
Graph Federated Learning with Hidden Representation Sharing
Shuang Wu

∗

UCLA

Los Angeles, CA, USA

shuangwu222@ucla.edu

Mingxuan Zhang
†

Purdue University

West Lafayette, IN, USA

zhan3692@purdue.edu

Yuantong Li

UCLA

Los Angeles, CA, USA

yuantongli@ucla.edu

Carl Yang

Emory University

Atlanta, GA, USA

j.carlyang@emory.edu

Pan Li

Purdue University

West Lafayette, IN, USA

panli@purdue.edu

ABSTRACT
Learning on Graphs (LoG) is widely used in multi-client systems

when each client has insufficient local data, and multiple clients

have to share their raw data to learn a model of good quality. One

scenario is to recommend items to clients with limited historical

data and sharing similar preferences with other clients in a social

network. On the other hand, due to the increasing demands for

the protection of clients’ data privacy, Federated Learning (FL) has

been widely adopted: FL requires models to be trained in a multi-

client system and restricts sharing of raw data among clients. The

underlying potential data-sharing conflict between LoG and FL is

under-explored and how to benefit from both sides is a promising

problem. In this work, we first formulate the Graph Federated

Learning (GFL) problem that unifies LoG and FL in multi-client

systems and then propose sharing hidden representation instead

of the raw data of neighbors to protect data privacy as a solution.

To overcome the biased gradient problem in GFL, we provide a

gradient estimation method and its convergence analysis under the

non-convex objective. In experiments, we evaluate our method in

classification tasks on graphs. Our experiment shows a good match

between our theory and the practice.

ACM Reference Format:
Shuang Wu, Mingxuan Zhang, Yuantong Li, Carl Yang, and Pan Li. 2022.

Graph Federated Learning with Hidden Representation Sharing. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation email (ACM CIKM Workshop’2022). ACM, Atlanta, GA, USA,

10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Learning on Graphs (LoG) in multi-client systems has extensive

applications such as Graph Neural Networks (GNNs) for recom-

mendation [6, 7, 35, 36], finance [24, 34], and traffic [3, 39]. The key

to the success of LoG is sharing local raw data between clients. For

example, when recommending items to users with insufficient local

data, data sharing from their friends with similar preferences in a

social network can improve the performance of recommendation

∗
Contributed equally to this research. Corresponding author.

†
Contributed equally to this research.

ACM CIKM Workshop’2022, October, 2022, Atlanta, GA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

models. On the other hand, Federated Learning (FL) is widely ex-

plored due to its protection of data privacy, especially in medical

fields [38], mobile device fields [10, 23], and Internet of Things (IoT)

fields [25]. In FL, models are trained without data sharing among

clients to protect clients’ local data privacy. As a consequence, com-

bining FL and LoG in multi-client systems faces a fundamental

conflict in data sharing.

Aswe know, considerable works are combing Federated Learning

and Graph Machine Learning. One attractive research line is using

FL to train GNNs [33, 43]. In addition, [27, 36] use FL to train GNN-

based models to address specific real-world applications. [11, 42]

summarises current efforts on FL over graphs, including the above

literature. However, most current works did not utilize the network

of clients in the system and failed to protect the privacy of the nodes

in the network. In other words, previous literature never models FL

clients as nodes in GNNs on multi-client systems. Besides, all these

works are application-oriented without a theoretical guarantee.

Therefore, fundamental data sharing conflict remains unsolved.

Such significant conflict motivates our investigation of the con-

struction of Graph Federated Learning (GFL) inmulti-client systems:

Can we formulate a GFL framework to address the data shar-
ing conflict, paired with theoretical and empirical supports?
We aim to deliver a generic framework of GFL. Our work focuses

on the centralized federated learning setting while data collected

by clients are Non-IID distributed.

Contributions. We formulate the GFL problem for a graph-

based model in multi-client systems. To address the data sharing

conflict, we propose an FL solution with the hidden representa-

tion sharing technique, which only requires the sharing of hidden

representations rather than the raw data from the neighbors to

protect data privacy on multi-client systems. A technical challenge

arises since the hidden representations are only exchanged dur-

ing communication between clients and the central server, making

unbiased gradient estimation becomes impractical. As a remedy,

we provide a practical gradient estimation method. Moreover, a

convergence analysis with non-convex objectives of the proposed

algorithm is provided. To the best of our knowledge, this is the

first theoretical analysis for FL with a graph-based model. We pro-

pose GFL-APPNP and empirically evaluate the proposed method

for several classification tasks on graphs, including deterministic

node classification, stochastic node classification, and supervised

classification. Our experiments show that the proposed method

converges and achieves competitive performance. Additionally, the

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA Wu, Zhang et al.

results provide a good match between our theory and practice. The

contributions in this paper are summarized as follows:

• Formulate the GFL problem to model FL clients as nodes in

LoG on multi-client systems.

• Propose FL solution with hidden representation sharing for

GFL problem to resolve data sharing conflict.

• Provide theoretical non-convex convergence analysis for

GFL.

• Propose GFL-APPNP and empirically show the proposed al-

gorithm is valid and has competitive performance on classi-

fication tasks.

2 RELATEDWORKS
Federated Learning for GNNs.How to utilize the FL technique to

train GNNs is an interesting topic that attracts lots of attention from

researchers. For instance, [33] focuses on graph semi-supervised

learning viameta-learning and handles testing nodes with new label

domains as well as leverages unlabeled data. [43] proposes federated

learning to train GNNs by dividing a large graph into subgraphs.

[37] considers an FL solution to train GNNs for the entire graph

classification. [12] proposes decentralized periodic SGD to solve the

serverless Federated Multi-Task Learning for GNNs. [27] Proposes a

GNN-based federated learning architecture for spatio-temporal data

modeling. [36] puts forward a decentralized federated framework

for privacy-preserving GNN-based recommendations. However,

[11, 33, 37, 43] assume each client has its own graphs and [27, 36]

use federated learning to train GNN-based model. None of these

works is federated learning to train GNNs on multi-client systems

with the protection of node-level privacy, which is addressed by

our work.

Personalized Federated Learning. The conventional FL ap-

proach faces a fundamental challenge of poor performance on

highly heterogeneous clients. Previous works [21, 22] provided

solutions to tackling Non-IID data across clients. Recently, inspired

by personalization, research on personalized federated learning

has developed rapidly [5, 26, 31]. Particularly, personalization with

graph structure to tackle heterogeneity in FL is highly related to our

work. For example, [29] proposes MOCHA which uses a graph-type

regularization to control the parameters and perform a prime-dual

framework, and [9] provides a similar regularizer to the multitask

learning. [31] considers an implicit model where personalized pa-

rameters come from a Moreau envelope and this idea recently has

got generalized to graph Laplacian regularization [4]. [19, 20] as-

sumes that there is a common parameter shared across the network

when each node of the graph is viewed as a federated learning client

that generates independent data. All these works are model-level

personalization based on graphs such as graph regularization while

LoG encourages data-level sharing.

Notations. Let [𝑛] be the set {1, 2, ..., 𝑛}. Vectors are assumed to

be column vectors. 1 is a vector with all ones. 𝑰 is the identity matrix

with appropriate dimension. ∥·∥ is assumed to be the 2-norm. For a

matrix 𝑨, 𝜆𝑚𝑎𝑥 (𝑨) is the maximum eigenvalue of 𝑨 and 𝑨† is the
Moore–Penrose inverse of 𝑨. O(·) is the big-O notation.

3 GRAPH FEDERATED LEARNING
3.1 Preliminaries
Federated Learning. In typical FL, multiple clients collectively

solve a global task. Our work focuses on the centralized setting

with a central server, and we consider the following consensus

optimization problem:

min

𝑾
𝐹 (𝑾) :=

1

𝑁

𝑁∑︁
𝑘=1

𝐹𝑘 (𝑾) (1)

where 𝑁 is the number of clients and𝑾 is the model parameter.

𝐹 (𝑾) is the global loss function and 𝐹𝑘 (𝑾) is the local loss func-
tion. For client 𝑘 , it has access only to its local data and conducts

local update𝑾𝑡+1
𝑘
←𝑾𝑡

𝑘
− 𝜂𝒈𝑡

𝑘
where 𝒈𝑡

𝑘
:= ∇𝐹𝑘 (𝑾𝑡

𝑘
) is the sto-

chastic gradient estimator of ∇𝐹𝑘 (𝑾𝑡
𝑘
) and 𝜂 is the learning rate.

Throughout our work, ∇ is gradient w.r.t model parameter𝑾 . De-

note 𝐼 as the number of local updates between two communication

rounds. During the FL process, after 𝐼 steps of local update, the

central server aggregates the latest models from clients according

to FedAvg [17]: �̄�𝑡
= 1

𝑁

∑𝑁
𝑘=1

𝑾𝑡
𝑘
.

Statistical Heterogeneity. The goal of FL is to minimize the

global loss on the average data distribution across clients, as shown

in Eq.(1). However, in most substantial applications of FL, clients

collect data in a Non-IID distributed manner, leading to a funda-

mental statistical heterogeneity/shift problem in FL [14, 21]. [5, 18]

have suggested quantification of statistical heterogeneity. In this

paper, we use the term "level of statistical heterogeneity" to describe

how large the statistical shift is across clients.

3.2 GFL Problem Formulation
The topological structure which describes the Non-IID relationship

among clients’ distributions is an undirected graph denoted as

G = (V, E) whereV is a set of𝑁 clients and E is a set of edges. The
adjacency matrix of G is denoted as 𝑨 ∈ {0, 1}𝑁×𝑁 . Throughout

this paper, nodes in graph G are referred to as clients. Furthermore,

denote 𝚵G = (𝑿 , 𝒀) ∈ 𝑹𝑁×(𝑑+𝑐)
as the data matrix where 𝑿 ∈

R𝑁×𝑑 is the feature matrix with the number of features 𝑑 and 𝒀 ∈
R𝑁×𝑐 is the label matrix with the dimension of label 𝑐 . To formulate

the GFL problem generally, consider 𝚵G as a random matrix from

a distribution DG which depends on G, that is, 𝚵G ∼ DG . More

specifically, we define the 𝑘-th row vector of 𝚵G as 𝝃𝑘 := (𝒙𝑘 ,𝒚𝑘)
where 𝒙𝑘 is the feature vector and 𝒚𝑘 is a vector of labels in client

𝑘 . Thus 𝚵G is the random data matrix whose rows are correlated

and the relationship between 𝝃𝑘 is described by graph G. Here
we assume that graph structure G is deterministic. With these

notations, the GFL problem is defined as:

min

𝑾

1

𝑁

𝑁∑︁
𝑘=1

𝐹𝑘 (𝑾),where 𝐹𝑘 (𝑾) := E[𝑓𝑘 (𝑾 ;𝚵G)], (2)

and 𝑓𝑘 (𝑾 ;𝚵G) is the local loss after observing data matrix 𝚵G ,
indicating the local objective function of client 𝑘 depends not only

on the data collected by the 𝑘-th client but also the data from other

clients. This is the key difference between GFL and conventional

FL. As our discussion in §1, this crucial difference induces the

data-sharing conflict. Therefore, we propose the following hidden

Graph Federated Learning with Hidden Representation Sharing ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA

Figure 1: (a) four steps in each communication round: (i) Uploading models. (ii) Broadcasting aggregated model. (iii) Uploading
hidden representations. (iv) Broadcasting hidden representations. (b) global encoder Ψℎ is shared since the same task is shared
among clients. This is why FedAvg can be utilized in this multi-clients system. The personalized aggregator ΨG accounts for the
statistical heterogeneity across clients.

representation sharing method to address the challenge of data-

sharing conflict in the GFL problem.

3.3 Hidden Representation Sharing
Our proposal is using hidden representation. The hidden represen-

tations are allowed to be shared across clients in network G, and
a neighborhood aggregator is applied to these hidden representa-

tions of all nodes. For client 𝑘 , define its hidden representation 𝒉𝑘
as follow

𝒉𝑘 = Ψℎ (𝒙𝑘 ;𝑾ℎ) (3)

where Ψℎ (·;𝑾ℎ) is a hidden encoder such as the multi-layer percep-

tron (MLP) parametrized by𝑾ℎ . The hidden representation matrix

is denoted as 𝑯 ∈ R𝑁×𝑑ℎ where the 𝑘-th row vector of 𝑯 is 𝒉𝑘 and

𝑑ℎ is the dimension of the hidden representations. Graph represen-

tations are defined by neighborhood representation aggregation of

𝑯 :

𝒁 = ΨG (𝑯 ;𝑾 G) (4)

where ΨG (·;𝑾 G) is a neighborhood aggregator parametrized by

𝑾 G . 𝒁 ∈ R𝑁×𝑑𝑧 is the graph representation matrix whose 𝑘-

th row vector is denoted as 𝒛𝑘 and 𝑑𝑧 is the dimension of the

graph representations. In most classification tasks, 𝑑𝑧 = 𝑐 . Model

parameter 𝑾 = (𝑾ℎ,𝑾 G)⊤ is the concatenate of 𝑾ℎ and 𝑾 G .
With these privacy-preserving representations, loss function for

the corresponding graph federated optimization can be express as,

𝑓𝑘 (𝑾 ;𝚵G) := ℓ (𝒚𝑘 , 𝒛𝑘) where ℓ is the pre-specified loss function

such as cross entropy for classification task.

Remark 1. The explication in Figure 1 shows that the hidden
encoder is a global model which facilitates the involvement of FL,
while the neighborhood aggregator is the personalized model which
accounts for statistical heterogeneity. Intuitively, Ψℎ contributes to
privacy protection and representation extraction. Meanwhile, ΨG
serves as modeling the heterogeneity using graph G. Note that if
we set ΨG as the identity mapping (ignore the graph information),
our solution reduces to the conventional FL solution to learn a global
model Ψℎ . In addition, when G does not fully capture the relationship

across clients,𝑾 G serves as weights for adjusting the neighborhood
aggregation level using G.

3.4 Gradient Estimation
In practice, to solve the GFL problem by gradient-based methods,

the unbiased stochastic gradient ∇𝑓𝑘 (𝑾 ;𝚵G) of client 𝑘 depends

on data from all nodes in the network G (E[𝑓𝑘 (𝑾 ;𝚵G)] = 𝐹𝑘 (𝑾)).
However, since FL restricts the data-sharing, ∇𝑓𝑘 (𝑾 ;𝚵G) is inac-
cessible. Another estimation of ∇𝐹𝑘 (𝑾) for local updates must be

raised. In the proposed hidden representation sharing method, lo-

cal information is exchanged as a function of {𝒉 𝑗 ,∇𝒉 𝑗 }𝑁𝑗=1
during

the interactions between clients and the central server. In other

words, if the client 𝑘 can access {𝒉 𝑗 ,∇𝒉 𝑗 }𝑁𝑗=1
, the unbiased esti-

mator ∇𝑓𝑘 (𝑾 ;𝚵G) is accessible. Formally, with the shared hidden

representations, ∇𝑓𝑘 (𝑾 ;𝚵G) can be expressed as a function of hid-

den representations: ∇𝑓𝑘 (𝑾 ;𝚵G) = 𝜙𝑘 (𝒉1, ...,𝒉𝑁). Note that ∇𝒉 𝑗
is also a function of 𝒉 𝑗 and we consider the case that estimating

∇𝒉 𝑗 is completely based on an estimator of 𝒉 𝑗 . Furthermore, define

ˆ𝒉 𝑗→𝑘 as the estimation of the hidden representation 𝒉 𝑗 for client 𝑘 .
Then the biased estimator of ∇𝐹𝑘 (𝑾) is,

∇ ˆ𝑓𝑘 (𝑾 ; 𝝃𝑘) = 𝜙𝑘 (ˆ𝒉1→𝑘 , ...,
ˆ𝒉𝑁→𝑘), ∀𝑘 ∈ [𝑁] . (5)

The strategy to design estimator
ˆ𝒉 𝑗→𝑘 depends on the concrete

scenario. In §5, we provide gradient compensation strategy with

theoretical analysis in Appendix A.1 and the empirical results of this

biased estimation strategy is provided in §6. In practice, the estima-

tor of ∇𝐹𝑘 (𝑾) is the batch mean of biased stochastic gradients. For-

mally, suppose B𝑘 := {𝝃𝑘,𝑠 }
| B𝑘 |
𝑠=1

is the mini-batch with batch size

|B𝑘 | for some local update in client 𝑘 . ∇ ˆ𝑓𝑘 (𝑾 ; 𝝃𝑘,𝑠) is the estimated

gradient which depends on the example 𝝃𝑘,𝑠 . Batch mean of biased

stochastic gradients is defined as∇𝐹𝑘 (𝑾) := 1

| B𝑘 |
∑
𝑠∈B𝑘 ∇ ˆ𝑓𝑘 (𝑾 ; 𝝃𝑘,𝑠).

Privacy in GFL. FL and GFL require the protection of node-

level privacy: client can not share their own collected data with

both other clients and the central server directly. However, directly

sharing {𝒉 𝑗 ,∇𝒉 𝑗 }𝑁𝑗=1
raises the concern about raw data recovery

ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA Wu, Zhang et al.

by untrustworthy clients or the central server. Our proposed so-

lution does not violate node-level privacy even though we allow

sharing hidden representations and the corresponding gradients

during the communication between clients and the central server.

By using the personalized neighborhood aggregator, clients will

not receive {𝒉 𝑗 ,∇𝒉 𝑗 }𝑁𝑗=1
directly, making the raw data recovery

infeasible. In addition, the concern about the unreliable server can

be addressed by better design of the central server or adding noise

to the gradients.

3.5 Graph Federated Learning Procedure
A framework of communications in GFLwith hidden representation

sharing is described in Figure 1. An concrete example is Algorithm

1 introduced in § 5.2. Steps at each communication round are:

(1) UploadingModels: Clients parallelly upload the latest mod-

els to the central server.

(2) Centralizing Models: Central server aggregates models by

FedAvg and broadcasts the aggregated result.

(3) Uploading Hidden Representations: Clients compute es-

timated hidden representation and their gradient using the

received aggregated model in step (2) and then parallelly

upload them to the central server.

(4) Broadcasting Hidden Representations: Central server
allocates estimated hidden representation and their gradients

and broadcasts the aggregated ones to clients.

(5) Local Updates: Clients parallelly perform local updates for

𝐼 times.

4 THEORETICAL ANALYSIS
4.1 Assumptions

Assumption 1. (Smoothness) Local loss function 𝐹𝑘 is differen-
tiable and assumed to be smooth with constant 𝜌 𝑓 , ∀𝑘 ∈ [𝑁]. For-
mally, ∀𝑾 ,𝑾 ′, ∃𝜌 𝑓 > 0 such that∇𝐹𝑘 (𝑾) − ∇𝐹𝑘 (𝑾 ′) ≤ 𝜌 𝑓

𝑾 −𝑾 ′. (6)

Assumption 2. (Bound for Hidden Representation Estimation)
Hidden Representation 𝒉 𝑗 of client 𝑗 is estimated by ˆ𝒉 𝑗→𝑘 for local
updates at client 𝑘 . The mean squared error of estimation is bounded
in the following sense: ∀𝑗, 𝑘 ∈ [𝑁], ∃𝜎2

𝑗
> 0 and 𝜎2

𝐻
:=

∑𝑁
𝑗=1

𝜎2

𝑗
such

that,

E[
ˆ𝒉 𝑗→𝑘 − 𝒉 𝑗

2

] ≤ 𝜎2

𝑗 . (7)

Assumption 3. (Graph Smoothing on Gradients) Graph G =

(V, E) is connected graph and ∃𝜅2 > 0 such that ∀𝑾 ,∑︁
(𝑖, 𝑗) ∈E

∇𝐹𝑖 (𝑾) − ∇𝐹 𝑗 (𝑾)2 ≤ 𝜅2 .
(8)

Assumption 4. (Bounds for Stochastic Gradient)
(i) (Bounded Variance) Variance of unbiased stochastic gradient∇𝑓𝑘 (𝑾 ;𝚵G)
is bounded. Formally, ∃𝜎2

G > 0 such that ∀𝑾 ,

𝑁∑︁
𝑘=1

E[
∇𝑓𝑘 (𝑾 ;𝚵G) − ∇𝐹𝑘 (𝑾)

2] ≤ 𝜎2

G . (9)

(ii) (Smoothness) Denote ∇𝑓𝑘 (𝑾 ;𝚵G) = 𝜙𝑘 (𝒉1, ...,𝒉𝑁). Assume for
any 𝑘 ∈ [𝑁], 𝜙𝑘 satisfies that ∀𝒉𝑖 ,𝒉′𝑖 and 𝑖 ∈ [𝑁], ∃𝜌𝜙 > 0 such

that,

𝜙𝑘 (𝒉1, ...,𝒉𝑁) − 𝜙𝑘 (𝒉′1, ...,𝒉
′
𝑁)

 ≤ 𝜌𝜙
(𝑁∑︁
𝑖=1

𝒉𝑖 − 𝒉′𝑖)1/2 . (10)

Interpretation of Assumptions. (i) Assumption 1 is commonly

assumed in the literature on nonconvex optimization and FL. (ii)

Assumption 2 is the goodness of hidden representations estimation.

𝜎2

𝑗
represents the estimation error of

ˆ𝒉 𝑗→𝑘 and 𝜎2

𝐻
quantifies the

total estimation error. (iii) 𝜅2
in Assumption 3 quantifies this sta-

tistical heterogeneity among clients by considering the network

structure which captures the relationship among clients’ distribu-

tions. A previous work [5] shows that there is a connection between

data distribution shift among clients and the gradient shift among

clients. (iv) Assumption 4 ensures ∇𝑓𝑘 (𝑾 ;𝚵G) satisfies two prop-

erties. First, it has a bounded variance (𝜎2

G) which is commonly

presumed in previous works. The second one is a sense of smooth-

ness of∇𝑓𝑘 (𝑾 ;𝚵G) in terms of a function of hidden representations

with smoothness quantified by 𝜌𝜙 .

4.2 Convergence Analysis
Theorem 4.1. Consider GFL optimization problem (2) under As-

sumptions 1, 2, 3 and 4. Use the federated learning procedure described
in § 3. Suppose 𝜂 and 𝐼 satisfies 𝐼𝜂2 < 1/13𝜌2

𝑓
, then for all 𝑇 ≥ 1, we

have

1

𝑇

𝑇−1∑︁
𝑡=0

E[
∇𝐹 (�̄�𝑡)

2

] ≤O(1

𝜂𝑇
) + O(

𝐼2𝜂2𝜎2

G
𝑁
)

+O(𝐼2𝜂2𝜎2

𝐻) + O(
𝐼2𝜂2𝜅2𝜆max (𝑩𝑁 𝑳†)

𝑁
)
(11)

Where 𝑩𝑁 := 1

𝑁
𝑰 − 1

𝑁 2
11⊤ and 𝑳 is the Laplacian matrix of G.

Corollary 4.2. Under the setting of Theorem 4.1. Suppose learning

rate is chosen as 𝜂 =

√
𝑁√
𝑇

and removing smoothness constants 𝜌 𝑓 and
𝜌𝜙 , we have

1

𝑇

𝑇−1∑︁
𝑡=0

E[
∇𝐹 (�̄�𝑡)

2

] = O(1

√
𝑁𝑇
) + O(𝑁𝐼2

𝑇
) + O(𝜆max (𝑩𝑁 𝑳†)𝐼2

𝑇
)

(12)

Remark 2. According to our Theorem 4.1 and Corollary 4.2, when
𝜎2

𝐻
= 0, that is, ignoring the node-level privacy issue and access to

the unbiased stochastic gradient, our convergence result matches the
rate of the previous works [13, 30, 41] with the gradient deviation
among clients is described by a graph structure. For the effect from
graph structure, since 𝜆max (𝑩𝑁 𝑳†) is an indication of the connectivity
of graph G with normalized by averaged aggregation 𝑩𝑁 (large
𝜆max (𝑩𝑁 𝑳†) means a bad connectivity and high level of statistical
heterogeneity), we can expect that a graph with good connectivity
ensures a better performances as shown in Figure 2. This observation
matches our intuition that smaller level of statistical heterogeneity in
FL secures a better performance. Moreover, our Corollary 4.2 keep the
linear speed up (w.r.t number of clients) when 𝐼 = 1 [40].

Graph Federated Learning with Hidden Representation Sharing ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA

Figure 2: (a) the markers represent accuracy for graphs with different connectivity measured by 𝜆max (𝑩𝑁 𝑳†) discussed in
Remark 2. (b) box plot of average accuracy on 20 synthetic graphs over our methods and baseline models. More details are in
Appendix A.2.

Algorithm 1 GFL-APPNP for Classification

Require: Initialize {𝑾0

𝑘
}𝑁
𝑘=1

, 𝜂, 𝑇 , 𝐼 . Compute �̃�.
for 𝑡 = 0, ...,𝑇 − 1 do

if 𝑡 mod 𝐼 = 0 then
On Client 𝑘 ∈ [𝑁] Parallelly:

Uploads latest model𝑾𝑡
𝑘
.

On Central Server:
Broadcast �̄�𝑡

= 1

𝑁

∑𝑁
𝑘=1

𝑾𝑡
𝑘
to all clients.

On Client 𝑗 ∈ [𝑁] Parallelly:

Compute
ˆ𝒉 𝑗 =

1

𝑛 𝑗

∑𝑛 𝑗

𝑠=1
MLP(𝒙 𝑗,𝑠 ; �̄�𝑡)

Set𝑾𝑡
𝑗
= �̄�𝑡

.

Upload
ˆ𝒉 𝑗 and ∇ ˆ𝒉 𝑗 .

On Central Server:
Compute 𝑪𝑘 =

∑
𝑗≠𝑘 �̃�𝑘 𝑗

ˆ𝒉 𝑗 , ∀𝑘 ∈ [𝑁].
Compute ∇𝑪𝑘 =

∑
𝑗≠𝑘 �̃�𝑘 𝑗∇ ˆ𝒉 𝑗 , ∀𝑘 ∈ [𝑁].

Broadcast 𝑪 𝑗 and ∇𝑪 𝑗 to client 𝑗 for all 𝑗 ∈ [𝑁].
end if
On Client 𝑘 ∈ [𝑁] Parallelly:

Compute 𝒉𝑘,𝑠 = MLP(𝒙𝑘,𝑠 ;𝑾𝑡
𝑘
), ∀𝑠 ∈ B𝑘 .

Compute �̂�𝑘,𝑠 = Softmax(�̃�𝑘𝑘𝒉𝑘,𝑠 + 𝑪𝑘), ∀𝑠 ∈ B𝑘
Compute 𝒈𝑡

𝑘,𝑠
= (𝒚𝑘 − �̂�𝑘,𝑠) (�̃�𝑘𝑘∇𝒉𝑘,𝑠 + ∇𝑪𝑘), ∀𝑠 ∈ B𝑘 .

Compute 𝒈𝑡
𝑘
= 1

| B𝑘 |
∑
𝑠∈B𝑘 𝒈

𝑡
𝑘,𝑠

.

Compute𝑾𝑡+1
𝑘
←𝑾𝑡

𝑘
− 𝜂𝒈𝑡

𝑘
.

end for

5 GFL-APPNP FOR CLASSIFICATION
5.1 GFL for Classification Tasks on Graphs
Deterministic Node Classification (DNC). Graph-based semi-

supervised node classification is the most popular classification task

on graphs. In this paper, we call it deterministic node classification

since 𝝃𝑘 for each node is deterministic with one feature vector

and one label. The GFL problem can formulate this task in § 3 by
assuming 𝝃𝑘 is from a degenerated distribution.

Stochastic Node Classification (SNC). An extended version

of the deterministic node classification is the setting where local

distribution at each node is not degenerated, namely stochastic node

classification. This task is a semi-supervised node classification that

classifies the nodes by learning from local distributions. Similarly,

this task can be formulated by the GFL problem in § 3 by assuming

the randomness of 𝚵G is only from 𝑿 . An important real-world

application for this task is the user demographic label prediction in

social networks.

Supervised Classification (SC). Consider the supervised learn-
ing task on clients, which is another classification task on graphs

assuming the label of client also follows a distribution. We call it

supervised classification. The objective of this task is to classify

the feature vectors in all clients. This task assumes the randomness

of 𝚵G is from both 𝑿 and 𝒀 , resulting in that each client might

have examples with different labels. One practical application is the

patient classification in hospitals with insufficient medical records.

More details about classification tasks are provided in Appendix

A.2. Moreover, our GFL setting introduced in § 3 is not only for

standard supervised learning but also can be easily extended to

semi-supervised client classification like DNC and SNC.

5.2 GFL-APPNP Algorithm
Approximate Personalized Propagation of Neural Predictions (APPNP)
[16] is one of the state-of-the-art GNN models. With the notations

and context in Section 3, APPNP has the hidden encoder Ψℎ and

neighborhood aggregator ΨG defined as follow,

𝒉𝑘 = Ψℎ (𝒙𝑘 ;𝑾) = MLP(𝒙𝑘 ;𝑾), (13a)

𝒁 =

𝑀∑︁
𝑖=0

(1 − 𝛼𝐼 {𝑖 ≠ 𝑀})𝛼𝑖 (�̂�−1/2
�̂��̂�
−1/2)𝑖𝑯 = �̃�𝑯 , (13b)

where 𝛼 is teleport probability [16] and 𝑀 is the total steps for

personalized propagation. �̂� is the adjacency matrix with self loop

and �̂� is the degree matrix with self loop. �̃� is defined as �̃� :=∑𝑀
𝑖=0
(1 − 𝛼𝐼 {𝑖 ≠ 𝑀})𝛼𝑖 (�̂�−1/2

�̂��̂�
−1/2)𝑖 . It can be interpreted as

ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA Wu, Zhang et al.

Table 1: Results on the deterministic node classification task. This table provides the results of the average test accuracy and the corresponding 95% confidence
interval. "SG" represents synthetic graphs, SAGE represents GraphSAGE,.

GFL-APPNP𝐼=10 GFL-APPNP𝐼=20 GFL-APPNP𝐼=50 APPNP GCN GAT SAGE

SG 93.4(0.99) 93.3(0.94) 93.0(0.96) 93.2(0.92) 95.2(0.54) 93.3(1.03) 70.2(4.21)
SubCora 54.1(3.72) 54.3(3.73) 54.0(3.73) 54.2(3.69) 51.9(3.78) 47.9(3.01) 47.0(3.73)

the "adjacency matrix" after𝑀 steps random walk which shows the

reachability between two nodes in the structure after propagations.

Loss function ℓ in APPNP is the cross entropy loss. In APPNP, 𝑾ℎ

discussed in Eq.(3) refers to𝑾 since the neightborhood aggregator

in APPNP is not parametrized. Note that original APPNP is proposed

to solve the deterministic node classification task. Denote predicted

one-hot vectors as �̂� = Softmax(𝒁) where Softmax(·) is a row-

wise softmax function. The gradients can be expressed explicitly as

follow,

∇𝑓𝑘 (𝑾 ;𝚵G) = (𝒚𝑘 − �̂�𝑘)
𝑁∑︁
𝑖=1

�̃�𝑘𝑖∇𝒉𝑖 , (14)

where 𝒚𝑘 is the one-hot vector for the true label of client 𝑘 and

�̂�𝑘 is the predicted probability vector for the label of client 𝑘 . �̃�𝑘𝑖

is the element in matrix �̃�. Note that the hidden representation

sharing contributes to two parts in the gradient for local loss 𝑓𝑘 :

one is �̂�𝑘 and the other one is {∇𝒉𝑖 }𝑖≠𝑘 . A good property of using

personalized propagation as the neighborhood aggregator is the

linearity, which means

�̂�𝑘 = Softmax(�̃�𝑘𝑘𝒉𝑘 + 𝑪𝑘), (15a)

∇𝑓𝑘 (𝑾 ;𝚵G) = (𝒚𝑘 − �̂�𝑘) (�̃�𝑘𝑘∇𝒉𝑘 + ∇𝑪𝑘), (15b)

where 𝑪𝑘 :=
∑
𝑖≠𝑘 �̃�𝑘𝑖𝒉𝑖 and∇𝑪𝑘 :=

∑
𝑖≠𝑘 �̃�𝑘𝑖∇𝒉𝑖 . Clearly, 𝑪𝑘 and

its gradient ∇𝑪𝑘 are aggregated information for client 𝑘 . Therefore,

in practice, the central server only needs to broadcast 𝑪𝑘 and its

gradient to client 𝑘 in the communication round, which provides

a private communication since the hidden representations are not

shared directly.

We propose GFL-APPNP algorithm for GFL problem on classifica-

tion tasks, using hidden representation sharing. In addition, we use

the latest aggregated model to compute hidden representations at

each communication round as our gradient compensation strategy.

As a concrete example, consider client 𝑗 has 𝑛 𝑗 local feature vectors

{𝒙 𝑗,𝑠 }
𝑛 𝑗

𝑠=1
, suppose 𝑡0 < 𝑡 is the largest multiple of 𝐼 ,

ˆ𝒉
𝑡
𝑗→𝑘 =

{
Ψℎ (𝒙𝑘 ;𝑾𝑡

ℎ,𝑘
) 𝑗 = 𝑘

1

𝑛 𝑗

∑𝑛 𝑗

𝑠=1
Ψℎ (𝒙 𝑗,𝑠 ; �̄�𝑡0

ℎ
) 𝑗 ≠ 𝑘

, (16)

where
ˆ𝒉
𝑡
𝑗→𝑘 is the estimation for 𝒉 𝑗→𝑘 at time 𝑡 . Our compensa-

tion strategy satisfies the guarantee discussed in Assumption 2

with additional assumptions. See Appendix A.1 for detailed dis-

cussion for gradient compensation. Summary of GFL-APPNP is de-
scribed in Algorithm 1. Our proposed GFL-APPNP is a FL version

for APPNP, which fulfills the FL for a GNN model. It is noteworthy

that GFL-APPNP with 𝐼 = 1 is equivalent to the FL for the vanilla

APPNP for deterministic node classification tasks.

6 EXPERIMENTS
6.1 Deterministic Node Classification
We compare the proposed GFL-APPNP to baseline models includ-

ing GCN, GAT, and GraphSAGE under the DNC setting described in

§5.1. For synthetic data, we use contextual Stochastic Block Models

(cSBMs) [2] to generate synthetic graphs with approximately two

equal-size classes. For real-world data, we use subgraphs of Cora

[28], namely subCora, due to the limitation of computational re-

sources. The details of the generation of synthetic graphs by cSBMs

and the generation of subCora graphs are provided in Appendix

A.2.1. For the proposed GFL-APPNP, we use a two-layer MLP with

64 hidden units. 𝛼 is chosen to be 0.1 and the total number of steps

for personalized propagation 𝑀 is set as 10, following the same

configuration as it in the [1] for the APPNP model. 𝐼 is set to be

{1, 10, 20, 50}. SGD is applied as our optimizer with the optimized

learning rate. Baseline models including GCN, GAT, and GraphSAGE
follow the same design of the well-optimized hyperparameters

from [8, 15, 32]. The details for all models are provided in Appendix

A.2.2. Table 1 and the first two columns of Figure 3 show that our

method of different 𝐼 can match the performance of the vanilla

APPNP on both synthetic graphs and subCora graphs. Our method

rivals baseline models based on Table 1.

6.2 Stochastic Node Classification
We also conduct experiments under the SNC setting described in

§5.1 to test the robustness of GFL-APPNP. As we know, current

graph machine learning models are not designed for the SNC task.

Therefore our experiment will focus on the proposed GFL-APPNP.
The original cSBMs can not be used to generate data for this task

since they are not designed to generate graphs whose nodes have

multiple features. We modify the original cSBMs to generate distri-

butions for each client. Details about the modifications for the SNC

task are available in Appendix A.2.1. Similar to §6.1, we use the
same hyperparameters and the same numbers of updates. The third

column of Figure 3 and additional Table 2 provided in Appendix

A.2 show that our method is valid for solving the SNC task.

6.3 Supervised Classification
We compare GFL-APPNP, MLPs, and FedMLP under the SC setting

described in §5.1. Similar to the SNC task, we modify the original

cSBMs to generate distributions for each client. Details about the

modifications for the SC task are given in Appendix A.2.1 as well.

Both baseline models MLPs and FedMLP share the same model struc-

ture, a two-layer MLP model with 64 hidden units. Similar to §6.1,
for the proposed GFL-APPNP, we use the same hyperparameters and

the same numbers of updates. More details and results are provided

in Appendix A.2. The last column of Figure 3 and Table 2 provided

in Appendix A.2 shows that our method is valid for solving the SC

Graph Federated Learning with Hidden Representation Sharing ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA

Figure 3: Train and validation loss for DNC (first column), subCora (second column), SNC (third column), and SC (fourth
column). For different lines, the numbers of points are different given the same number of updates (if 𝑇 = 3000 and 𝐼 = 10,
3000/10 = 300 points are in the line). The shaded area represents 95% CIs. See Appendix A.2 for more variants.

task and it demonstrates the necessity of graph in GFL problem as

shown in Figure 2.

7 CONCLUSION
In this paper, we formulate Graph Federated Learning on multi-

client systems. To tackle the fundamental data sharing conflict

between LoG and FL, we propose an FL solution with hidden repre-

sentation sharing. In theory, we provide a non-convex convergence

analysis. Empirically, by experimenting with several classification

tasks on graphs, we validate the proposed method on both real-

world and synthetic data. Our experimental results show that the

proposed method provides an FL solution for GNNs and works for

different practical tasks on graphs with a competitive performance

that matches our theory.

REFERENCES
[1] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2020. Adaptive universal

generalized pagerank graph neural network. arXiv preprint arXiv:2006.07988
(2020).

[2] Yash Deshpande, Andrea Montanari, Elchanan Mossel, and Subhabrata Sen. 2018.

Contextual stochastic block models. arXiv preprint arXiv:1807.09596 (2018).
[3] Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. 2019.

Graph neural networks for modelling traffic participant interaction. In 2019 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 695–701.

[4] Canh T Dinh, Tung T Vu, Nguyen H Tran, Minh N Dao, and Hongyu Zhang.

2021. A New Look and Convergence Rate of Federated Multi-Task Learning with

Laplacian Regularization. arXiv preprint arXiv:2102.07148 (2021).
[5] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized feder-

ated learning: A meta-learning approach. arXiv preprint arXiv:2002.07948 (2020).
[6] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[7] Suyu Ge, Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. 2020. Graph

enhanced representation learning for news recommendation. In Proceedings of
The Web Conference 2020. 2863–2869.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[9] Filip Hanzely and Peter Richtárik. 2020. Federated learning of a mixture of global

and local models. arXiv preprint arXiv:2002.05516 (2020).
[10] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise

Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-

age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[11] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao

Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong, et al. 2021. Fedgraphnn:

A federated learning system and benchmark for graph neural networks. arXiv
preprint arXiv:2104.07145 (2021).

[12] Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and

Salman Avestimehr. 2021. SpreadGNN: Serverless Multi-task Federated Learning

for Graph Neural Networks. arXiv:2106.02743 [cs.LG]

[13] Peng Jiang and Gagan Agrawal. 2018. A linear speedup analysis of distributed

deep learning with sparse and quantized communication. In Proceedings of the
32nd International Conference on Neural Information Processing Systems. 2530–
2541.

[14] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-

tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled

averaging for federated learning. In International Conference on Machine Learning.
PMLR, 5132–5143.

[15] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[16] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-

dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[17] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies

for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).
[18] Yassine Laguel, Krishna Pillutla, Jerôme Malick, and Zaid Harchaoui. 2021. A

superquantile approach to federated learning with heterogeneous devices. In

2021 55th Annual Conference on Information Sciences and Systems (CISS). IEEE,
1–6.

[19] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. 2019.

Peer-to-peer federated learning on graphs. arXiv preprint arXiv:1901.11173 (2019).
[20] Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar. 2018.

Fully decentralized federated learning. In Third workshop on Bayesian Deep Learn-
ing (NeurIPS).

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,

and Virginia Smith. 2020. Federated optimization in heterogeneous networks.

Proceedings of Machine Learning and Systems 2 (2020), 429–450.
[22] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019.

On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189
(2019).

[23] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-

Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. 2020. Federated

learning inmobile edge networks: A comprehensive survey. IEEE Communications
Surveys & Tutorials 22, 3 (2020), 2031–2063.

[24] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song.

2018. Heterogeneous graph neural networks for malicious account detection.

In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. 2077–2085.

[25] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.

2019. Blockchain and federated learning for privacy-preserved data sharing in

industrial IoT. IEEE Transactions on Industrial Informatics 16, 6 (2019), 4177–4186.

https://arxiv.org/abs/2106.02743

ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA Wu, Zhang et al.

[26] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020.

Three approaches for personalization with applications to federated learning.

arXiv preprint arXiv:2002.10619 (2020).
[27] Chuizheng Meng, Sirisha Rambhatla, and Yan Liu. 2021. Cross-Node Federated

Graph Neural Network for Spatio-Temporal Data Modeling. arXiv preprint
arXiv:2106.05223 (2021).

[28] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[29] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. 2017.

Federated multi-task learning. In Proceedings of the 31st International Conference
on Neural Information Processing Systems. 4427–4437.

[30] Sebastian U Stich. 2018. Local SGD converges fast and communicates little. arXiv
preprint arXiv:1805.09767 (2018).

[31] Canh T Dinh, Nguyen Tran, and Tuan Dung Nguyen. 2020. Personalized Feder-

ated Learning with Moreau Envelopes. Advances in Neural Information Processing
Systems 33 (2020).

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[33] Binghui Wang, Ang Li, Hai Li, and Yiran Chen. 2020. Graphfl: A federated

learning framework for semi-supervised node classification on graphs. arXiv
preprint arXiv:2012.04187 (2020).

[34] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,

Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A semi-supervised graph

attentive network for financial fraud detection. In 2019 IEEE International Confer-
ence on Data Mining (ICDM). IEEE, 598–607.

[35] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui

Qiu. 2020. Global context enhanced graph neural networks for session-based

recommendation. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 169–178.

[36] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021.

Fedgnn: Federated graph neural network for privacy-preserving recommendation.

arXiv preprint arXiv:2102.04925 (2021).
[37] Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification

over non-iid graphs. Advances in Neural Information Processing Systems 34 (2021).
[38] Jie Xu, Zhenxing Xu, Peter Walker, and Fei Wang. 2020. Federated Patient

Hashing.. In AAAI. 6486–6493.
[39] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph con-

volutional networks: A deep learning framework for traffic forecasting. arXiv
preprint arXiv:1709.04875 (2017).

[40] Hao Yu, Rong Jin, and Sen Yang. 2019. On the linear speedup analysis of commu-

nication efficient momentum SGD for distributed non-convex optimization. In

International Conference on Machine Learning. PMLR, 7184–7193.

[41] Hao Yu, Sen Yang, and Shenghuo Zhu. 2019. Parallel restarted sgd with faster

convergence and less communication: Demystifying why model averaging works

for deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 5693–5700.

[42] Huanding Zhang, Tao Shen, Fei Wu, Mingyang Yin, Hongxia Yang, and Chao Wu.

2021. Federated Graph Learning–A Position Paper. arXiv preprint arXiv:2105.11099
(2021).

[43] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Sub-

graph federated learning with missing neighbor generation. Advances in Neural
Information Processing Systems 34 (2021).

A ADDITIONALWORKS
A.1 Analysis for Gradient Compensation
To solve classification tasks formulated as a GFL problem with hid-

den representation sharing, as discussed in Section 3.4, we suggest

a straightforward gradient estimation strategy, namely gradient

compensation. To present the proposed gradient estimation scheme,

further define

𝒉𝑡
𝑗→𝑘

= Ψℎ (𝒙 𝑗 ;𝑾
𝑡
ℎ,𝑘
) (17a)

∇𝑓𝑘 (𝑾𝑡
𝑘

;𝚵G) = 𝜙𝑘 (𝒉𝑡1→𝑘
, ...,𝒉𝑡

𝑁→𝑘
) (17b)

where𝑾𝑡
ℎ,𝑘

is part of𝑾𝑡
𝑘
for client 𝑘 at round 𝑡 and 𝒉𝑡

𝑗→𝑘
is the

hidden representation of client 𝑗 for the local updates at client 𝑘 at

round 𝑡 . Our proposal suggests using the latest aggregated model

to compute hidden representations at each communication round.

Formally, suppose 𝑡0 < 𝑡 is the largest multiple of 𝐼 ,

ˆ𝒉
𝑡
𝑗→𝑘 =

{
Ψℎ (𝒙𝑘 ;𝑾𝑡

ℎ,𝑘
) 𝑗 = 𝑘

1

𝑛 𝑗

∑𝑛 𝑗

𝑠=1
Ψℎ (𝒙 𝑗,𝑠 ; �̄�𝑡0

ℎ
) 𝑗 ≠ 𝑘

(18)

where �̄�ℎ,𝑡0
is part of �̄�𝑡0

and 𝑛 𝑗 is the number of examples drawn

according to the distribution of client 𝑗 . Consequently, the biased

gradient estimator employed in local updates at client 𝑘 has the

form of

∇ ˆ𝑓𝑘 (𝑾𝑡
𝑘

; 𝝃𝑘) = 𝜙𝑘 (ˆ𝒉
𝑡
1→𝑘 , ...,

ˆ𝒉
𝑡
𝑁→𝑘). (19)

Our compensation strategy satisfies the guarantee discussed in

Assumption 2 with additional assumptions. Specifically, suppose

Eq.(16) is used, that is, latest aggregated model is broadcast to

estimate the hidden representation, the squared estimation error of

ˆ𝒉
𝑗→𝑘
𝑡 is bounded under following assumptions.

Assumption 5. (Lipschitz Representation Encoder) Hidden repre-
sentation encoderΨℎ defined in (3) is Lipschitz continous with constant
𝜌ℎ . Formally, ∀𝑾ℎ,𝑾

′
ℎ
and ∀𝒙 , ∃𝜌𝒙 > 0 and 𝜌ℎ := max

𝒙
𝜌𝒙 such

that Ψℎ (𝒙 ;𝑾ℎ) − Ψℎ (𝒙 ;𝑾 ′
ℎ
)
 ≤ 𝜌𝒙

𝑾ℎ −𝑾 ′ℎ
. (20)

Assumption 6. (Bounded Gradient) Gradient with form 𝜙𝑘 has
bounded norm. Specifically, for any 𝑘 ∈ [𝑁], and 𝒉1, ...,𝒉𝑁 , ∃Δ𝑘 > 0

and Δ :=
∑𝑁
𝑘=1

Δ𝑘 such that

∥𝜙𝑘 (𝒉1, ...,𝒉ℎ)∥2 ≤ Δ𝑘 . (21)

Assumption 5 indicates an uniformly continuity of representa-

tion model Ψℎ . Assumption 6 guarantees that unbiased stochastic

gradient ∇𝑓𝑘 (𝑾𝑡
𝑘

;𝚵G) or biased stochastic gradient ∇ ˆ𝑓𝑘 (𝑾𝑡
𝑘

; 𝝃𝑘)
is bounded, which ensures 𝒈𝑘𝑡 is bounded and local updates will

not make an irreparable deviation. Following Lemma A.1 formally

shows that our gradient compensation is valid for the nonconvex

result in Section 4,

Lemma A.1. Consider the federated learning procedure described
in Section 3 under Assumptions 5 and 6. Gradient compensation (16)

provides estimation with bounded mean squared error. Formally, for
any round 𝑡 , ∀𝑗 ∈ [𝑁] and ∀𝑘 ∈ [𝑁],

E[
ˆ𝒉

𝑡
𝑗→𝑘 − 𝒉𝑡𝑗→𝑘

2

] ≤ 2𝜂2𝜌2

ℎ
𝐼2Δ𝑘 (22)

Lemma A.1 shows that our compensation strategy (16) satisfies

that 𝜎2

𝑘
= 2𝜂2𝜌2

ℎ
𝐼2Δ𝑘 and 𝜎2

𝐻
= 2𝜂2𝜌2

ℎ
𝐼2Δ in Assumption 2. This

theoretical guarantee ensures that proposed gradient compensation

strategy matches nonconvex results provided in Section 4.

A.2 Supplement to Experiments
A.2.1 Data Generations in Section 6. This part provides a detailed
description of the data generation. cSBMs are utilized multiple

times, please refer to [2] for a recap of cSBMs.

Synthetic Data for Deterministic Node Classification. In
our experiment, 20 synthetic graphs are synthesized, and each of

these 20 graphs is generated by using cSBMs with 𝑑 = 8, 𝜆 = 2, 𝜇 =

1, 𝑁 = 200, 𝑝 = 100. Then we fix the graph topology for all 20

generated synthetic graphs. We also fix the train-valid-test split

(10%/10%/80%) for all 20 graphs. The training set is balanced and

the subgraph induced by the nodes in the training set is connected.

Graph Federated Learning with Hidden Representation Sharing ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA

To achieve randomness in repeated simulations, we change the

node features for each of these 20 synthetic graphs.

Real Data for Deterministic Node Classification. For real
data, we utilized the Cora dataset. Due to our limited computa-

tional resources, we extracted subgraphs with 300 nodes from Cora,

namely subCora. For each random seed from a pool of random

seeds: (1) Randomly select 800 nodes from Cora using one random

seed and find all connected components from this subgraph with

800 nodes. (2) For each connected component, we keep it as one

training set if it satisfies the following two conditions: (i) Size must

fall between 30 and 50 including 30 and 50. (ii) The connected com-

ponent have all 7 classes, and the standard deviation of the counts

for different classes is less than or equal to 2.5. (3) We find all reach-

able nodes from the training set using BFS with a maximum depth

of 2, and select nodes from these reachable nodes as a validation

set such that the validation size is equal to the training size. Then

select testing nodes so that our subCora graph has 300 nodes in

total.

Synthetic Data for Stochastic Node Classification. To gen-

erate synthetic data with one label and multiple feature vectors for

each node. First, we use cSBMs to generate the graph structure, and

we assign a ±1 label to each node by using a Bernoulli distribution

with success probability 0.5. The hyperparameters we used to gener-

ate the graph structure are 𝑑 = 10, 𝜇 = 1, 𝜆 = 2 and 𝑁 = 200. Select

one training set that is connected and achieves class balance by sim-

ply selecting nodes randomly until the subgraph induced by these

nodes is connected and it has class balance. Then randomly select

the validation set, and testing set such that we have a 10%/10%/80%

spilled. Denote the label vector as 𝒗 = {𝑣1, . . . , 𝑣𝑁 } ∈ {±1}𝑁 . And

draw a 𝒖 ∼ 𝑁 (0, 𝑰𝑝/𝑝) where 𝑝 = 100, and it will be used later for

feature vectors generation purpose. With these hyperparameters,

the 𝜙 is set to be 0.78. Each node has 40 local data points. The data

sampling process for each node is described in the following.

For each node 𝑖 = 1 to 𝑖 = 𝑁 , (1) the 40 labels for client 𝑖 is the just

the 40 repeats of 𝑣𝑖 , denote this vector as𝒚𝑖 = {𝑣𝑖 , . . . , 𝑣𝑖 } ∈ {±1}40
.

(2) To generate each of it’s 40 local feature vectors denoted as

𝑿𝑖 = {𝒙𝑇
𝑖,1
, . . . , 𝒙𝑇

𝑖,40
} ∈ R40×𝑝

, we utilize the feature generation

mechanism from cSBMs, such that 𝒙𝑖, 𝑗 =

√︂
𝜇

𝑁
𝑣𝑖𝒖 +

𝒁𝑖, 𝑗

𝑝
. And just

like cSBMs, 𝒁𝑖, 𝑗 ∈ R𝑝 has independent standard normal entries.

We fix the hyperparameters and graph structure, then repeat the

sampling procedure for 20 times to generate 20 synthetic graphs

that only differ in node/client level feature vectors for random

experiments purposes.

Synthetic Data for Supervised Classification. We will use

the Bernoulli distribution and multivariate Gaussian distribution

to generate labels and feature vectors for each client/node. First,

we use the original probabilistic model from cSBMs to generate

the graph structure, and we assign a ±1 tag (not labels, which will

be generated later.) to each node by using a Bernoulli distribution

with success probability 0.5. The hyperparameters we used to gen-

erate the graph structure are 𝑑 = 5, 𝜇 = 0.1, 𝜆 = 2.2 and 𝑁 = 50.

Importantly, We make sure that the entire synthetic graph is con-

nected, and this can be easily done by selecting a slightly higher 𝑑

(average degree) and repeating the graph generation process until

the generated synthetic graph is connected. Denote the tag vector

as 𝒗 = {𝑣1, . . . , 𝑣𝑁 } ∈ {±1}𝑁 . And draw a 𝒖 ∼ 𝑁 (0, 𝑰𝑝/𝑝) where
𝑝 = 100, and it will be used later for feature vectors generation pur-

pose. With these hyperparameters, the 𝜙 is 0.96. The data sampling

process for each node is described in the following.

For each node 𝑖 = 1 to 𝑖 = 𝑁 , (1) if the tag for node 𝑖 (𝑣𝑖) is −1,

assign a Bernoulli distribution with success probability 3/10, else

assign a Bernoulli distribution with success probability 7/10. Then

draw 120 independent samples from this Bernoulli distribution.

These independent samples serve as the local labels for this node 𝑖 .

Denote it as 𝒚𝑖 = {𝑦𝑖,1, . . . , 𝑦𝑖,120} ∈ {±1}120
. (2) To generate each

of it’s 120 local feature vectors denoted as 𝑿𝑖 = {𝒙𝑇𝑖,1, . . . , 𝒙
𝑇
𝑖,120
} ∈

R120×𝑝
, we utilize the feature generation mechanism from cSBMs,

such that 𝒙𝑖, 𝑗 =

√︂
𝜇

𝑁
𝑦𝑖, 𝑗𝒖 +

𝒁𝑖, 𝑗

𝑝
. And just like cSBMs, 𝒁𝑖, 𝑗 ∈ R𝑝

has independent standard normal entries.

We fix the hyperparameters and graph structure, then repeat the

sampling procedure for 20 times to generate 20 synthetic graphs that

only differ in clients’ data for random experiments purposes. In a su-

pervised classification setting, we utilize data from all clients/nodes

and split the local data for each client/node into a train, validation,

and test set. In our setting, the train-valid-test split is set to be

8.33%/8.33%/83.33% (i.e., 10/10/100).

A.2.2 Model Description in Section 6. This part provides details
about models used in Section 6. For training on all models, including

baseline models, we use the SGD optimizer with optimized learning

rates based on the specific task and models. During training, we

keep tracking the lowest validation loss and the corresponding

model and use this model to report test accuracy. For baseline

models including GAT, GCN, and SAGE, we do not include layers

like dropout on the adjacency matrix layer, no bias. For baseline

models, including FedMLP and MLPs implemented for supervised

learning tasks on synthetic graphs, we use a two-layer Multi-Layer-

Perceptron (MLP) with 64 hidden units and no bias term.

Graph Federated Learning for APPNP (GFL-APPNP). For all
experiments we conduct, we use a two-layer MLP with 64 hid-

den units. We fix the 𝛼 to be 0.1 and 𝑀 to be 10, following the

APPNP model in [16] and [1]. We train GFL-APPNP for different

𝐼 ∈ {1, 10, 20, 50} with gradient compensation and without gradient

compensation. Note that different 𝐼 will lead to different numbers

of communications. For example, if we run 3000 updates for 𝐼 = 10,

then the number of communications will be 3000/10 = 300. For

the DNC task on both synthetic graphs and subCora graphs, after

optimizing the learning rate over {0.01, 0.02, 0.05, 0.1, 0.5}, we select
0.5 as the best learning rate for synthetic graphs and 0.02 as the

best learning rate for subCora. We run 4000 updates for subCora

graphs and 3000 updates for synthetic graphs. The same learning

rates and the numbers of updates are adapted for both variants with

gradient compensation and variants with no compensation. For

the SNC task on synthetic graphs, we use 0.2 as learning rate and

batch size of 40 (full batch) and run 5000 updates for each variant

with gradient compensation. For SC tasks, we use a learning rate of

0.2 and batch size of 5 and run 2000 updates for each variant with

gradient compensation.

Baseline Models. In our experiments, baseline models include

GCN [15], GAT [32], GraphSAGE [8] for DNC setting and Fedederated

Learning for Multi-Layer-Perceptron (FedMLP) and MLPs for SC

ACM CIKMWorkshop’2022, October, 2022, Atlanta, GA Wu, Zhang et al.

Table 2: Summary table for average test accuracy and 95% confidence interval on all experiments and all models considered. Hyphens indicate a specific model is
not applicable under certain task, and where V1 represents noisy gradient compensation, V2 represents no gradient compensation. We denote deterministic node
classification as DNC, stochastic node classification as SNC, and supervised classification as SC.

Synthetic DNC SubCora DNC Synthetic SNC Synthetic SC

GFL-APPNP 𝐼 = 1 93.2 ± 0.92% 54.2 ± 3.69% 98.7 ± 0.26% 70.0 ± 0.32%

GFL-APPNP 𝐼 = 10 93.4 ± 0.99% 54.1 ± 3.72% 92.4 ± 0.19% 70.0 ± 0.36%

GFL-APPNP 𝐼 = 20 93.3 ± 0.94% 54.3 ± 3.73% 92.5 ± 0.17% 70.0 ± 0.30%

GFL-APPNP 𝐼 = 50 93.0 ± 0.96% 54.0 ± 3.73% 92.5 ± 0.17% 70.2 ± 0.33%

GFL-APPNP-V1 𝐼 = 10 93.1 ± 0.83% 54.0 ± 4.12% 99.2 ± 0.26% 68.7 ± 0.42%

GFL-APPNP-V2 𝐼 = 10 82.3 ± 2.09% 47.3 ± 3.81% 90.7 ± 0.28% 69.0 ± 0.45%

APPNP 93.2 ± 0.92% 54.2 ± 3.69% — —

GCN 95.2 ± 0.54% 51.9 ± 3.78% — —

GAT 93.3 ± 1.03% 47.9 ± 3.01% — —

GraphSAGE 70.2 ± 4.21% 47.0 ± 3.73% — —

FedMLP 𝐼 = 10 — — — 61.0 ± 0.54%

FedMLP 𝐼 = 20 — — — 61.0 ± 0.46%

FedMLP 𝐼 = 50 — — — 70.0 ± 0.32%

MLPs — — — 61.0 ± 0.60%

setting. We use GCN with two layers with 64 hidden units following

[15] and learning rate 0.1 for synthtic data and 0.01 for subCora. For

GAT, we use 2 layers where the first layer has 8 attention heads and

8 hidden units per head, the second layer has 1 attention head and

64 hidden units following [32] and learning rate 0.02 for synthtic

data and 0.01 for subCora. Both GCN and GAT are trained by 4000

updates. In GraphSAGE, we use 2 layers with 64 hidden units. For

the task on synthetic graphs, we train 5000 updates with a learning

rate equal to 0.02. For task on subCora, we train 4000 updates with

a learning rate equal to 0.01. For the SC task, we train FedMLP
(different 𝐼 ∈ {10, 20, 50}) with 2000 updates paired with a learning

rate of 0.1 and a batch size of 5 while we train independent MLPs on
clients 200 updates with a learning rate of 0.1 and a batch size of 5.

A.2.3 Additional Experiment I: Effect of Graph Connectivity (Figure
2). In this section, we provide details for Figure 2(a). We use the

same data generation process in A.2.1 for supervised classification

to generate four synthetic graphs with different connectivity mea-

sured by 𝜆max (𝑩𝑁 𝑳†), each synthetic graph will repeat the data

sampling process 20 times to achieve randomness. We use the same

model which is our method with 64 hidden units, 𝐼 = 10, and same

model initialization to conduct experiments on all four synthetic

graphs and their corresponding 20 repetitions. All four synthetic

graphs has the same hyperparameters𝑁 = 40, 𝜇 = 1, 𝜆 = 2, and 𝑝 =

100 expect for one hyperparmeter 𝑑 ∈ {25, 15, 10, 5}, thus they all

have the same 𝜙 = 0.574. Recall that 𝑑 represents the average de-

gree for a synthetic graph, so a higher 𝑑 naturally leads to a higher

connectivity, and the results are four different 𝜆max (𝑩𝑁 𝑳†) values
{1.76 × 10

−3, 4.17 × 10
−3, 1.09 × 10

−2, 7.52 × 10
−2}. All nodes have

the same number of local data points 120 for all four synthetic

graphs, and the train-valid-test split is 10/10/100. SGD optimizer

is used to train 1500 updates for our method with a learning rate

0.5, and a batch size of 5 for all four synthetic graphs.

A.2.4 Additional Experiment II: Necessity of Graph Structure in GFL
(Figure 2). As our discussion in Section 3, the network of clients

in multi-client systems accounts for the statistical heterogeneity

problem. This empirical study aims to show that the heterogeneity

problem is non-negligible. Our experiment is under SC setting with

baseline models MLPs and FedMLP, matching the same setting in

Section 6.3. The result is given by boxplot on Figure 2(b). Themodels

and details are the same as Section 6.3.

A.2.5 Additional Experiment III: Noisy gradient compensation. In-
stead of uploading local gradient ∇𝒉𝑡

𝑘
of each client 𝑘 at each com-

munication round 𝑡 where 𝑡 mod 𝐼 = 0 to central server, one

can add a random noise vector denoted as 𝝐𝑡
𝑘
that has indepen-

dent standard normal entries to the gradient vector, and upload

∇𝒉𝑡
𝑘
+𝝐𝑡

𝑘
to central server for better node-level privacy. We provide

additional experiments that include noisy gradient compensation

strategy with 𝐼 = 10 with the same data and model from previ-

ously mentioned experiments. Also, we use the SGD optimizer for

noisy gradient and hyperparameters including learning rate, batch

size, and the number of updates are the same as the case without

Gaussian noise.

A.2.6 Summary Table and Figure for All Experiments. A test sum-

mary Table 2 for all experiments and models is provided in this

section. The experimental results using our method of 𝐼 = 10 with-
out gradient compensation (i.e. only upload ℎ𝑡

𝑘
to the central

server for each client 𝑘) are also added to the summary table and

figure for reference. For DNC, and SC tasks, we use the same num-

ber of updates, learning rate, and batch size in A.2.2 for our method

without gradient compensation. For the SNC we change the learn-

ing rate from 0.2 to 0.6 and the number of updates from 5000 to

8000 for our method without gradient compensation.

	Abstract
	1 Introduction
	2 Related Works
	3 Graph Federated Learning
	3.1 Preliminaries
	3.2 GFL Problem Formulation
	3.3 Hidden Representation Sharing
	3.4 Gradient Estimation
	3.5 Graph Federated Learning Procedure

	4 Theoretical Analysis
	4.1 Assumptions
	4.2 Convergence Analysis

	5 GFL-APPNP for Classification
	5.1 GFL for Classification Tasks on Graphs
	5.2 GFL-APPNP Algorithm

	6 Experiments
	6.1 Deterministic Node Classification
	6.2 Stochastic Node Classification
	6.3 Supervised Classification

	7 Conclusion
	References
	A Additional Works
	A.1 Analysis for Gradient Compensation
	A.2 Supplement to Experiments

