may predict continuous value out-
put such as left ventricular volume.78 Model architecture 
is often similar for regression and classification, but dif-
ferent loss functions are used.

The scarcity of data with desired properties like a 
specific imaging modality (eg, CT or magnetic reso-
nance) or image quality in terms of noise or contrast 
for training of complex deep learning-based image pro-
cessing models has led to a vast amount of research in 
the generation of synthetic imaging data. The generative 
adversarial network is the most popular architecture for 
imaging data generation. Generative adversarial net-
works have been used to generate magnetic resonance 
images from available CT scans79 and to reduce noise in 
low-dose CT scans.80

LIMITATIONS AND CHALLENGES IN 
FUSION MODELING
Fusion Modeling
Although studies have shown the benefit of combining 
clinical and imaging data for risk prediction and prognos-
tication, fusion modeling is a nascent field. Each fusion 
model has its own strong and weak points, which makes 
them suitable for different types of problems and different 

types of data sets. Things that should be taken into con-
sideration are different dimensionality of input data, the 
size of the data sets and number of features extracted, 
and the amount of missing data per input entry. With the 
increased interest in fusion modeling, new fusion meth-
ods are being developed continuously. Future studies 
should explore optimization of these fusion models and 
creating pipelines for the automated extraction of data 
from both EMR and imaging biomarkers. Interoperable 
pipelines will allow larger databases for fusion imaging, 
benefitting the development of more complex and accu-
rate AI algorithms. In addition, it is important to address 
issues such as data quality and consistency, inappropri-
ate model selection, and computational burden.

Bias and Generalizability in AI
One of the major challenges with AI algorithms in medi-
cine in general is the introduction of bias, which can be 
introduced during development and deployment.81 The 
major forms of bias that are of concern include when 
the training data set does not reflect the clinical use 
population and when the reference labels are subject to 
inconsistencies. Data curation and labeling are subject 
to human bias and can introduce bias to the algorithm. 
Careful consideration should be made when considering 
data selection and reference labeling, including meth-
odological approaches to avoid overfitting or underfit-
ting and model evaluation metrics. Transparency about 

Figure 8. Broad classes of image processing models for cardiac imaging studies with the main purpose of the following: (1) 
segmentation, (2) numerical prediction, and (3) image generation.
Depending on the purpose, convolutional neural networks consist out of convolutional and fully connected layers and are the current standard 
to process imaging data.
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the chosen population and methodology is necessary to 
avoid adverse effects of nonintentional created biases.

Ethics
As AI-based approaches are introduced into the clinical 
workflow, experts will have to consider who becomes 
responsible for the modeling outputs and the conse-
quences thereof. Few autonomous AI applications in 
medicine have been introduced, most AI applications aim 
to assist clinical experts instead of fully taking over tasks. 
With AI implementation, it is essential to consider the 
ethical consequences of the use of AI and the impact it 
will have on patients and health care providers.

Clinical Implementation
There are several challenges with fusion modeling/AI 
that limited clinical implementation. In addition to the 
issues mentioned above, workflow compatibility, reim-
bursement, and legal implications all hamper the clinical 
use of these AI models. There is little information on 
the efficiency of AI models and the effects on patient 
outcomes. In addition, a challenge specific to predic-
tive and prognostic models is that they aim to improve 
patient outcomes by guiding treatment and intervention. 
This requires a specific type of performance assess-
ment and algorithm maintenance to ensure consistency 
in the performance over time. Workflow integration, 
making sure the use of AI is time-efficient while giving 
accurate predictions, which are easily interpretable by 
the user is essential. Guidelines are needed to guide 
clinical implementation and ensure adequate use of AI 
in clinical practice.

Future Developments
Fusion modeling is at the beginning stage for cardio-
vascular disease and has shown promising results for 
prognostication purposes. In the future it is expected 
that fusion modeling can play a larger role in the design 
of clinical trials, identifying patients’ specific profiles for 
drug and therapy development. The concept of a health 
digital twin, encompassing both clinical and imaging 
data, could potentially allow more accurate phenotyp-
ing of individual patients with the same condition or 
presentation, using multiple clinical, imaging, molecular, 
and other variables to guide diagnosis and treatment. 
The next steps should focus on how these techniques 
can be implemented into clinical practice and fit into 
clinical workflow. Infrastructure for the technical imple-
mentation needs to be created in addition to a legal 
structure and user guidelines. For clinical adaption to 
happen, clinical trials that show that fusion modeling 
approaches are safe, efficient, and indeed improve 
patient care are needed.

CONCLUSIONS
There is an urgent clinical need for computational mod-
els that can aggregate multiple heterogeneous streams 
of data to facilitate patient-centric care. The use of NLP- 
and AI-based image analysis can facilitate the extrac-
tion of valuable information from free text and imaging 
data. The use of multimodal data fusion approaches 
allows for the combination of both clinical EMR and 
imaging data and can be used to drug development, 
optimize risk and outcome prediction, and create per-
sonalized treatment strategies. While the combination 
of multimodal data sources is not new, these novel AI-
based approaches greatly reduce the time and labor 
intensity making it possible to clinically implement the 
use of automated personalized multimodal cardiovascu-
lar risk prediction.
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