
IEEE TRANSACTIONS ON JOURNAL KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 1

GCN for HIN via Implicit Utilization of Attention
and Meta-paths

Di Jin, Zhizhi Yu, Dongxiao He*, Carl Yang, Philip S. Yu, Fellow, IEEE and Jiawei Han, Fellow, IEEE

Abstract—Heterogeneous information network (HIN) embedding, aiming to map the structure and semantic information in a HIN to
distributed representations, has drawn considerable research attention. Graph neural networks for HIN embeddings typically adopt a
hierarchical attention (including node-level and meta-path-level attentions) to capture the information from meta-path-based neighbors.
However, this complicated attention structure often cannot achieve the function of selecting meta-paths due to severe overfitting.
Moreover, when propagating information, these methods do not distinguish direct (one-hop) meta-paths from indirect (multi-hop) ones.
But from the perspective of network science, direct relationships are often believed to be more essential, which can only be used to model
direct information propagation. To address these limitations, we propose a novel neural network method via implicitly utilizing attention
and meta-paths, which can relieve the severe overfitting brought by the current over-parameterized attention mechanisms on HIN. We
first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each layer, along
with stacking the information propagation of direct linked meta-paths layer-by-layer, realizing the function of attentions for selecting meta-
paths in an indirect way. We then give an effective relaxation and improvement via introducing a new propagation operation which can
be separated from aggregation. That is, we first model the whole propagation process with well-defined probabilistic diffusion dynamics,
and then introduce a random graph-based constraint which allows it to reduce noise with the increase of layers. Extensive experiments
demonstrate the superiority of the new approach over state-of-the-art methods.

Index Terms—Heterogeneous information networks, Graph neural networks, Network embedding.
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1 INTRODUCTION

H ETEROGENEOUS information networks (HINs) [1] [2]
[3], which involve a diversity of node types and rela-

tionships between nodes, can better model and solve many
real-world problems than homogeneous networks. For HIN
analysis, an important concept is meta-path [4] [5], which
is composed of a sequence of relationships between two
nodes. For example, the movie network of IMDB contains
three types of nodes, including movies, directors and actors.
The relationship between two movies can be described by
meta-paths such as Movie-Actor-Movie (MAM) and Movie-
Director-Movie (MDM), where MAM denotes the movies
starring the same actor, and MDM denotes the movies
directed by the same director.

Network embedding [6] [7], which aims to learn the
distributed representations of nodes in networks, is consid-
ered as an effective method for network mining and has
been widely studied in homogeneous networks. Recently,
researchers have also proposed some methods for HIN
embedding, such as random walk-based methods [8] [9] and
relation learning based methods [10] [11], many of which
rely on the concept of meta-path. In particular, with the
great success of deep learning, graph neural network-based
HIN embedding methods (such as HAN [12] and MAGNN
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[13]) have been proposed very recently. These methods often
adopt a hierarchical attention structure, which uses the
node-level attention to aggregate information inside each
meta-path and utilizes the meta-path-level attention to fuse
information of different meta-paths.

While these graph neural network-based methods have
achieved great success in HIN embedding, they still suffer
from some essential issues. First, while attention has been
widely used in fields such as NLP, the use of the complicated
hierarchical attention structure may be not so effective in
HIN embedding, since there are often little training data
available in HINs and information from one network can be
hardly transferred to another. In this way, it will be difficult
for graph neural networks to train well these hierarchical
attentions (particularly for the meta-path-level attention,
which is to evaluate the essential importance of different
meta-paths), making them hard to really achieve the goal of
selecting meta-paths, especially when there is often severe
overfitting in practice. At the same time, these existing
methods often treat meta-paths with different lengths, such
as direct linked meta-paths (e.g., Movie-Director) and indi-
rect linked meta-paths (e.g., Movie-Director-Movie), indis-
tinguishably for information propagation. However, from
the perspective of network science, while direct links can
propagate information directly, indirect links should prop-
agate information indirectly, and the information propaga-
tion on direct links is more essential. Therefore, for meta-
paths with lengths longer than one (which makes the paths
indirect), it is intuitive that the information should be
propagated indirectly rather than directly. Fortunately, we
find that graph convolutional network (GCN) [14] itself can
partly overcome this limitation. It can realize that direct
linked meta-paths propagate information directly at each
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layer, and indirect linked meta-paths propagate information
indirectly via the stacked layers of deep neural networks.
More importantly, it has already encoded the information of
all meta-paths via the multi-layer propagation in an implicit
way. However, GCN does not distinguish the importance of
information from different meta-paths in both its propaga-
tion and aggregation processes, which makes it not directly
suitable for HIN embedding.

To utilize the advantages of GCN of implicitly encod-
ing all meta-paths as well as overcome the difficulty of
distinguishing their importance in an effective way, we
propose a novel GCN-based approach for heterogeneous
information network via Implicit utilization of Attention
and Meta-paths, referred to as GIAM. We first introduce
a naive model. It uses the direct linked meta-paths alone
for information propagation, and utilizes a new aggrega-
tion mechanism for each-layer, along with the stacked-layer
propagation, to implicitly achieve the role of attention for
selecting meta-paths. In this way, we realize the selection
of different meta-paths in GCN itself (rather than using
attention directly which may lead to overfitting). Mean-
while, we make an effective refinement. That is, we replace
the spectral filter of GCN from the symmetric normalized
graph Laplacian to an equivalent asymmetric one, along
with removing activation, modeling the propagation with
continuous Markov dynamics. We then introduce an effec-
tive Random graph-based Propagation Constraint principle,
namely RPC, i.e., if a propagation path on the given network
is no better than that on the corresponding random graph,
there is no reason to continue this path propagation, which
makes the whole propagation process more effective via
filtering more impurity information.

To summarize, the main contributions of this paper are
as follows:
• We find that, the hierarchical attention structure adopted

by many HIN-specific graph neural networks is hard to
really achieve the function of essential selections of meta-
paths (due to severe overfitting); and meanwhile, they do
not distinguish one-hop and multi-hop meta-paths in the
propagation process.

• We propose a new approach to solve these problems. It
uses only direct linked meta-paths for direct propagation
and realizes indirect propagation by stacking layers of
direct propagations. We distinguish the importance of
information from different meta-paths (in this process)
via effective algorithmic mechanisms rather than using
attentions directly.

• Extensive experiments on different network analysis tasks
demonstrate the superiority of the proposed new ap-
proach over some state-of-the-arts.

2 A MOTIVATING EXAMPLE

To verify whether using meta-path-level attention can ef-
fectively evaluate the importance of different meta-paths,
we conduct experiments on two widely-used heterogeneous
information networks, i.e., IMDB and DBLP. We select three
graph neural network-based HIN embedding methods, i.e.,
HAN, MAGNN and our new approach GIAM (which will
be introduced in Section 4 below). Since HAN and MAGNN
require a candidate meta-path set, and our GIAM can also

TABLE 1: The performance of HAN and MAGNN of using
(and not using) meta-path-level attention, as well as our new
approach GIAM on IMDB and DBLP. “Y” denotes the method
of using meta-path-level attention and “N” not. “-” denotes our
new idea of using algorithmic mechanisms rather than atten-
tion to learn relationships of meta-paths. Attention distribution
is denoted by the learned weights of importance of different
meta-paths.

Datasets Meta-paths Models Attention Attention distribution Macro-F1 Micro-F1

IMDB MDM
MAM

HAN
Y [0.78, 0.22] 57.67 57.79

N [0.50, 0.50] 58.93 59.02

MAGNN
Y [0.57, 0.43] 57.60 57.72

N [0.50, 0.50] 58.30 58.50

GIAM - - 59.58 59.86

DBLP
APA

APVPA
APTPA

HAN
Y [0.258, 0.736, 0.006] 92.69 93.20

N [0.333, 0.333, 0.333] 92.47 93.04

MAGNN
Y [0.022, 0.969, 0.009] 93.19 93.67

N [0.333, 0.333, 0.333] 90.42 91.08

GIAM - - 93.63 94.10

support this option, we use the same choices according to
the existing work [12] [13], i.e., {MDM, MAM} for IMDB
(’M/D’ stands for Movie/Director and ’A’ stands for Actor)
and {APA, APVPA, APTPA} for DBLP (’A/P’ stands for
Author/Paper and ’V/T’ stands for Venue/Term), which are
often believed to be the essential meta-paths for node clas-
sification in networks. We compare HAN (and MAGNN) of
using and not using meta-path-level attention, as well as our
new idea (GIAM) of using algorithmic mechanisms (rather
than attention) to learn relationships of meta-paths. We first
get each method’s embedding on each dataset (according
to the experimental settings in Section 5), and then feed
them to SVM classifier with different ratios (i.e., 5%-80%)
of supervised information. We report the average accuracy
over these ratios, in terms of Macro-F1 and Micro-F1, as
shown in Table 1; and show the detailed accuracy on each
ratio of the supervised information in Appendix B.

As shown, on IMDB, it is surprising that, the methods
(HAN and MAGNN) of using meta-path-level attention are
always no better than those of not using it. Concretely,
for HAN of using meta-path-level attention, it is easy to
obtain the staple attention distribution, where one domi-
nant meta-path has the dominated attention value (i.e., the
distribution [0.78, 0.22] on {MDM, MAM}). Though this
seems to achieve a well evaluation of the importance of
different meta-paths, the accuracy is surprisingly reduced.
This may be mainly due to overfitting, preventing the
method from really selecting correct meta-paths. Differently,
MAGNN with meta-path-level attention is easy to get the
smooth attention distribution, i.e., [0.57, 0.43] on {MDM,
MAM}. While the learned attention values differ slightly,
the accuracy is still not improved when comparing with
that of not using attention. On the other hand, on DBLP,
the methods (HAN and MAGNN) of using meta-path-level
attention perform slightly better than those of not using it.
Since these models on DBLP can be trained much better
with a high accuracy (compared with those on IMDB), they
may relieve overfitting and make attention effective to some
extent. But anyway, in both these two settings, our new
approach GIAM of using the specially designed algorithmic
mechanisms (rather than attention) to learn relationships of
meta-paths stably performs the best.

To further verify whether overfitting is the main reason
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that meta-path-level attention does not help evaluate the
importance of different meta-paths effectively, we conduct
extra experiments on IMDB by using HAN as an example.
We show the training loss (and validation loss) as a function
of the number of train iterations. Fig. 1(a) shows the result of
HAN of using meta-path-level attention, and Fig. 1(b) shows
that of not using meta-path-level attention. As shown,
when using meta-path-level attention, with the decrease
of the training loss, the validation loss first decreases but
then increases significantly, which is a highly overfitting
phenomenon. Differently, the overfitting issue is relative
slight when not using the meta-path-level attention. This
partly validates that the meta-path-level attention may not
be able to achieve well the essential selection and evaluate
the importance of different meta-paths, especially when the
model is hard to be trained well (which is often the real life
in many network analysis tasks).

(a) (b)

Fig. 1: The results of training loss (and validation loss) as a
function of the number of train iterations by using HAN on
IMDB. (a) shows the result of using meta-path-level attention
and (b) shows that of not using meta-path-level attention.

3 PRELIMINARIES

We first introduce the problem definition, and then discuss
GCN which serves as the base of our new approach.

3.1 Problem Definition
Definition 1. Heterogeneous Information Network. A het-
erogeneous information network is defined as a network
G(V,E, F,R, φ, ϕ), where V represents the set of multiple
types of nodes, E the set of multiple types of edges, and F
and R the set of node and edge types. Each node u ∈ V is
associated with a node type mapping function φ : V → F ,
and each edge e ∈ E is associated with an edge type map-
ping function ϕ : E → R. G is defined as a heterogeneous
information network when |F |+ |R| > 2.

Definition 2. Adjacency Matrix of Heterogeneous In-
formation Network. Inspired by homogeneous network, we
define the adjacency matrix of heterogeneous information
network G as A = (auv)n×n, where auv = 1 if there is an
edge between nodes u and v, or 0 otherwise, and n = |V |
the number of nodes. Thus, the degree distribution of G can
be defined as D = diag(d1, ..., dn), where du =

∑
v auv , i.e.,

we sum up the number of edges associated with node u.
Definition 3. Meta-path. A meta-path m is defined as a

path in the form of F1
R1−→ F2

R2−→ ...
Rl−→ Fl+1(abbreviated

as F1F2 · · ·Fl+1), where F and R are node and edge types,
respectively. It represents a compositional relation between
two given node types.

Definition 4. Meta-path-based Neighbors. Given a
meta-path m of a heterogeneous information network, the

meta-path-based neighbors Nm
u of node u are defined as the

set of nodes which connect with node u via meta-path m.
Note that Nm

u include u itself if m is symmetric.
Definition 5. Heterogeneous Information Network Em-

bedding. Given a heterogeneous information network G,
this task is to learn the d-dimensional distributed represen-
tation H ∈ R|V |×d(d � |V |) that is able to capture rich
structural and semantic information involved in G.

3.2 Graph Convolutional Network
Graph Convolutional Network (GCN) [14] learns repre-
sentation of each node by iteratively aggregating feature
information from its topological neighbors. Mathematically,
let H(0) be the node feature matrix, the classic two-layer
GCN can then be defined as:

Ŷ = softmax(ÂReLU(ÂH(0)W (0))W (1)), (1)

where Â = D̃−1/2ÃD̃−1/2 (Ã = A+ I stands for the adja-
cency matrix with self-loops, and D̃ = diag(d̃1, ..., d̃n) with
d̃u =

∑
v ãuv), W (0) (and W (1)) the weight parameter of

neural networks, ReLU the non-linear activation function,
and Ŷ the final output for the assignment of node labels.
While GCN works very well on homogeneous networks,
it is not directly suitable for heterogeneous information
networks with different types of nodes and edges [15].

We now analyze the advantages and disadvantages of
using GCN on HINs (by taking DBLP with four types of
nodes: author, paper, venue and term as an example). As
shown in Fig. 2, in the first layer of GCN (the inner circle
in the figure), we can realize the direct information propa-
gation via direct linked meta-paths (e.g., Paper-Author). By
stacking the second layer (the outer circle), we can achieve
the indirect information propagation of meta-paths with
length 2, such as meta-paths Term-Paper-Author and Venue-
Paper-Author, with the help of stacked direct linked meta-
path propagation. By adopting a multi-layer GCN, we can
then realize that the direct linked meta-paths propagate in-
formation directly while indirect link meta-paths propagate
information indirectly, along with covering meta-paths with
different lengths. However, for heterogeneous information
networks, GCN often treats the information from different
meta-paths equally in the process of both propagation and
aggregation, without distinguishing the difference of their
importance, which is a challenge and correctly the main
limitation we will overcome in this work.

Fig. 2: An illustrative example of using GCN on a heteroge-
neous information network DBLP. The inner (red) circle repre-
sents the first layer and the outer (black) circle the second layer.
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Fig. 3: The structure of the naive model. It propagates and aggregates the information of direct linked meta-path-based neighbors
repeatedly via k layers. The part in red box is the core content.

4 METHODOLOGY

We first propose a naive model to solve the issue of GCN
on heterogeneous information networks (HINs), then refine
the model by introducing a continuous Markov propagation
process, and finally give optional tricks in implementation.

4.1 The Naive Model
In the first model, we use the classic multi-layer GCN as
a basic framework, and then introduce a discriminative
mechanism to aggregate information from the neighbors
with direct linked meta-paths. The structure of this model is
illustrated in Fig. 3.

The novel aggregation mechanism consists of two parts,
including the aggregation of instances under the same
meta-path (which we call the intra aggregation) and the
aggregation of different meta-paths (which we call the inter
aggregation). Specifically, in the intra aggregation, we adopt
the same summation as GCN to aggregate the information
from the same direct linked meta-path-based neighbors.
Mathematically, let τ : (u, v) → m ∈ M be the meta-path
mapping function, whereM is the set of direct linked meta-
paths. It inputs a node pair (u, v), and outputs a variable m
which indicates the direct linked meta-path between nodes
u and v. Simultaneously, let h(k−1)u be the embedding of
node u at the (k-1)-th layer, and h

(0)
u the node’s feature

vector. Then, for each u, its embedding of the direct linked
meta-path m at the k-th layer e(m,k)u can be updated as:

e(m,k)u =
∑
v∈Nu

δ(τ(u, v),m)(d̃ud̃v)
1
2h(k−1)v ∀m ∈M, (2)

where d̃u is the degree of node u of G with self-edges (as
defined in (1)), Nu is the set of direct linked meta-path-
based neighbors of node u, and δ(·, ·) a Kronecker delta
function that only allows nodes with the direct linked meta-
path m to node u to be included. Since there are |M|
different direct linked meta-paths, then for each node u,
we will get |M| meta-path-type embeddings. Considering
that these meta-path-type embbeddings play a different role
and show different importance in learning node embedding.
In this case, we adopt another aggregation function, i.e.,
concatenation ‖, to aggregate the embeddings of different
direct linked meta-paths, that is:

g(k)u = ‖
m∈M

e(m,k)u , (3)

which makes the embedding dimension from f to |M| × f ,
where f is the node embedding dimension of hidden layer.

Then, different from [16] which only distinguish the
difference of different meta-paths in the process of propaga-
tion, we also distinguish them in the process of aggregation.
With the obtained g

(k)
u , the k-th layer embedding of node

u can be given by using a mapping function along with a
non-linear transform as:

h(k)u = σ(g(k)u ·W (k−1)), (4)

whereW (k−1) is the mapping matrix and σ(·) the non-linear
activation function. To simplify expression, we use a new
operator ’◦’ to denote the incorporation of the above two
types of aggregations on matrices. Then, the matrix form of
the k-th layer embeddings can be defined as:

H(k) = σ((Â ◦H(k−1))W (k−1)). (5)

To better understand how this naive model distin-
guishes the importance of information from different meta-
paths during both propagation and aggregation, we give a
brief explanation on a heterogeneous information network
(DBLP) as an example. As shown in Fig. 4, in each layer,
we use the direct linked meta-paths within the black circle
to propagate information. Since different types of meta-
path-based neighbors of each node typically have different
feature distributions, we adopt the summation to aggregate
information from each type of neighbors linked by the same
one-hop meta-path (e.g., Author-Paper), and use concatena-
tion to aggregate information from different one-hop meta-
paths (e.g., Author-Paper and Term-Paper), so as to retain as
much information as possible from different one-hop meta-
paths. Then we feed it to the neural network, distinguishing
the importance of information from different meta-paths
in an implicit and indirect way. That is, utilize the new
discriminative aggregation as well as the mapping function
of neural networks, rather than using attention directly.
Furthermore, we extend the propagation range by stacking
layer by layer, and then realize the distinction of meta-paths
with different lengths (e.g., Author-Paper-Term and Author-
Paper-Term-Paper), with the help of the interaction of the
multi-layer propagation of the one-hop meta-paths as well
as the bi-level aggregation mechanism in each-layer.

In fact, while this naive model seems to be able to cover
different meta-paths as well as distinguish their importance
in both propagation and aggregation in an ideal way, it,
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Fig. 4: An illustrative example of using the naive model on
DBLP. The blue arc (of using summation) represents the aggre-
gation of information from the same type of neighbors linked
by a one-hop meta-path, the green arc (of using concatenation)
denotes the aggregation of information from different one-hop
meta-paths, and the brown arc (of using the neural network
mapping and activation) denotes the selection of different
meta-paths by utilizing the inherent algorithm mechanism (i.e.,
implicit utilization of attention).

however, possesses an inherent limitation, i.e., many nodes
do not have the same (or complete) types of one-hop meta-
paths due to the sparsity of HIN, making an effective
concatenation in this new aggregation process difficult. Take
DBLP as an example, some paper nodes may not have links
under meta-path Paper-Author while some other nodes may
not have links under Paper-Term. In this case, we cannot
achieve the alignment of these nodes’ embeddings after
concatenation. So, one can only use non-informative vectors
(e.g., vectors with all 1 or 0) to fill in these missing types to
make them complete. This, however, significantly lowers the
performance of the model especially when stacking multi-
layers.

4.2 The Improved Model
To overcome the limitation of the naive model, we introduce
an effective relaxation and improvement. That is, we first
perform a k-step propagation, and then the discriminative
aggregation. In the new propagation process, we replace the
spectral filter of GCN from the symmetric graph Laplacian
to an equivalent asymmetric one, and then remove activa-
tion, in order to make it a continuous Markov dynamics.
We then introduce a random graph-based cut mechanism
to constrain its free expansion, enabling the propagation
to escape from including too many harmful information
with the increase of layers. The structure of this model is
illustrated in Fig. 5. In the following, we will introduce it
from two perspectives, i.e., probabilistic propagation and
discriminative Aggregation.

4.2.1 Probabilistic Propagation
First we refine the propagation process of GCN. We adopt an
asymmetric normalized graph Laplacian P = D̃−1Ã, which
is also called the Markov transition probability matrix, as
the filter to perform propagation, where Ã = A + I (A is
the adjacency matrix of G and I the identity matrix), and D̃
= diag(d̃1, ..., d̃n) with d̃u =

∑
v ãuv . According to spectral

graph theories [17], P has the same spectrum range with
the original spectral filter Â of GCN (defined in (1)), and
thus possesses the same ability of serving as a low-pass-type
filter for propagation. Meanwhile, we remove activation
functions on all layers expect for the output layer (that uses
softmax), which will not decrease the model’s performance,
as guaranteed by [17]. Then, these two steps make the
propagation a continuous Markov dynamics process. The
new propagation rule can be defined as:

P (k) = P (k−1) · P, (6)

where P (0) = I .
On the other hand, the above propagation process in

graph convolution can be also taken as a k-step Markov
random walk from the perspective of probabilistic diffusion.
Formally, given a heterogeneous information network G,
the transition probability from nodes u to v within one step
random walk can be formulated as:

puv =
ãuv∑
r ãur

. (7)

Then, after walking k steps, the transition probability from
nodes u to v can be calculated iteratively by:

z(k)uv =
n∑
r=1

z(k−1)ur prv, (8)

where z(0)uu = 1 and z
(0)
uv = 0, for u 6= v. The above process

can also be taken as a matrix form as:

Z(k) = Z(k−1) · P s.t., Z(0) = I, (9)

where the k-step transition probability matrix Z(k) equals
to the propagation matrix P (k) in (6) in graph convolution.
More interestingly, according to spectral graph theories [18],
the number of steps of random walk in the range of en-
tering and exiting times of the c-th local mixing state (of
this Markov dynamics) can show the clearest c categories
structure. So, this new probabilistic perspective brings a
byproduct that we can evaluate the optimal number of prop-
agation layers of graph convolution. To be specific, given
a network G with the Markov matrix P , the local mixing
times of random walks on it can be estimated by using the
spectrum of its corresponding Markov generatorM = I−P ,
where M is positive semi-definite and has n non-negative
real-valued eigenvalues (0 = λ1 ≤ λ2 · · · ≤ λn ≤ 2). Let
T entc and T extc be the entering and exiting times of the c-th
local mixing state, we have T extc = 1

λc
(1+o(1)). Reasonably,

we can use the exiting time of the (c+1)-th local mixing state
to estimate the entering time of the c-th local mixing state,
which can be represented as T entc = T extc+1 = 1/λc+1. Then,
the calculated T entc and T extc can be taken as the floor and
ceiling of the optimal number of propagation layers for a
c-classification problem.

However, first, it is too time consuming to calculate
the eigenvalues for determining the number of propagation
layers, which often needs O(n3) time. Second, even in the
expected range of the optimal number of layers, the prop-
agation will still introduce impurity information inevitably,
which will also decrease the convolution’s performance. To
further overcome those drawbacks, we introduce the new
RPC principle, i.e., if a propagation path on a given network
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Fig. 5: The structure of the model with constrained Markov propagation. The part in the red box is the core improvement and
relaxation compared to the naive model.

(with clusters) is no better than that on its corresponding
random graph, we will have no reason to continue this
propagation path. This will not only enable the propagation
to filter more noise information, but also make it not so
sensitive to the number of layers (which may be set a
relative large value, e.g., 10). To be specific, given a hetero-
geneous information network G = (V,E), we first calculate
its corresponding random graph G′ = (V,E′) which has
the same node degree distribution with G while contains
none structural information for classification. We adopt
the popular null model of modularity [19] that describes
random graphs by rewiring edges randomly among nodes
with given node degrees, which is correctly suitable for this
work. Let Ã = (ãuv)n×n be the adjacency matrix of G with
self-edges, and D̃ = diag(d̃1, ..., d̃n) the degree matrix with
d̃u =

∑
v ãuv . Then, based on this null model, the expected

number of links (or expected link weight) between nodes u
and v can be written as:

a′uv =
d̃ud̃v∑n
r=1 d̃r

, (10)

which forms the adjacency matrix A′ = (a′uv)n×n of G′. On
this random graph, the one step transition probability from
nodes u to v can be written as:

quv =
a′uv∑
r a
′
ur

. (11)

Using it as a constraint on each step of the random walk on
G, we then get a constraint Markov dynamics. That is, the
transition probability from nodes u to v after k steps of the
constraint walk, i.e., s(k)uv , can be calculated iteratively by:

s′(k)uv = max(
n∑
r=1

s(k−1)ur prv −
n∑
r=1

s(k−1)ur qrv, 0),

s(k)uv =
s
′(k)
uv∑n

r=1 s
′(k)
ur

,

(12)

where
∑n
r=1 s

(k−1)
ur prv denotes the k-step transition prob-

ability from nodes u to v on G while
∑n
r=1 s

(k−1)
ur qrv the

probability on the corresponding random graph G′, after k-
1 steps of the constraint walk. We remove negative values
of s(k)uv and normalize it after each step (since the probability
distribution should be non-negative and sum to 1). Then, let

S(k) = (s
(k)
uv )n×n, P = (puv)n×n, Q = (quv)n×n and Ds =

diag(ds1, ..., dsn) with dsu =
∑
v suv , the above process can

be rewritten in the matrix form as:

S′(k) = max(S(k−1) · P − S(k−1) ·Q, 0),
S(k) = D−1s · S′(k).

(13)

When performing 1-step constrained Markov propagation,
take IMDB which contains three types of nodes: movie
(M), actor (A) and director (D), and two types of edges:
moive-director (MA) and movie-actor (MD) as example, it
may form a heterogeneous random walk with MA or MD.
Finally, we derive the k-step transition probability matrix
S(k) based on the constraint Markov dynamics, which is to
serve as a better propagation matrix for graph convolution.

To illustrate how the propagation matrix based on the
unconstrained (and constrained) Markov dynamics changes
with the number of layers, we take a simple Newman
artificial network [20] as an example. The network consists
of 128 nodes divided into four categories of 32 nodes.
Each node has on average 14 edges connecting to nodes
of the same category and 2 edges connecting to nodes
of other categories, as shown in Fig. 6(a). For this four-
classification problem, we first calculate the spectrum of its
Markov generator (Fig. 6(b)), and then derive the entering
time and exiting time of the 4-th local mixing state, i.e.,
∼2 and ∼6, corresponding to the floor and ceiling of the
optimal number of layers (Fig. 6(c)). Figs. 6(d), (e) and (f)
show the propagation matrices of 2, 6 and 10 steps (or
layers) of random walk. As shown, while the propagation
matrices between the 2-th and 6-th layers are relatively clear,
some impurity information is still introduced. But with the
increase of propagation layers, e.g., reaching 10 layers, it
will become hard to filter impurity information any more.
However, after introducing the constraint mechanism, the
propagation matrices of the 2-th and 6-th layers are much
clearer (Figs. 6(g) and (h)). More importantly, it will almost
not introduce impurity information with the increase of
layers, e.g., reaching 10 layers as shown in Fig. 6(i). This
further verifies that the new constrained Markov dynamics
can suppress the integration of impurity information when
propagation, making it more robust and effective.

4.2.2 Discriminative Aggregation
After the k-step propagation above, we then perform a
discriminative aggregation, which forms the relaxation and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: An example illustrating that the propagation matrix
changes with increasing the number of propagation layers
based on the unconstrained (and constrained) Markov dynam-
ics. (a) shows a simple Newman artificial network, (b) the
spectrum of its Markov generator, and (c) the exiting (and
entering) time of each local mixing state. (d), (e) and (f) show
the propagation matrices after 2, 6 and 10 layers of the uncon-
strained Markov propagation (corresponding to the entering
time and exiting time of the 4-th local mixing state, as well
as a longer time). (g)-(i) show the propagation matrices by
introducing the new constraint mechanism, corresponding to
(d)-(f) respectively.

improvement of the naive model. To be specific, we use
the same aggregation as the naive model while aggregating
embeddings of the k-step propagated neighbors. Then, the
final embeddings can be defined in one time as:

H(k) = σ((S(k) ◦H(0))W ). (14)

While the model may not distinguish information from dif-
ferent meta-paths in propagation, it does distinguish them
in aggregation, achieving the essential selection of different
meta-paths. In this way, we can further solve the inherent
limitation of the naive model (the difficulty of concatenation
in the new aggregation because most nodes do not have the
same and complete types of one-hop meta-paths), since we
can often get the complete types of neighbors after some k
steps of constraint propagation.

Here, one may also concern that the propagation matrix
S(k) may become very dense in this case, making the
propagation introduce too much noise. But in fact, it is
not this case. Thanks to the new constraint mechanism,
our S(k) can still remain sparse. Here take a first node v1
in the first category of a complex Lancichinetti artificial
network as an example (Fig. 7(a)). After many steps (e.g., k
= 10) of propagation, when using the unconstraint random
walk, the propagation probability of this node to all the
other 999 nodes are positive, showing a dense result (Fig.
7(b)). However, the propagation probability produced by
our constraint walk is still sparse (Fig. 7(c)). As shown in
Fig. 7(c), our propagation probability of v1 to 766 out of the
total 999 are 0; while that to the other nodes are positive.

(a) (b) (c)

Fig. 7: An Example of illustrating the sparsity of the propa-
gation matrix using our constraint propagation. (a) show an
artificial network of 1000 nodes with power-law distribution of
degree and category size, generated by Lancichinetti’s model
[21]. Here we only use the first category with 97 nodes which
are put on the top of the node sequences. We focus on the
first node v1 in this category with maximum degree. (b) shows
the propagation probability of node v1 to others based on the
unconstrained random walk, and (c) that using our constrained
walk. Red points denote probabilities of node v1 to nodes in the
same category and blue points outside.

Moreover, the red values (the probability of v1 to nodes
in the same category) are often much larger than the blue
values (the probability of v1 to nodes outside this category).
This demonstrates that our new propagation mechanism
can not only obtain a sparse propagation matrix, but also
well filter impurity information, making the propagation
more effective.

We define the loss function by using cross entropy as:

L = −
∑
l∈yL

Y lln(C ·H l), (15)

where C denotes the set of parameters of the classifier, yL
the set of node indices that have labels, Y l and H l the
labels and embeddings of the labeled nodes. We use back
propagation and Adam optimizer to optimize the model.

4.3 Implementation

It is also quite easy to introduce some tricks when im-
plementing our method. The tricks include, for example,
supporting the use of candidate meta-path sets and the
(multi-head) node-level attention, which are often used in
the existing HIN embedding approaches.

First, existing HIN embedding methods often need to
use a candidate meta-path set. To make our method support
this option, we can adopt only the meta-paths in this can-
didate set to construct the k-step propagation matrix, and
then use an aggregation to fuse information from these k-
step propagated neighbors to derive the final embeddings.

Second, existing graph neural network-based HIN em-
bedding methods usually adopt the node-level attention for
fine-tuning. Our method can also introduce the node-level
attention, working together with its inherent algorithmic
mechanism of implicitly selecting meta-paths, to further
improve performance. To be specific, given a node pair (u,
v) and a specified meta-path m, the importance coefficient
between nodes u and v can be formulated as:

emuv = LeakyReLU(µTm[Whu||Whv]), (16)

where µm is the parameterized attention vector for meta-
path m, and W the mapping matrix applied to each node.
After obtaining the importance between nodes u and v, we



8 IEEE TRANSACTIONS ON JOURNAL KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

can then use softmax to normalize them to get the weight
coefficient as:

αmuv = softmaxv(e
m
uv) =

exp(emuv)∑
r∈Nm

u
exp(emur)

. (17)

Then, the embedding of node u for meta-path m can be
aggregated by the neighbor’s embeddings with its corre-
sponding weight coefficients as:

hmu = σ(
∑
v∈Nm

u

αmuvWhv). (18)

Finally, we can also extend the node-level attention to a
multi-head attention, as done in many existing methods [12]
[13], in order to stabilize the learning process and reduce the
high variance (brought by the heterogeneity of networks).
That is, we repeat the node-level attention K times, and
then concatenate their output as the final embeddings:

hmu =
K

‖
k=1

σ(
∑
v∈Nm

u

αmuvWhv). (19)

5 EXPERIMENTS

We first give the experimental setup, and then compare our
GIAM with some state-of-the-art methods on three network
analysis tasks, i.e., node classification, node clustering and
network visualization. We finally give an in-depth analysis
of different components of our new approach.

5.1 Experimental Setup

5.1.1 Datasets

We adopt two widely-used heterogeneous information net-
works from different domains, as shown in Table 2, to
evaluate the performance of different methods.

• IMDB is an online database about TV shows and movie
productions. We extract a subset of IMDB with 4278
movies (M), 2081 directors (D) and 5257 actors (A). The
movies are divided into three classes (Action, Comedy,
Drama) based on their genre. Each movie is described by
a bag-of-words representation of its plot keywords. The
same to [13], we use the candidate meta-path set {MAM,
MDM} for algorithms that require such information, and
select 400, 400 and 3478 movies as training, validation and
testing sets, for semi-supervised learning.

• DBLP is a computer English literature database with
authors as its core. We extract a subset of DBLP with
4057 authors (A), 14328 papers (P), 7723 terms (T) and
20 venues (V). The authors are divided into four classes
(Database, Data Mining, Artificial Intelligence and Information
Retrieval) based on their research areas. Each author is
described by a bag-of-words representation of his/her
paper keywords. Also the same to [13], we adopt the
candidate meta-path set {APA, APCPA, APTPA}, and
select 400, 400 and 3257 authors as training, validation
and testing sets.

TABLE 2: Datasets description.

Datasets No. of Nodes No. of Edges Meta-paths

IMDB
#movie(M): 4278

#director(D): 2081
#actor (A): 5257

#M-D: 4278
#M-A: 12828

MDM
MAM

DBLP

#author (A): 4057
#paper (P): 14328
#term (T): 7723
#venue (V): 20

#A-P: 19645
#P-T: 85810
#P-V: 14328

APA
APTPA
APVPA

5.1.2 Baselines
We compare our new approach GIAM with eight exist-
ing methods. They include: 1) the homogeneous network
embedding methods DeepWalk [22], Node2vec [23], GCN
[14] and GAT [24], and 2) the HIN embedding methods
Metapath2vec [9], HetGNN [25], HAN [12] and MAGNN
[13]. Especially, GCN is the base of our GIAM, and HAN
and MAGNN are the state-of-the-art graph neural network-
based HIN embedding methods which adopts the hierarchi-
cal attention structure. Also of note, we use homogeneous
network embedding methods on the HIN structure directly
by ignoring the difference of types of nodes and edges.

5.1.3 Parameter Settings
For the methods based on semi-supervised graph neural
networks (including GCN, GAT, HAN, MAGNN and our
GIAM), we set the dropout rate to 0.5 and use the same
splits for training, verification and testing sets. We employ
the Adam optimizer with the learning rate setting to 0.005
and apply early stopping with a patience of 50. For GAT,
HAN and MAGNN, we set the number of attention heads
to 8. For HAN and MAGNN, we set the dimension of the
meta-path-level attention vector to 128. For the methods
based on random walk (including DeepWalk, Node2vec,
HetGNN and metapath2vec), we set the window size to 5,
walk length to 100, walks per node to 40, and the number of
negative samples to 5. In addition, we set the propagation
step k according to the maximum length of the meta-paths
used in the existing work [12] [13], i.e., 2 for IMDB and 4 for
DBLP. For a fair comparison, the embedding dimension of
all methods mentioned above is set to 64.

5.2 Comparisons to Existing Methods

We first make a quantitative comparison on node classifica-
tion and clustering, and then a qualitative comparison on
visualization.

5.2.1 Node Classification
On the node classification task, for each method, we first
generate the embeddings of the labeled nodes (i.e., movies
in IMDB and authors in DBLP), and then feed them to SVM
by using different training ratios from 5% to 80% (as done
in the most existing works). Since the variance of the graph
structure data can be quite large, we repeat this process 10
times and report the average Macro-F1 and Micro-F1.

The results are shown in Table 3. As shown, the proposed
method GIAM always performs the best across different
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TABLE 3: Comparisons on node classification.

Datasets Metrics Training ratio Deepwalk Node2vec GCN GAT Metapath2vec HetGNN HAN MAGNN GIAM

IMDB

Macro-F1
(%)

5% 41.52 43.56 54.56 54.79 42.95 42.93 55.94 54.41 58.49

10% 44.40 46.40 55.75 55.69 43.90 45.94 56.41 56.43 59.15

20% 46.60 49.61 56.29 56.38 45.53 48.87 57.64 57.41 59.79

40% 47.92 50.87 56.00 56.26 46.39 51.39 58.46 58.70 59.85

60% 48.66 51.79 55.83 56.05 47.80 52.70 58.73 58.97 60.25

80% 48.73 52.08 56.30 56.03 48.63 53.31 58.82 59.65 59.97

Micro-F1
(%)

5% 42.31 44.13 55.22 55.48 44.31 43.80 56.28 54.61 59.03

10% 45.45 47.32 56.23 56.20 45.75 46.89 56.62 56.59 59.50

20% 47.88 50.59 56.58 56.60 47.06 49.62 57.66 57.43 59.96

40% 49.47 52.01 56.39 56.52 48.12 52.24 58.46 58.85 60.05

60% 50.20 52.92 56.19 56.31 49.50 53.58 58.75 59.09 60.44

80% 50.33 53.45 56.52 56.14 50.65 54.40 58.95 59.76 60.18

DBLP

Macro-F1
(%)

5% 73.09 78.02 85.59 79.67 90.17 90.83 91.80 92.96 93.24

10% 80.95 84.53 86.11 84.99 90.76 91.18 92.27 93.07 93.48

20% 84.08 85.51 86.88 86.72 91.28 91.68 92.88 92.92 93.64

40% 86.98 86.82 88.12 87.57 91.88 92.20 93.03 93.17 93.76

60% 88.59 88.14 87.84 88.32 92.31 92.36 92.97 93.50 93.70

80% 89.99 88.78 87.75 89.16 92.70 92.22 93.18 93.52 93.96

Micro-F1
(%)

5% 75.49 80.41 86.08 82.88 90.90 91.39 92.36 93.49 93.72

10% 81.96 85.46 86.62 86.02 91.43 91.74 92.81 93.58 93.96

20% 85.02 86.48 87.28 87.38 91.97 92.20 93.36 93.43 94.12

40% 87.81 87.68 88.50 88.18 92.50 92.68 93.50 93.63 94.23

60% 89.38 89.02 88.28 88.98 92.90 92.88 93.47 93.95 94.18

80% 90.43 89.51 88.16 89.69 93.25 92.78 93.67 93.96 94.39

training ratios and datasets. On the IMDB dataset, GIAM
is 1.15-2.88% and 0.32-4.42% more accurate than the best
baselines HAN and MAGNN, which are also the heteroge-
neous graph neural network methods (while they use mate-
path-level attentions directly). On the DBLP dataset, GIAM
is 0.71-1.44% and 0.20-0.72% more accurate than the best
baselines HAN and MAGNN in the case of an already very
high base accuracy (≥ 91.80%), making our improvement
still nontrivial. These results not only demonstrate the supe-
riority of the new propagation and aggregation mechanism,
but also validate the effectiveness of our main idea of using
algorithmic mechanisms (rather than the meta-path-level at-
tention directly) to implicitly achieve the role of attention of
selecting meta-paths. In addition, the performance of GIAM
is much better than that of GCN (i.e., 3.27-4.42% and 5.64-
7.65% more accurate than IMDB and DBLP), which further
demonstrates the effectiveness of our new mechanism for
distinguishing importance of information with respect to
different meta-paths in both propagation and aggregation.

5.2.2 Node Clustering

We also conduct comparisons of these methods on node
clustering. In this task, for each method, we first generate
embeddings of the labeled nodes, and then feed them to
K-Means algorithm. The number of clusters K is set to the

same as the ground-truth, i.e., 3 for IMDB and 4 for DBLP.
Since the performance of K-Means is easily affected by the
initial center, we repeat the process 10 times and report the
average normalized mutual information (NMI) and adjusted
rand index (ARI).

The results are shown in Tables 4 and 5. As shown,
the proposed method GIAM performs the best on IMDB.
While GIAM performs the second best on DBLP, its perfor-
mance is still very competitive with that of the best baseline
MAGNN. On average on both these two datasets, GIAM
is 10.67%, 6.77%, 14.66%, 7.75%, 9.11%, 9.48%, 3.76% and
0.47% more accurate than Deepwalk, Node2vec, GCN, GAT,
Metapath2vec, HetGNN, HAN and MAGNN in terms of
NMI; and 0.1212, 0.0694, 0.2247, 0.1111, 0.0938, 0.0875, 0.0303
and 0.0114 better than these methods in ARI (in the range
of -1 to 1). Moreover, (on average) GIAM is still better than
the methods using meta-path-level attentions directly (i.e.,
HAN and MAGNN). This further validates the soundness
of using algorithmic mechanisms to evaluate importance of
different meta-paths. Neither GCN nor GAT is so compet-
itive here. This is mainly because they fail to distinguish
importance of information with respect to different meta-
paths, which significantly compromises their performance
in the unsupervised clustering setting.



10 IEEE TRANSACTIONS ON JOURNAL KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

TABLE 4: Comparisons on node clustering in terms of NMI. AVG shows the average result.

Datasets
NMI (%)

Deepwalk Node2vec GCN GAT Metapath2vec HetGNN HAN MAGNN GIAM

IMDB 0.55 5.34 10.42 10.02 0.43 0.46 13.02 13.77 15.41

DBLP 71.78 74.80 53.93 68.15 75.02 74.26 73.13 78.97 78.27 (2)

AVG 36.17 40.07 32.18 39.09 37.73 37.36 43.08 46.37 46.84

TABLE 5: Comparisons on node clustering in terms of ARI.

Datasets
ARI [-1,1]

Deepwalk Node2vec GCN GAT Metapath2vec HetGNN HAN MAGNN GIAM

IMDB -0.0014 0.0642 0.0661 0.0744 0.0005 0.0048 0.1282 0.1206 0.1552

DBLP 0.7415 0.7796 0.4670 0.6859 0.7945 0.8028 0.7938 0.8392 0.8273 (2)

AVG 0.3701 0.4219 0.2666 0.3802 0.3975 0.4038 0.4610 0.4799 0.4913

5.2.3 Visualization

For a more intuitively comparison, we also visualize the
embeddings of author nodes of some representative net-
work embedding methods (i.e., GCN, HetGNN, HAN and
our GIAM) on the DBLP dataset as an example. We utilize
the well-known t-SNE tool [26] to project node embeddings
to two dimensions. Different colors correspond to different
research areas of these nodes.

(a) (b)

(c) (d)

Fig. 8: The visualization of author nodes of the embeddings
learned by (a) GCN, (b) HetGNN, (c) HAN and (d) GIAM on
DBLP. Different colors correspond to different research areas in
ground truth.

As shown in Fig. 8, GCN (which ignores the heterogene-
ity of nodes) does not perform well, i.e., the author nodes
belong to different research areas are sometimes mixed
with each other. HetGNN performs much better than GCN,
but its boundary is still blurry. While both HAN and our
GIAM separate the author nodes in different research areas
reasonably well, our GIAM has a more distinct boundary
and denser cluster structures in visualization.

5.3 A Deep Analysis of GIAM

Similar to most deep learning models, GIAM also contains
some important components that may have significant im-
pact on the performance. To test the effectiveness of each
component of GIAM, we conduct experiments on compar-
ing GIAM with four variations. The variants are as follows:
1) GCN which serves as the base framework of GIAM of
not distinguishing importance of information with respect
to different meta-paths, 2) the naive model of GIAM, named
as GIAM-1, 3) GIAM of removing node-level attention (by
assigning the same importance to each neighbor node),
named as GIAM-2, and 4) GIAM of adding the meta-path-
level attention, named as GIAM-3. We take their comparison
on node classification as an example.

As shown in Table 6, compared to GCN, the naive model
GIAM-1 (which distinguishes meta-paths) has an obvious
improvement, i.e., 0.86-1.15% and 4.18-5.25% more accurate
on IMDB and DBLP. However, due to the sparsity of HINs,
GIAM-1 inevitably needs to add a large number of non-
informative features, so as to fill in embeddings of the
missing types of one-hop meta-paths during aggregation.
While its result is basically satisfactory, this limitation com-
promises performance inevitably. We overcome this limi-
tation by introducing a new mechanism of relaxation and
improvement, deriving GIAM-2, which further improves
performance of the naive model, i.e., 2.35-3.63% and 0.02-
2.76% more accurate on IMDB and DBLP. Furthermore,
by introducing the fine-turning node-level attention, the
derived GIAM improves GIAM-2 on DBLP (i.e., 0.63-0.87%
more accurate), while the improvement on IMDB is not so
obvious (because IMDB is harder to be trained well with a
relative low accuracy, easier leading to overfitting). This fur-
ther demonstrates that the node-level attention indeed plays
a fine-tuning role when the model can be well trained (such
as on DBLP with a relative high accuracy). Finally, GIAM-
3 of adding the meta-path-level attention hardly changes
the performance of GIAM. This further validates that our
algorithmic mechanism has already played a significant role
in selecting meta-paths, compared to the explicit meta-path-
level attention approach.
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TABLE 6: Comparisons of our GIAM with four variants (GCN,
GIAM-1, GIAM-2 and GIAM-3) on node classification.

Datasets Metrics Training ratio GCN GIAM-1 GIAM-2 GIAM GIAM-3

IMDB

Macro-F1
(%)

5% 54.56 55.52 58.29 58.49 58.56

10% 55.75 56.73 59.31 59.15 59.26

20% 56.29 57.15 59.90 59.79 59.94

40% 56.00 56.99 60.01 59.93 59.85

60% 55.83 56.88 60.51 60.25 60.31

80% 56.30 57.34 60.43 59.97 60.10

Micro-F1
(%)

5% 55.22 56.14 58.80 59.03 59.11

10% 56.23 57.20 59.55 59.50 59.61

20% 56.58 57.51 59.96 59.96 60.10

40% 56.39 57.48 60.10 60.05 60.13

60% 56.19 57.34 60.55 60.44 60.50

80% 56.52 57.66 60.47 60.18 60.30

DBLP

Macro-F1
(%)

5% 85.59 89.77 92.53 93.24 93.25

10% 86.11 90.85 92.62 93.48 93.48

20% 86.88 91.89 92.79 93.64 93.61

40% 88.12 92.41 92.89 93.76 93.78

60% 87.84 92.81 92.87 93.70 93.69

80% 87.75 91.98 93.12 93.96 93.98

Micro-F1
(%)

5% 86.08 90.58 93.09 93.72 93.75

10% 86.62 91.57 93.17 93.96 93.96

20% 87.28 92.53 93.35 94.12 94.10

40% 88.50 93.01 93.45 94.23 94.26

60% 88.28 93.42 93.44 94.18 94.19

80% 88.16 92.52 93.66 94.39 94.43

6 RELATED WORK

Existing heterogeneous information network (HIN) embed-
ding methods can be mainly divided into three categories,
including the random walk-based methods, the relation
learning-based methods and the graph neural network-
based methods.

The random walk-based methods first utilize random
walk on a HIN to generate the node walk sequences, and
then feed them to the subsequent model to obtain node em-
beddings. JUST [8] adopts the jump and stay strategies on a
HIN, which selects the next node based on the probability of
the jump or stay operation, to perform random walk. SHNE
[27] introduces a semantic-aware heterogeneous network
embedding model which performs joint optimization of
heterogeneous skip-gram and deep semantic encoding to
capture both structural closeness and unstructured semantic
relations in a HIN. Furthermore, HetGNN [25] develops a
sampling strategy based on random walk with restart to
sample neighbors for each node, and uses a heterogeneous
neural network architecture to aggregate the feature infor-
mation of those sampled neighbor nodes.

The relation learning-based methods aim to learn a
scoring function which evaluates an arbitrary triplet com-
posed of two nodes and an edge type, and output a scalar
to measure the acceptability of this triplet. For example,
DistMult [10] adopts a similarity-based scoring function to
learn the edge possibility between arbitrary two nodes of
the HIN. ConvE [11] proposes a deep neural model instead
of the simple similarity function to score the edge possibility
between two nodes. TransE [28] learns the edge possibility
between two nodes by using a translational distance.

The graph neural network-based methods aim to learn
node embeddings by aggregating the information from
neighbor nodes of a HIN. For example, GTNs [29] gen-
erate a new network structure which involves identifying

useful meta-paths and multi-hop connections for learning
effective node embeddings on a HIN. HAN [12] proposes a
hierarchical attention mechanism, including the node-level
and semantic-level attentions, to aggregate the information
from meta-path-based neighbors. MAGNN [13] employs
three major components, i.e., the node-type specific transfor-
mation, the node-level meta-path instance aggregation and
the meta-path-level embedding fusion, to obtain the node
embeddings of heterogeneous graphs. While those graph
neural network-based methods can often derive satisfactory
node embeddings, they still have some essential limitations.
That is, the complicated hierarchical attention structure of-
ten makes these methods difficult to really achieve the goal
of selecting meta-paths, partly due to the highly overfitting
(as shown in Fig. 1(a) as an illustrative example). Mean-
while, those methods treat the one-hop and multi-hop meta-
paths indistinguishably to propagate information, which
may be not so intuitive from the perspective of network
propagation dynamics in network science.

7 CONCLUSION

We propose a novel GCN-based method, namely GIAM,
via implicitly (rather than explicitly) utilizing attention and
meta-paths, in order to effectively achieve HIN embedding.
We use the direct linked meta-paths, a discriminative aggre-
gation, along with the stacked layers of propagation, to dis-
tinguish the importance of different meta-paths. We further
give an effective relaxation and improvement by introduc-
ing a new multi-layer propagation which is separated from
the aggregation. That is, we first replace the spectral filter of
GCN from the symmetric normalized graph Laplacian to an
equivalent asymmetric one and remove activation functions,
making it a well-defined probabilistic propagation process.
We then introduce a random graph-based constraint mecha-
nism RPC on this probabilistic propagation, to avoid import-
ing too much noise with the increase of propagation layers.
Empirical results on various graph mining tasks, including
node classification, node clustering and graph visualization,
demonstrate the superiority of our new approach over some
state-of-the-art methods.
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