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ABSTRACT
Graph neural networks (GNNs) have been widely used in various
graph-related problems such as node classification and graph clas-
sification, where the superior performance is mainly established
when natural node features are available. However, it is not well un-
derstood how GNNs work without natural node features, especially
regarding the various ways to construct artificial ones. In this paper,
we point out the two types of artificial node features, i.e., positional
and structural node features, and provide insights on why each
of them is more appropriate for certain tasks, i.e., positional node
classification, structural node classification, and graph classification.
Extensive experimental results on 10 benchmark datasets validate
our insights, thus leading to a practical guideline on the choices be-
tween different artificial node features for GNNs on non-attributed
graphs. The code is available at https://github.com/zjzijielu/gnn-
positional-structural-node-features.
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1 INTRODUCTION
Graphs provide a concise yet rich representation of data across
different domains such as social networks, citation networks, gene-
protein interactions, molecular structures and so on. How to ef-
fectively mine valuable information underneath graph data has
become an appealing problem for data mining community. Re-
cently, various kinds of powerful Graph Neural Networks (GNNs)
demonstrate their privilege on common graph tasks such as node
classification [23, 26], link prediction [25, 55, 57] and graph classifi-
cation [2, 31, 47, 56]. GNNs combine both node features and graph
structures by aggregating node features through links into low-
dimensional vector representations. Recently, considerable efforts
have been put on studying the complicated contents of networks,
such as node types and informativeness [21, 49], pooling layers
[28, 34], design spaces [10, 54], heterogeneous graph [32, 59], graph
generation and transformation [15, 24, 46], graph learning schema
[50], task-specific GNNs [11] and so on, where the superior per-
formances are mainly established when natural node features (i.e.,
attributes) are available when applying GNNs.

However, a great number of graphs in the wild do not contain
node attributes [8, 13], which deteriorates the performance of GNNs
[5, 14]. For example, in the molecules dataset QM9 [39, 41], a graph
represents a molecule, i.e., nodes are atoms and edges are chemi-
cal bonds. For typical tasks on this dataset such as predicting the
properties of molecules, i.e., toxicity or biological activity, GNNs
cannot be directly applied due to the lack of natural node features
[8, 45]. Another example is the social network such as REDDIT. In
this dataset, each graph represents a discussion thread, where each
node corresponds to one user, and two nodes are connected by an
edge if one user responded to a comment of the other [35]. The
missing of node features for each user in these social networks will
introduce extra difficulties in the task of sub-reddits prediction.

To apply GNNs on non-attributed graphs, several intuitive meth-
ods have been commonly practiced to initialize node features,
such as degree-based [16], random [1, 42], one-hot [9], position-
based [53], distance-based [29, 52] and so on. However, to the best
of our knowledge, there exists no generic understanding or guide-
line towards the initialization of artificial node features based on
the needs of downstream tasks. In this paper, we categorize com-
mon artificial node features and study their utility towards different
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Figure 1: Illustration of Position vs. Structure: A and B are
“positionally close”– having relatively close positions in the
global network, whereas A and C are “structurally close”–
having relatively similar local neighborhood structures.

types of graph mining tasks. From a high level, these intuitive node
feature initialization methods can be grouped into two categories,
positional and structural ones [6] (Section 2). Take Figure 1 as
an example. Positional features can help GNNs put node A and
node B closer in the embedding space, whereas structural features
facilitates putting node A and node C closer.

Extensive experiments are performed on 10 datasets with 8 com-
mon artificial features. Based on the information needs of different
tasks, we further categorize them into multiple divisions, namely,
positional node classification, structural node classification and
graph classification (Section 3). Observations on the results validate
our understanding that positional node features are more suitable
for positional node classification, while structural node features
benefit more for structural node classification and graph classifi-
cation tasks. With appropriately designed artificial node features,
the performance of GNNs can even surpass that with real features
in some cases, as indicated in Table 3. Besides, our proposed novel
degree-based node feature initialization method, i.e., degree bucket
range, achieves state-of-the-art performance on structural node
classification (Section 2.3). We believe this empirical study on the
selection of artificial node features can facilitate the understanding
of feature initialization on non-attributed graphs and inspire new
designs of artificial node features, thus shedding light on various
GNN applications on graphs in the wild.

2 TWO TYPES OF ARTIFICIAL NODE
FEATURES

Several node feature initialization methods have been proposed for
non-attributed graphs and commonly applied in various GNN mod-
els. We group these artificial node features into two main families:
positional node features and structural node features.

2.1 Positional Node Features
Positional node features help GNNs capture node distance informa-
tion regarding their relative positions in the graph. For example,
in Figure 1, nodes A and B are positionally close. A real case is
the publication network, where two authors who cite each other
and also cite / get cited by similar other authors should be close
considering their graph positions, and recognized as sharing similar
research interests. Some intuitive positional node features include:
• random: A feature vector following random distribution is gen-
erated for each node, which is decided by the random seed in
the data initialization. The random feature of each node varies
among training runs with different random seeds initialization.
This feature itself does not reflect relative positions, but it records
a high-dimensional identity for each node, which can indirectly
help GNNs learn the relative node positions.

• one-hot: A unique one-hot vector is initialized for each node
[14, 53]. This feature is essentially equivalent to random, when
the first linear layer of the GNN are randomly initialized.

• eigen: Eigen decomposition is performed on the normalized adja-
cencymatrix and then the top k eigen vectors are used to generate
a k-dimensional feature vector for each node [7, 22, 58], where
the optimal value of k is decided by grid search [33].

• deepwalk: The initial feature of a node is generated based on the
DeepWalk algorithm from [37] with the walk length set as 40 by
default. Deep walk features with walk length longer than 2 can
help to capture higher-order positional information in the graph.

Correspondingly, positional node classifications target at grouping
nodes with respect to their positions, which corresponds to coarse
global information in the graph. For example, in Figure 1, nodes A
and B should be classified into the same class in the task of posi-
tional node classification. Specifically, eigen and deepwalk methods
which generate features by matrix decomposition [38], are essen-
tially dimension reduction, where the complex graph structures
(i.e., adjacency matrices) information are embedded into a low di-
mensional representation. Therefore, eigen and deepwalk methods
also incorporate structural information. However, as the features
based on eigen and deepwalk reflect the position of nodes, with some
abuse of terminology, we keep calling them positional features.

2.2 Structural Node Features
On the other hand, structural node features help GNNs capture
structural information of nodes, such as degree information and
neighborhood connection patterns. For example, in Figure 1, node
A and C are similar regarding their neighborhood structures in the
graph, though they are far away from each other in position. A
real case is the molecular network, where two nodes with similar
degrees and connection patterns should be put close considering
their structures, and recognized as atoms with similar properties
or functions. Some intuitive node feature initialization methods
focusing on the structural aspects include:

• shared: An initial feature vector is shared across all nodes [14].
The shared feature we used is simply a vector of all 1’s.

• degree: A one-hot degree vector is initialized for each node, whose
dimension is decided by the max degree of all nodes [16, 47].

• pagerank: The original PageRank score [4] of a given node is
calculated and then flattened into a vector in order to fully utilize
the embedding dimensions of neural networks, where the dimen-
sion of the extended vector is selected by grid-search [33]. It can
be viewed as generalized higher-order node degree information.

Structural node classifications target at classifying nodes according
to their structural patterns. For example, nodes A and C in Figure 1
should be put into the same class considering their similar “struc-
tural roles”. Different from positional features that characterize the
position of nodes in a graph, structural node features target at rep-
resenting structural roles. Recent distance-based features [29, 52]
also help to learn node structural roles while GNNs that leverage
distance-based features cannot make inference over multiple nodes
in parallel, which increases the computational complexity. Inter-
ested readers may refer to the experiments in [51] to check how
distance-based features help with learning node structural roles.
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2.3 Byproduct: New SOTA for Structural Node
Classification

Motivated by our empirical studies on structural node features,
we propose a novel node feature initialization method based on
bucketing node degrees, which we name as degree+. Specifically,
we divide degree values into several buckets, then map the degree
values distributed in each bucket range into one class, and finally
construct a unique one-hot vector for each class. Our proposed
degree+ feature can be regarded as an improved version of the
original degree-based node feature, which better handles the sparse
and skewed distribution of node degrees in the graph.

3 EXPERIMENTAL RESULTS
3.1 Basic Settings
To conduct a fair and unbiased evaluation on the effectiveness of
node features, we adopt the popular GNN of GraphSAGE [18] with
mean and sum aggregators for all the artificial node feature initializa-
tion methods across different types of graph mining tasks. Results
with real features are also provided wherever natural node features
are available. The train/test/validation split of each dataset follows
the standard practice in the literature [14, 27, 40]. Graph level ex-
periments are conducted with artificial features of sizes ranging
from 100 to 500 with step 100. In addition, we perform comprehen-
sive grid search for the best hyper-parameter settings including the
learning rate, number of epochs and neighborhood sample size. The
final performance of each feature initialization method is averaged
over five runs under the optimal hyper-parameter settings.

3.2 Positional Node Classification
Definition and Datasets. The tasks of positional node classi-
fication target at predicting the “positional role” of each node
[20, 30, 44]. We consider three datasets for positional node classifi-
cation, including Cora [43], Citeseer [43] and Pubmed [36]. These
three citation networks consist of scientific publications as nodes,
which can be classified into several content categories. Edges con-
necting those nodes denote the citation relationships between pub-
lications. Real features for each publication node are included in
these three datasets, which are bag-of-word vectors indicating the
word presence in the text content. In these three datasets, since
the publications are connected by citation links, the research topic
based node classification tasks should be mainly driven by the posi-
tions of nodes in the graph. Performance with the real node feature
is also presented as a baseline for comparison.

Protocols and Performances. We train and test the GraphSAGE
model using the same data splits as in [27], namely 20 randomly-
selected samples for each class during training with a validation
set of 500 samples. Experiment results of different node features
on three positional node classification datasets are presented in
Table 1, where P and S indicate the Type of artificial node features,
corresponding to Positional or Structural respectively. Aggr. denotes
the aggregation method used in each GNN layer. Classification
accuracy Acc.(%) is adopted here for evaluation.

Observations.

Aggr. Type Feature Cora Pubmed Citeseer
Acc.(%) Acc.(%) Acc.(%)

Mean

P

random 56.1±1.6 42.3±1.4 36.0±1.0
one-hot 58.2±4.0 51.4±3.1 37.3±2.5
eigen 73.2±2.3 70.0±4.8 42.9±2.3
deepwalk 75.3±1.0 74.0±2.6 46.8±0.9

S
shared 17.9±0.0 38.6±0.0 20.2±0.0
degree 37.4±2.1 41.1±2.9 36.0±1.3
pagerank 25.2±2.4 39.8±1.9 20.5±3.4

real feat. 80.2±1.1 79.0±2.2 68.0±4.0

Sum

P

random 45.2±3.9 41.7±2.7 32.8±2.7
one-hot 47.0±3.7 46.4±4.4 33.0±1.8
eigen 70.5±5.1 68.8±4.1 40.1±5.0
deepwalk 70.0±2.3 72.5±2.2 43.7±2.7

S
shared 17.1±5.2 33.3±6.4 22.3±4.6
degree 50.7±3.7 42.6±1.8 32.0±3.5
pagerank 27.8±4.4 33.0±6.3 23.4±1.3

real feat. 70.5±3.7 75.4±3.7 59.3±4.0

Table 1: Positional node classification results

• Aggregation: For positional node classification,mean aggregation
shows better performance than sum aggregation, since mean ag-
gregation can effectively filter out the influence of neighborhood
size, which makes little contribution to and even impairs the
performance on positional node classification. However, shared
feature plus mean aggregation gives the same embedding for
every node, so the results are constantly poor with no variance.

• Cross Feature Type Comparison: For positional node classification
tasks, most positional node feature initialization methods achieve
much better performance than structural node feature ones. The
advantage of position node features over structural node features
is especially remarkable with mean aggregation.

• Within Feature Type Comparison: Among all positional node fea-
tures: 1. random and one-hot achieve comparable results. This
is because they are essentially the same: after passing through
the first layer of neural network where the parameters are ran-
domly initialized, one-hot initialization is equivalent to random
initialization except for possible differences in dimensions (e.g.,
on Pubmed). 2. among all positional features, deepwalk and eigen
demonstrate the best performance across all the datasets, which
owes to the higher-order positional information they can capture.

3.3 Structural Node Classification
Definition and Datasets. The tasks of structural node classi-
fication target at predicting the “structural role” of each node
[17, 19, 20]. Here we choose three datasets, namely American
air-traffic network, Brazilian air-traffic network and European air-
traffic network [40]. Given an airport node in the air-traffic net-
work, the target is to predict passenger flow level of that node solely
based on the structure of air-traffic network. These three datasets
are chosen because the node labels of them indicate the structural
roles (vary in four levels from hubs to switches), rather than the
traditional community identifiers of nodes [16, 27, 43].

Protocols and Performances. Following struc2vec [40], we use
80% of nodes for training. To highlight the performance of our
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Aggr. Type Initial. USA-air Brazil-air Europe-air
Acc.(%) Acc.(%) Acc.(%)

Mean

P

random 59.3±1.8 45.7±5.9 44.9±5.8
one-hot 59.2±2.6 48.6±7.4 44.0±0.7
eigen 55.3±1.5 40.0±6.9 31.6±2.1
deepwalk 58.1±2.8 42.1±9.6 41.5±3.3

S

shared 25.0±0.0 25.0±0.0 25.0±0.0
degree 53.8±1.9 48.6±4.1 42.7±2.7
degree+ 59.2±2.7 60.0±3.0 50.6±3.9
pagerank 39.7±2.9 47.9±7.4 25.9±0.0

Sum

P

random 60.7±3.2 47.9±7.4 48.9±5.1
one-hot 59.2±3.3 50.7±8.5 48.9±5.4
eigen 67.8±2.5 57.8±5.3 49.4±4.5
deepwalk 68.8±3.0 65.0±6.4 54.1±2.8

S

shared 55.7±2.0 61.4±4.7 45.4±1.0
degree 63.6±3.0 70.0±4.1 58.0±3.6
degree+ 69.1±2.6 76.4±4.1 61.2±3.8
pagerank 58.8±2.0 73.6±5.4 45.9±1.0

SOTA struc2vec 63.8±1.6 73.6±9.6 58.8±3.0

Table 2: Structural node classification results.

novel degree+ method, we adopt logistic regression with L2 regu-
larization to train the classifier using the representation learned by
struc2vec [40], which demonstrates SOTA results on these datasets.
Experiment results are presented in Table 2.

Observations.
• Aggregation: For structural node classification, sum aggregation
outperformsmean aggregation because it can capture the number
of neighbors, which is an important structural feature in graphs.

• Cross Feature Type Comparison: For structural node classification
tasks, in most cases structural node features demonstrate superi-
ority compared with positional ones, and our proposed structural
node feature degree+ manifests the most distinct advantage over
other positional features, reaching the new state-of-the-art.

• Within Feature Type Comparison: 1. among all four types of struc-
tural node features, degree+ improves on degree by using a degree
bucket, where nodes with degree values in a range are projected
together. This alleviates the node degree sparsity and skewness
problem. 2. shared can only capture the sizes of multi-hop neigh-
borhoods, but loses track of neighborhood structures, thus per-
forming rather poorly. 3. In contrast, pagerank can be viewed as
a generalized higher-order node degree, and we conjecture that
its performance deterioration arises from over-smoothing which
in the worst cases renders it as similar to shared.

3.4 Graph Classification
Definition and Datasets. For graph classification, we consider
two datasets with real node features, MUTAG [12] and PROTEINS
[3] from chemical domain. We also include IMDB-BINARY and
IMDB-MULTI [48] from the social domain without features.

Protocols and Performances. We take advantage of the GNN
comparison framework proposed in [14]. On top of their experiment
settings, we introduce the initializationmethods, and use mean- and
sum-pooling when applying GraphSAGE for graph classification.
Experiment results of different node initializationmethods on graph
classification datasets are presented in Table 3, where the real feat.
is only available for MUTAG and PROTEINS.

Aggr. Typ. Initial. MUTAG PROTEINS IMDB-B IMDB-M
Acc.(%) Acc.(%) Acc.(%) Acc.(%)

Mean

P
random 64.9±4.1 67.2±4.2 58.0±2.9 36.1±1.9
one-hot 65.8±7.0 67.8±2.6 56.9±3.4 36.8±3.2
eigen 63.8±2.1 60.4±1.0 50.2±1.3 33.4±0.7
deepwalk 65.1±8.3 68.1±4.0 52.1±3.4 35.7±1.9

S
shared 66.7±0.0 59.6±0.0 50.0±0.0 33.3±0.0
degree 84.4±7.7 69.5±2.6 69.7±5.1 45.1± 2.6
pagerank 66.5±1.9 68.0±5.5 54.4±4.0 35.5±1.7
real feat. 71.4±4.4 74.0±4.2 - -

Sum

P
random 66.9±7.1 67.5±4.1 54.0±3.6 36.2±2.1
one-hot 65.1±3.8 66.8±3.8 52.8±2.7 33.4±2.6
eigen 65.4±7.7 69.0±4.1 69.3±4.6 42.4±3.4
deepwalk 64.2±8.6 66.2±4.2 51.9±2.8 35.3±3.0

S
shared 79.9±6.7 69.1±4.5 67.9±2.8 43.3±4.6
degree 84.0±8.4 69.3±3.3 68.9±2.5 44.9±4.1
pagerank 77.3±7.6 69.9±3.1 70.3±2.9 48.2±3.2
real feat. 83.0±6.3 73.8±2.6 - -

Table 3: Graph classification results.

Observations.

• Aggregation: Similar to structural classification tasks, sum ag-
gregation outperforms mean aggregation on graph classification
tasks, since the number of neighbors contributes as an important
type of structural information for graph classification tasks.

• Cross Feature Type Comparison: For graph classification, though
the best performance is not consistently achieved on a particular
feature across four datasets, it always falls in the category of
structural ones. This is because we do not care about positional
information such as specific position of each node in graph clas-
sification. Instead, similar to structural node classification, the
overall structural information of the graph matters.

• Within Feature Type Comparison: 1. Among the structural node
features, pagerank demonstrates better performance in most of
the cases. 2. Impressively, the performances of GNN on degree on
MUATG and pagerank on PROTEINwith the sum aggregator even
surpass those with real features. This further demonstrates the
importance of choosing the appropriate artificial node features,
sometimes even when natural node features are available.

4 CONCLUSION
Graphs in the real world do not always have natural node fea-
tures available, due to the lack of task-specific node attributes,
privacy concerns and/or difficulties in data collection. In this pa-
per, we study the usage of artificial node features when applying
GNNs on non-attributed graphs. We categorize commonly used
artificial node features into two groups, positional node features
and structural node features, based on what kind of information
they can help GNNs capture. Extensive empirical experiments are
conducted across three graph mining tasks, positional node clas-
sification, structural node classification and graph classification.
The results validate our insights that positional node features are
more suitable for positional node classification, while structural
node features benefit more for structural node classification and
graph classification tasks. We hope our empirical study can pro-
vide a generic and practical guideline for choosing the appropriate
artificial node features and exploring more useful ones based on
the needs of downstream tasks.
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