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Abstract
Learning a distance function or metric on a given
data manifold is of great importance in machine
learning and pattern recognition. Many of the
previous works first embed the manifold to Eu-
clidean space and then learn the distance func-
tion. However, such a scheme might not faith-
fully preserve the distance function if the origi-
nal manifold is not Euclidean. In this paper, we
propose to learn the distance function directly on
the manifold without embedding. We first pro-
vide a theoretical characterization of the distance
function by its gradient field. Based on our theo-
retical analysis, we propose to first learn the gra-
dient field of the distance function and then learn
the distance function itself. Specifically, we set
the gradient field of a local distance function as
an initial vector field. Then we transport it to the
whole manifold via heat flow on vector fields. Fi-
nally, the geodesic distance function can be ob-
tained by requiring its gradient field to be close
to the normalized vector field. Experimental re-
sults on both synthetic and real data demonstrate
the effectiveness of our proposed algorithm.

1. Introduction
Learning a distance function or metric on a given data
manifold is of great importance in machine learning and
pattern recognition. The goal of distance metric learn-
ing on the manifold is to find a desired distance function
d(x, y) such that it provides a natural measure of the simi-
larity between two data points x and y on the manifold. It
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has been applied widely in many problems, such as infor-
mation retrieval (McFee & Lanckriet, 2010), classification
and clustering (Xing et al., 2002). Depending on whether
there is label information available, metric learning meth-
ods can be classified into two categories: supervised and
unsupervised. In supervised learning, one often assumes
that data points with the same label should have small dis-
tance, while data points with different labels should have
large distance (Xing et al., 2002; Weinberger et al., 2006;
Jin et al., 2009). In this paper, we consider the problem of
unsupervised distance metric learning.

Unsupervised manifold learning can be viewed as an alter-
native way of distance metric learning. It aims to find a
map F from the original high dimensional space to a lower
dimensional Euclidean space such that the mapped Eu-
clidean distance d(F (x), F (y)) preserves the original dis-
tance d(x, y). The classical Principal Component Analysis
(PCA, Jolliffe 1989) can be considered as linear manifold
learning method in which the map F is linear. The learned
Euclidean distance after linear mapping is also referred to
as Mahalanobis distance. Note that when the manifold is
nonlinear, the Mahalanobis distance may fail to faithfully
preserve the original distance.

The typical nonlinear manifold learning approaches in-
clude Isomap (Tenenbaum et al., 2000), Locally Linear
Embedding (LLE, Roweis & Saul 2000), Laplacian Eigen-
maps (LE, Belkin & Niyogi 2001), Hessian Eigenmaps
(HLLE, Donoho & Grimes 2003), Maximum Variance Un-
folding (MVU, Weinberger et al. 2004) and Diffusion Maps
(Coifman & Lafon, 2006). Both Isomap and HLLE try to
preserve the original geodesic distance on the data mani-
fold. Diffusion maps try to preserve diffusion distance on
the manifold which reflects the connectivity of data. Coif-
man and Lafon (Coifman & Lafon, 2006) also showed that
both LLE and LE belong to the diffusion map framework
which preserves the local structure of the manifold. MVU
is proposed to learn a kernel eigenmap that preserves pair-
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wise distances on the manifold. One problem of the exist-
ing manifold learning approaches is that there may not ex-
ist a distance preserving map F such that d(F (x), F (y)) =
d(x, y) holds since the geometry and topology of the orig-
inal manifold may be quite different from the Euclidean
space. For example, there does not exist a distance preserv-
ing map between a sphere S2 and a 2-dimensional plane.

In this paper, we assume the data lies approximately on a
low-dimensional manifold embedded in Euclidean space.
Our aim is to approximate the geodesic distance function
on this manifold. The geodesic distance is a fundamen-
tal intrinsic distance on the manifold and many useful dis-
tances (e.g., the diffusion distance) are variations of the
geodesic distance. There are several ways to character-
ize the geodesic distance due to its various definitions and
properties. The most intuitive and direct characterization of
the geodesic distance is by definition that it is the shortest
path distance between two points (e.g., Tenenbaum et al.
2000). However, it is well known that computing pairwise
shortest path distance is time consuming and it cannot han-
dle the case when the manifold is not geodesically con-
vex (Donoho & Grimes, 2003). A more convincing and
efficient way to characterize the geodesic distance func-
tion is using partial differential equations (PDE). Mémoli et
al. (Mémoli & Sapiro, 2001) proposes an iterated algorithm
for solving the Hamilton-Jacobi equation ‖∇r‖ = 1 (Man-
tegazza & Mennucci, 2003), where ∇r represents the gra-
dient field of the distance function. However, the fast
marching part requires a grid of the same dimension as the
ambient space which is impractical when the ambient di-
mension is very high.

Note that the tangent space dimension is equal to the mani-
fold dimension (Lee, 2003) which is usually much smaller
than the ambient dimension. One possible way to reduce
the complexity of representing the gradient field ∇r is to
use the local tangent space coordinates rather than the am-
bient space coordinates. Inspired by recent work on vec-
tor fields (Singer & Wu 2012, Lin et al. 2011, Lin et al.
2013) and heat flow on scalar fields (Crane et al. 2013),
we propose to learn the geodesic distance function via the
characterization of its gradient field and heat flow on vector
fields. Specifically, we study the geodesic distance function
d(p, x) for a given base point p. Our theoretical analysis
shows that if a function rp(x) is a local distance function
around p, and its gradient field ∇rp has unit norm or ∇rp
is parallel along geodesics passing through p, then rp(x)
is the unique geodesic distance function d(p, x). Based on
our theoretical analysis, we propose a novel algorithm to
first learn the gradient field of the distance function and
then learn the distance function itself. Specifically, we set
the gradient field of a local distance function around a given
point as an initial vector field. Then we transport the ini-
tial local vector field to the whole manifold via heat flow

on vector fields. By asymptotic analysis of the heat ker-
nel, we show that the learned vector field is approximately
parallel to the gradient field of the distance function at each
point. Thus, the geodesic distance function can be obtained
by requiring its gradient field to be close to the normal-
ized vector field. The corresponding optimization problem
involves sparse linear systems which can be solved effi-
ciently. Moreover, the sparse linear systems can be eas-
ily extended to matrix form to learn the complete distance
function d(·, ·). Both synthetic and real data experiments
demonstrate the effectiveness of our proposed algorithm.

2. Characterization of Distance Functions
using Gradient Fields

Let (M, g) be a d-dimensional Riemannian manifold,
where g is a Riemannian metric tensor on M. The goal
of distance metric learning on the manifold is to find a de-
sired distance function d(x, y) such that it provides a nat-
ural measure for the similarity between two data points x
and y on the manifold. In this paper, we study a funda-
mental intrinsic distance function1 - the geodesic distance
function. Similar to many geometry textbooks (e.g., Jost
2008; Petersen 1998), we call it the distance function. In
the following, we will briefly introduce the most relevant
concepts.

We first show how to assign a metric structure on the man-
ifold. For each point p on the manifold, a Riemannian met-
ric tensor g at p is an inner product gp on each of the tangent
space TpM ofM. We define the norm of a tangent vector
v ∈ TpM as ‖v‖ =

√
gp(v, v). Let [a, b] be a closed in-

terval in R, and γ : [a, b] → M be a smooth curve. The
length of γ can then be defined as l(γ) :=

∫ b
a
‖dγdt (t)‖dt.

The distance between two points p, q on the manifold M
can be defined as:

d(p, q) := inf{l(γ) : γ : [a, b]→M piecewise smooth,

γ(a) = p and γ(b) = q}.

We call d(·, ·) the distance function and it satisfies the usual
axioms of a metric, i.e., positivity, symmetry and trian-
gle inequality (Jost, 2008). We study the distance function
d(p, ·) when p is given.

Definition 2.1 (Distance function based at a point). LetM
be a Riemannian manifold, and let p be a point on the man-
ifoldM. A distance function onM based at p is defined
as rp(x) = d(p, x). For simplicity, we might write r(·)
instead of rp(·).

Definition 2.2 (Geodesic, Petersen 1998). Let γ : [a, b]→
M, t 7→ γ(t) be a smooth curve. γ is called a geodesic

1A distance function d(·, ·) defined by its Riemannian metric
g is often called an intrinsic distance function.
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(a) rp (b) ∇rp (c) Geodesics

Figure 1. (a) shows the distance function rp(x) on the sphere,
where the base point p is marked in black. Different colors in-
dicate different distance values. (b) shows the gradient field∇rp.
(c) shows the geodesics passing through p which are denoted by
the green lines.

if γ′(t) is parallel along γ, i.e., ∇γ′(t)γ
′(t) = 0 for all

t ∈ [a, b].

Here ∇ is the covariant derivative on the manifold which
measures the change of vector fields. A geodesic can be
viewed as a curved straight line on the curved manifold.
The geodesics and the distance function is related as fol-
lows:

Theorem 2.1 (Petersen 1998). If γ is a local minimum for
inf l(γ) with fixed end points, then γ is a geodesic.

In the following, we characterize the distance function
rp(x) by using its gradient field ∇r. A vector field X on
the manifold is called a gradient field if there exists a func-
tion f on the manifold such thatX = ∇f holds. Therefore,
gradient fields are one kind of vector fields. Interestingly,
we can precisely characterize the distance function based
at a point by its gradient field. For simplicity, let ∂r denote
the gradient field∇r. Then we have the following result.

Theorem 2.2. Let M be a complete manifold. A contin-
uous function r : M → R is a distance function on M
based at p if and only if (a) r(x) = ‖ exp−1p (x)‖ holds for
a neighborhood of p; (b)∇∂r∂r = 0 holds on the manifold
M except for p ∪ Cut(p).

Here expp is the exponential map at p and Cut(p) is the
cut locus of p. Condition (a) states that locally r(x) is
a Euclidean distance function in the exponential coordi-
nates. Combining condition (b) which states that the in-
tegral curves of ∂r are all geodesics, we assert that r is a
global distance function. As can be seen from Fig. 1(c),
the gradient field of the distance function is parallel along
the geodesics passing through p. It might be worth not-
ing that condition (a) cannot be replaced by a weaker con-
dition r(p) = 0 which is often used in PDE. A simple
counter-example would be the function rp(x) = x defined
on M = R with p = 0. rp(x) satisfies rp(0) = 0 and
∇∂r∂r = 0 holds for all x. However, it is not a distance
function since it does not satisfy the positivity condition.

The second order condition ∇∂r∂r = 0 can be replaced by

(a) Initial V 0 (b) Heat flow V

(c) Normalized V̂ (d) Distance function f

Figure 2. Algorithm overview. The base point is on the top of the
manifold. (a) shows the initial vector field V 0. (b) shows the
vector field V after transporting V 0 to the whole manifold using
heat flow on vector fields. (c) shows the normalized vector field V̂
of V . (d) shows the final distance function learned via requiring
its gradient field to be close to V̂ , where the red color indicates
small distance function values and the blue color indicates large
distance function values.

a first order condition ‖∂r‖ = 1.

Theorem 2.3. Let M be a complete manifold. A contin-
uous function r : M → R is a distance function on M
based at p if and only if (a) r(x) = ‖ exp−1p (x)‖ holds for
a neighborhood of p; (b) ‖∂r‖ = 1 holds on the manifold
M except for p ∪ Cut(p).

A detailed proof of Theorems 2.2 and 2.3 can be found in
the long version of this paper (Lin et al., 2014). We visu-
alize the relationship among the distance function, the gra-
dient field of the distance function and geodesics in Fig. 1.
It can be seen from the figure that: (1) the gradient field
of the distance function is parallel along geodesics passing
through p; (2) the gradient field of the distance function has
unit norm almost everywhere except for p and its cut locus
which is the antipodal point of p.

3. Geodesic Distance Function Learning
We show in the last section that the distance function can
be characterized by its gradient field. Based on our theo-
retical analysis, we propose to first learn the gradient field
of the distance function and then learn the distance func-
tion itself. We introduce our Geodesic Distance Learning
(GDL) algorithm in Section 3.1 and provide the theoreti-
cal justification of the algorithm in Section 5. The practical
implementation is given in Section 3.2.
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3.1. Geodesic Distance Learning

Let (M, g) be a d-dimensional Riemannian manifold em-
bedded in a much higher dimensional Euclidean space Rm,
where g is a Riemannian metric tensor on M. Given a
point p on the manifold, we aim to learn the distance func-
tion fp(x) = d(p, x). Let Uε := {x : d(p, x) ≤ ε} ⊂ M
be a geodesic ball around p and let f0 denote a local dis-
tance function on U . That is, f0(x) = d(p, x) if p ∈ U and
0 otherwise. Let V 0 denote the gradient field of f0, i.e.,
V 0 = ∇f0. Now we are ready to summarize our Geodesic
Distance Learning (GDL) algorithm as follows:

• Learn a vector field V by transporting V 0 to the whole
manifold using heat flow:

min
V

E(V ) :=

∫
M
‖V −V 0‖2dx+t

∫
M
‖∇V ‖2HSdx,

(1)
where ‖·‖HS denotes the Hilbert-Schmidt tensor norm
(Defant & Floret, 1993) and t > 0 is a parameter.

• Learn a normalized vector field V̂ via normalizing V
at each point x: set V̂x = Vx/‖Vx‖ when x 6= p and
set V̂x = 0 when x = p. Here Vx denotes the tangent
vector at x of V .

• Learn the distance function f via solving the follow-
ing equation:

min
f

Φ(f) :=

∫
M
‖∇f−V̂ ‖2dx, s.t.f(p) = 0. (2)

The above algorithmic steps are illustrated in Fig. 2.

The theoretical justification of the above algorithm is given
in the appendix. Our analysis indicates that solving Eq. (1)
is equivalent to transporting the initial vector field to the
whole manifold via heat flow on vector fields. By asymp-
totic analysis of the heat kernel, the learned vector field is
approximately parallel to the gradient field of the distance
function at each point. Thus, the gradient field of the dis-
tance function can be obtained via normalization. Finally,
the geodesic distance function can be obtained by requir-
ing its gradient field to be close to the normalized vector
field. Our analysis also indicate the factors of controlling
the quality of the approximation. It mainly relies on two
factors: the distance to the base point and the cut locus of
the base point. If the data point is not in the cut locus of the
base point, the smaller the distance between the data point
and the base point is, the better the approximation would
be. If the data point is in the cut locus, the approxima-
tion might fail since the vector field around the cut locus
varies dramatically. Note that the measure of the cut locus
is zero (Lin et al., 2014), thus the approximation would fail
only in a zero measure set.

3.2. Implementation

Given n data points xi, i = 1, . . . , n, on the d-dimensional
manifold M where M is embedded in the high dimen-
sional Euclidean space Rm. Let xq denote the base point.
We aim to learn the distance function f :M→ R based at
xq , i.e., f(xi) = d(xq, xi), i = 1, . . . , n.

We first construct an undirected nearest neighbour graph by
either ε-neighbourhood or k nearest neighbours. It might
be worth noting for a k-nn graph that the degree of a ver-
tex will typically be larger than k since k nearest neigh-
bour relationships are not symmetrical. Let xi ∼ xj denote
that xi and xj are neighbors. Let wij denote the weight
which can be approximated by the heat kernel weight or
the simple 0-1 weight. For each point xi, we estimate its
tangent space TxiM by performing PCA on its neighbor-
hood. Before performing PCA, we mean-shift the neigh-
bor vectors using their true mean. Let Ti ∈ Rm×d denote
the matrix whose columns are constituted by the d princi-
pal components. Let V be a vector field on the manifold.
For each point xi, let Vxi denote the tangent vector at xi.
Recall from the definition of the tangent vector that each
tangent vector Vxi should be in the corresponding tangent
space TxiM, we can represent Vxi as Vxi = Tivi, where
vi ∈ Rd. We will abuse the notation f to denote the vector
f = (f(x1), . . . , f(xn))T ∈ Rn and use V to denote the
vector V =

(
v1
T , . . . , vn

T
)T ∈ Rdn. We propose to first

learn V and then learn f .

Set an initial vector field V 0 as follows:

v0j =


TTj (xj − xq)

‖TjTTj (xj − xq)‖
, if j ∼ q

0, otherwise

(3)

Note that the vector TTj (xj − xq)/‖TjTTj (xj − xq)‖ is a
unit vector at xj pointing outward from the base point xq
(please see Fig. 2(a)). Following (Lin et al., 2011), the dis-
crete form of our objective functions can be given as fol-
lows:

E(V ) = V TV − 2V 0TV + V 0TV 0 + tV TBV,

Φ(f) = 2fTLf + V̂ TGV̂ − 2V̂ TCf,
(4)

where L is the graph Laplacian matrix (Chung, 1997), B
is a dn × dn block matrix, G is a dn × dn block diagonal
matrix and C is a dn × n block matrix. Let Bij (i 6= j)
denote the ij-th d × d block, Gii denote the i-th d × d
diagonal block of G, and Ci denote the i-th d × n block
of C. We have: Bii =

∑
j∼i wij(QijQ

T
ij + I), Bij =

−2wijQij ,Gii =
∑
j∼i wijT

T
i (xj−xi)(xj−xi)TTi, and

Ci =
∑
j∼i wijT

T
i (xj − xi)sTij , where Qij = TTi Tj and

sij ∈ Rn is a selection vector of all zero elements except
for the i-th element being −1 and the j-th element being
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Algorithm 1 GDL (Geodesic Distance Learning)
Require: Data sample X = (x1, . . . , xn) ∈ Rm×n and a

base point xq , 1 ≤ q ≤ n.
Ensure: f = (f1, . . . , fn) ∈ Rn

for i = 1 to n do
Compute the tangent space coordinates Ti ∈ Rm×d
by using PCA

end for

Set an initial vector field V 0 via Eq. (3) and construct
sparse block matrices B and C
Solve (I + tB)V = V 0 to obtain V
Normalize each vector in V to obtain V̂
Solve 2Lf = CT V̂ to obtain f
return f

1. The matrix Qij transports from the tangent space TxjM
to TxiM which approximates the parallel transport (Lin
et al., 2014) from xj to xi. It might be worth noting that one
can also approximate the parallel transport by solving a sin-
gular value decomposition problem (Singer & Wu, 2012).
The block matrix B provides a discrete approximation of
the connection Laplacian operator, which is a symmetric
and positive semi-definite matrix.

Now we give our algorithm in the discrete setting. By tak-
ing derivatives of E(V ) with respect to V , V can be ob-
tained via the following sparse linear system:

(I + tB)V = V 0. (5)

Then we learn a normalized vector field V̂ via normalizing
V at each point: v̂i = vi/‖vi‖ if i 6= q and v̂i = 0 if i =
q. The final distance function can be obtained via taking
derivatives of Φ(f) with respect to f :

2Lf = CT V̂ , (6)

where we restrict fq = 0 when solving Eq. (6). A direct
way is to plug the constraint fq = 0 into Eq. (6). It is
equivalent to removing the q-th column of L and the q-th
element of f on the left hand side of Eq. (6). For each
point xq , we have corresponding vectors V , V 0,V̂ andf .
If xq varies, we can write V , V 0, V̂ and f in matrix form
where each column is a vector field or a distance function.
Then the complete distance function d(·, ·) can be obtained
via solving the corresponding matrix form linear systems
of Eq. (5) and Eq. (6). We summarize our algorithm in
Algorithm 1.

3.3. Computation Complexity Analysis

The computational complexity of our proposed Geodesic
Distance Learning (GDL) algorithm is dominated by three
parts: searching for k-nearest neighbors, computing local

tangent spaces, computing Qij and solving the sparse lin-
ear system Eq. (5). For the k nearest neighbor search,
the complexity is O((m + k)n2), where O(mn2) is the
complexity of computing the distance between any two
data points, and O(kn2) is the complexity of finding the
k nearest neighbors for all the data points. The com-
plexity for local PCA is O(mk2). Therefore, the com-
plexity for computing the local tangent space for all the
data points is O(mnk2). Note that the matrix B is not a
dense matrix but a very sparse block matrix with at most
kn non-zero d × d blocks. Therefore the computation
complexity of computing all Qij’s is O(knmd2). We use
LSQR package2 to solve Eq. (5). It has a complexity of
O(Iknd2), where I is the number of iterations. In sum-
mary, the overall computational cost for one base point is
O((m + k)n2 + mndk + kmnd2 + Iknd2). For p base
points, the extra cost is to solve Eq. (5) by adding p − 1
columns which has a complexity of O(pIknd2). Empiri-
cally, the manifold dimension d and the number of near-
est neighbors k are usually much smaller than the ambi-
ent dimension m and the number of data points n. So
the total computational cost for p base points could be
O(mn2 + pIn). There are several ways to further reduce
the computational complexity. One way is to select anchor
points and construct the graph using these anchor points.
Another possible way is to learn the distance functions of
nearby points simultaneously.

3.4. Related Work and Discussion

Our approach is based on the idea of vector field reg-
ularization which is similar to Vector Diffusion Maps
(VDM, Singer & Wu 2012). Both methods employ vec-
tor fields to discover the geometry of the manifold. How-
ever, VDM and our approach differ in several key aspects:
Firstly, they solve different problems. VDM tries to pre-
serve the vector diffusion distance by dimensionality re-
duction while we try to learn the geodesic distance func-
tion directly on the manifold. It is worth noting that the
vector diffusion distance is a variation of the geodesic dis-
tance. Secondly, they use different approximation meth-
ods. VDM approximates the parallel transport by learning
an orthogonal transformation and we simply use projection
adopted from (Lin et al., 2011). GDL can also be regarded
as a generalization of the heat method (Crane et al., 2013)
on scalar fields. Both methods employ heat flow to obtain
the gradient field of distance function. The algorithm pro-
posed in (Crane et al., 2013) first learns a scalar field by
heat flow on scalar fields and then learns the desired vector
field by evaluating the gradient field of the obtained scalar
field. Our method tries to learn the desired vector field di-
rectly by heat flow on vector fields. Note that the scalar

2http://www.stanford.edu/group/SOL/
software/lsqr.html

http://www.stanford.edu/group/SOL/software/lsqr.html
http://www.stanford.edu/group/SOL/software/lsqr.html
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(a) Ground truth (b) GDL (0.02) (c) PFRank (0.20) (d) MR (0.38)

(e) Vector field by GDL (f) HLLE (0.07) (g) LE (0.11) (h) MVU (0.05)

Figure 3. The base point is marked in black. (a) shows the ground truth geodesic distance function. (e) shows the vector field of the
distance function learned by GDL. (b)-(d) and (f)-(h) visualize the distance functions learned by different algorithms. Different colors
indicates different distance values. The number in the brackets measures the difference between the learned distance function and the
ground truth.

field is zero order and the vector field is first order. It is ex-
pected that the first order approximation of the vector field
might be more effective for high dimensional data.

There are several interesting future directions suggested in
this work. One is to generalize the theory and algorithm in
this paper to the multi-manifold case. The main challenge
is how to transport an initial vector field from one mani-
fold to other manifolds. One feasible idea is to transport
the vector from one manifold to another using the parallel
transport in the ambient space since each tangent vector on
the manifold is also a vector in the ambient space. Another
direction is to estimate the true underlying manifold struc-
ture of the data despite the noise, e.g., the manifold dimen-
sion. We employ the tangent space structure to model the
manifold and each tangent space is estimated by perform-
ing PCA. Note that the dimension of the manifold equals
to the dimension of the tangent space. Therefore, if we can
combine the work of PCA with noisy data and our frame-
work, it might provide new methods and perspectives to the
manifold dimension estimation problem. The third direc-
tion is to develop the machine learning theory and design
efficient algorithms using heat flow on vector fields as well
as other general partial differential equations.

4. Experiments
In this section, we empirically evaluate the effectiveness
of our proposed Geodesic Distance Learning (GDL) al-
gorithm in comparison with three representative distance
metric learning algorithms: Laplacian Eigenmaps (LE,
Belkin & Niyogi 2001), Maximum Variance Unfolding

(MVU, Weinberger et al. 2004) and Hessian Eigenmaps
(HLLE, Donoho & Grimes 2003) as well as two state-of-
art ranking algorithms: Manifold Ranking (MR, Zhou et al.
2003) and Parallel Field Rank (PFRank, Ji et al. 2012). As
LE, MVU and HLLE cannot directly obtain the distance
function, we compute the embedding first and then com-
pute the Euclidean distance between data points in the em-
bedded Euclidean space.

We empirically set t = 1 for GDL in all experiments as
GDL performs very stable when t varies. The dimension of
the manifold d is set to 2 in the synthetic example. For real
data, we perform cross-validation to choose d. Specifically,
d = 9 for the CMU PIE data set and d = 2 for the Corel
data set. We use the same nearest neighbor graph for all six
algorithms. The number of nearest neighbors is set to 16
on both synthetic and real data sets and the weight is the
simple 0− 1 weight.

4.1. Geodesic Distance Learning

A simple synthetic example is given in Fig. 3. We randomly
sample 2000 data points from a torus. It is a 2-dimensional
manifold in the 3-dimensional Euclidean space. The base
point is marked by the black dot on the right side of the
torus. Fig. 3(a) shows the ground truth geodesic distance
function which is computed by the shortest path distance.
Fig. 3(b)-(d) and (f)-(h) visualize the distance functions
learned by different algorithms respectively. To better eval-
uate the results, we compute the error by using the equa-
tion 1

n

∑n
i=1 |f(xi) − d(xq, xi)|, where f(xi) represents

the learned distance and {d(xq, xi)} represents the ground
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Figure 4. Precision-scope curves.

truth distance. To remove the effect of scale, {f(xi)} and
{d(xq, xi)} are rescaled to the range [0, 1]. As can be seen
from Fig. 3, GDL better preserves the distance metric on
the torus. Although MVU is comparable to GDL in this
example, GDL is approximately thirty times faster than
MVU. It might be worth noting that both MR and PFRank
achieve poor performance since they are deigned to pre-
serve the ranking order but not the distance.

4.2. Image Retrieval

In this section, we apply our GDL algorithm to the image
retrieval problem in real world image databases. Two real
world data sets are used in our experiments. The first one is
from the CMU PIE face database (Sim et al., 2003), which
contains 32 × 32 cropped face images of 68 persons. We
choose the frontal pose (C27) with varying lighting condi-
tions, which leaves us 42 images per person. The second
data set contains 5,000 images of 50 semantic categories,
from the Corel database. Each image is extracted to be
a 297-dimensional feature vector. Both of the two image
data sets we use have category labels. For each data set, we
randomly choose 10 images from each category as queries,
and average the retrieval performance over all the queries.

We use precision, recall, and Mean Average Precision
(MAP, Manning et al. 2008) to evaluate the retrieval results
of different algorithms. Precision is defined as the number
of relevant presented images divided by the number of pre-
sented images. Recall is defined as the number of relevant
presented images divided by the total number of relevant
images in our database. Given a query, let ri be the rele-
vance score of the image ranked at position i, where ri = 1
if the image is relevant to the query and ri = 0 otherwise.
Then we can compute the Average Precision (AP):

AP =

∑
i ri × Precision@i

# of relevant images
. (7)

MAP is the average of AP over all the queries.

Fig. 4(a) and Fig. 4(b) show the average precision-scope
curves of various methods on the two data sets, respec-
tively. The scope means the number of top-ranked images
returned to the user. The precision-scope curves describe

Table 1. Recall and MAP on the PIE data set.

Recall @10 @20 @50 MAP
GDL 0.457 0.618 0.783 0.698

PFRank 0.443 0.585 0.713 0.596
MR 0.323 0.524 0.698 0.507
LE 0.301 0.452 0.643 0.479

HLLE 0.162 0.234 0.357 0.245
MVU 0.228 0.333 0.565 0.338

Table 2. Recall and MAP on the Corel data set.

Recall @10 @20 @50 MAP
GDL 0.134 0.195 0.330 0.340

PFRank 0.124 0.173 0.268 0.266
MR 0.098 0.148 0.250 0.263
LE 0.092 0.127 0.233 0.268

HLLE 0.099 0.134 0.213 0.220
MVU 0.099 0.137 0.239 0.272

the precision with various scopes, and therefore provide an
overall performance evaluation of the algorithms. As can
be seen from Fig. 4(a) and Fig. 4(b), our proposed GDL
algorithm outperforms all the other algorithms. We also
present the recall and MAP scores of different algorithms
on the two data sets in Table 1 and Table 2, respectively.
MAP provides a single figure measure of quality across all
the recall levels. Our GDL achieves the highest MAP, indi-
cating reliable performance over the entire ranking list. We
also performed comprehensive t-test with 99% confidence
level. The improvements of GDL compared to PFRank and
other algorithms are significant with most of the p-values
less than 10−3, including those in Fig. 4(a), Fig. 4(b), Ta-
ble 1 and Table 2. These results indicate that learning the
distance function directly on the manifold might be better
than learning the distance function after embedding. For
real applications, the data is probably on a general mani-
fold but not a flat manifold. If we first embed it in the Eu-
clidean space, the distance function of the manifold cannot
be faithfully preserved as the topology and the geometry
will be broken. However, the distance function of a general
manifold is still well defined.

5. Conclusion
In this paper, we study the geodesic distance from the vec-
tor field perspective. We provide theoretical analysis to pre-
cisely characterize the geodesic distance function and pro-
pose a novel heat flow on vector fields approach to learn it.
Our experimental results on synthetic and real data demon-
strate the effectiveness of the proposed method.
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Appendix. Justification
We first show that solving Eq. (1) is equivalent to solv-
ing the heat equation on vector fields. According to
the Bochner technique (Petersen, 1998), with appropri-
ate boundary conditions we have

∫
M ‖∇V ‖

2
HSdx =∫

M g(V,∇∗∇V )dx, where ∇∗∇ is the connection Lapla-
cian operator. Define the inner product (·, ·) on the space
of vector fields as (X,Y ) =

∫
M g(X,Y )dx. Then we can

rewriteE(V ) asE(V ) = (V −V 0, V −V 0)+t(V,∇∗∇V ).
The necessary condition of E(V ) to have an extremum at
V is that the functional derivative δE(V )/δV = 0 (Abra-
ham et al., 1988). Using the calculus rules of the func-
tional derivative and the fact ∇∗∇ is a self-adjoint oper-
ator, we have δE(V )/δV = 2V − 2V 0 + 2t∇∗∇V . A
detailed derivation can be found in the long version of this
paper(Lin et al., 2014). Since ∇∗∇ is also a positive semi-
definite operator, the optimal V is then given by:

V = (I + t∇∗∇)−1V 0, (8)

where I is the identity operator on vector fields. Let X(t)
be a vector field valued function. That is, for each t,X(t) is
a vector field on the manifold. Given an initial vector field
X(t)|t=0 = X0, the heat equation on vector fields (Berline
et al., 2004) is given by ∂X(t)

∂t + ∇∗∇X(t) = 0. When
t is small, we can discrete it as follows: X(t)−X0

t +
∇∗∇X(t) = 0. Then X(t) can be solved as

X(t) = (I + t∇∗∇)−1X0. (9)

If we set X0 = V 0, then Eq. (9) is exactly the same as
Eq. (8). Therefore when t is small, solving Eq (1) is essen-
tially solving the heat equation on vector fields.

Next we analyze the asymptotic behavior of X(t) and
show that the heat equation transfers the initial vector
field primarily along geodesics. Let x, y ∈ M, then
X(t) can be obtained via the heat kernel as X(t)(x) =∫
M k(t, x, y)X0(y)dy, where k(t, x, y) is the heat ker-

nel for the connection Laplacian. It is well known for
small t, we have the asymptotic expansion of the heat ker-
nel (Berline et al., 2004):

k(t, x, y) ≈ (
1

4πt
)
d
2 e−d(x,y)

2/4tτ(x, y), (10)

where d(·, ·) is the distance function, τ : TyM→ TxM is
the parallel transport along the geodesic connecting x and
y.

Figure 5. Illustration of the heat flow on vector fields.

Now we consider X0 = V 0. By construction
X0(y) = 0 if y /∈ Uε. Then the vector X(t)(x) =∫
Uε
e−d(x,y)

2/4tτ(x, y)X0(y)dy up to a scale. To analyze
what X(t)(x) is, we first map the manifoldM to the tan-
gent space TpM by using exp−1p . Then Uε becomes a
ball in TpM; please see Fig. 5. In the following we will
still use x and Uε to represent exp−1p (x) and exp−1p (Uε)
for simplicity of notation. Given any point x ∈ TpM,
we can decompose the ball Uε as Uε = ∪ε′,sUε′,s where
Uε′,s := {y|d(p, y) = ε′, d(x, y) = s}, ε′ ≤ ε and
0 ≤ s ≤ ∞. Then each section Uε′,s is a sphere cen-
tered at some point lying on the line segment connecting
p and x. Therefore Uε′,s is symmetric with respect to the
vector x − p. For any y ∈ Uε′,s, there is a unique reflec-
tion point ȳ such that τ(x, y)X0(y) + τ(x, ȳ)X0(ȳ) is par-
allel to τ(x, y′)X0(y′) where y′ = arg miny∈Uε d(x, y).
Note that the weight e−d(x,y)

2/4t is the same on the section
Uε′,s. We conclude that

∫
Uε′,s

e−d(x,y)
2/4tτ(x, y)X0(y)dy

is parallel to τ(x, y′)X0(y′). Since
∫
Uε

=
∫
ε′

∫
s

∫
Uε′,s

,

X0(x) ≈
∫
Uε
e−d(x,y)

2/4tτ(x, y)X0(y)dy is parallel to
τ(x, y′)X0(y′). In other words, the vector field flows pri-
marily along geodesics. Therefore given an initial distance
vector field around the base point, solving the heat equa-
tion will get a vector field which is approximately parallel
to the gradient field of the distance function at each point.
We can further normalize the vector field at each point to
obtain the gradient field of the distance function. From this
heat equation point of view, it also provides guidance of
the algorithm setting. Specifically, we should set the initial
vector field uniformly around the base point and set a small
t.



Geodesic Distance Function Learning via Heat Flow on Vector Fields

References
Abraham, R., Marsden, J. E., and Ratiu, T. Manifolds, tensor

analysis, and applications, volume 75 of Applied Mathemat-
ical Sciences. Springer-Verlag, New York, second edition,
1988.

Belkin, M. and Niyogi, P. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In Advances in Neural
Information Processing Systems 14, pp. 585–591. 2001.

Berline, N., Getzler, E., and Vergne, M. Heat kernels and Dirac
operators. Springer-Verlag, 2004.

Chung, Fan R. K. Spectral Graph Theory, volume 92 of Regional
Conference Series in Mathematics. AMS, 1997.

Coifman, Ronald R. and Lafon, Stphane. Diffusion maps. Applied
and Computational Harmonic Analysis, 21(1):5 – 30, 2006.
Diffusion Maps and Wavelets.

Crane, Keenan, Weischedel, Clarisse, and Wardetzky, Max.
Geodesics in heat: A new approach to computing distance
based on heat flow. ACM Trans. Graph., 32(5):152:1–152:11,
2013.

Defant, A. and Floret, K. Tensor Norms and Operator Ideals.
North-Holland Mathematics Studies, North-Holland, Amster-
dam, 1993.

Donoho, D. L. and Grimes, C. E. Hessian eigenmaps: Locally
linear embedding techniques for high-dimensional data. Pro-
ceedings of the National Academy of Sciences of the United
States of America, 100(10):5591–5596, 2003.

Ji, Ming, Lin, Binbin, He, Xiaofei, Cai, Deng, and Han, Ji-
awei. Parallel field ranking. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discov-
ery and data mining, KDD ’12, pp. 723–731, 2012.

Jin, Rong, Wang, Shijun, and Zhou, Yang. Regularized distance
metric learning:theory and algorithm. In Advances in Neural
Information Processing Systems 22, pp. 862–870. 2009.

Jolliffe, I. T. Principal Component Analysis. Springer-Verlag,
New York, 1989.

Jost, Jürgen. Riemannian Geometry and Geometric Analysis (5.
ed.). Springer, 2008. ISBN 978-3-540-77340-5.

Lee, J. M. Introduction to Smooth Manifolds. Springer Verlag,
New York, 2nd edition, 2003.

Lin, Binbin, Zhang, Chiyuan, and He, Xiaofei. Semi-supervised
regression via parallel field regularization. In Advances in Neu-
ral Information Processing Systems 24, pp. 433–441. 2011.

Lin, Binbin, He, Xiaofei, Zhang, Chiyuan, and Ji, Ming. Paral-
lel vector field embedding. Journal of Machine Learning Re-
search, 14:2945–2977, 2013.

Lin, Binbin, Yang, Ji, He, Xiaofei, and Ye, Jieping. Geodesic dis-
tance function learning via heat flows on vector fields. CoRR,
abs/1405.0133, 2014.

Manning, Christopher D., Raghavan, Prabhakar, and Schtze, Hin-
rich. Introduction to Information Retrieval. Cambridge Uni-
versity Press, 2008.

Mantegazza, Carlo and Mennucci, Andrea Carlo. Hamilton-
jacobi equations and distance functions on riemannian man-
ifolds. Applied Mathematics and Optimization, 47(1):1–26,
2003.

McFee, Brian and Lanckriet, Gert. Metric learning to rank. In
Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pp. 775–782, 2010.

Mémoli, Facundo and Sapiro, Guillermo. Fast computation of
weighted distance functions and geodesics on implicit hyper-
surfaces. Journal of Computational Physics, 173(2):730 – 764,
2001.

Petersen, P. Riemannian Geometry. Springer, New York, 1998.

Roweis, S. and Saul, L. Nonlinear dimensionality reduction by lo-
cally linear embedding. Science, 290(5500):2323–2326, 2000.

Sim, T., Baker, S., and Bsat, M. The CMU pose, illuminlation,
and expression database. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 25(12):1615–1618, 2003.

Singer, A. and Wu, H.-T. Vector diffusion maps and the connec-
tion Laplacian. Communications on Pure and Applied Mathe-
matics, 65(8):1067–1144, 2012.

Tenenbaum, J., de Silva, V., and Langford, J. A global geometric
framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

Weinberger, Kilian, Blitzer, John, and Saul, Lawrence. Distance
metric learning for large margin nearest neighbor classification.
In Advances in Neural Information Processing Systems 18, pp.
1473–1480. 2006.

Weinberger, Kilian Q., Sha, Fei, and Saul, Lawrence K. Learning
a kernel matrix for nonlinear dimensionality reduction. In Pro-
ceedings of the twenty-first international conference on Ma-
chine learning (ICML-04), ICML ’04, pp. 839–846, 2004.

Xing, Eric P., Ng, Andrew Y., Jordan, Michael I., and Russell,
Stuart J. Distance metric learning with application to cluster-
ing with side-information. In Advances in Neural Information
Processing Systems 15, pp. 505–512, 2002.

Zhou, Dengyong, Weston, Jason, Gretton, Arthur, Bousquet,
Olivier, and Schölkopf, Bernhard. Ranking on data manifolds.
In Advances in Neural Information Processing Systems 16, pp.
169–176. 2003.


