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Abstract

The complex systems in the real-world are commonly associated with
multiple types of objects and relations, and heterogeneous graphs are
ubiquitous data structures that can inherently represent multi-modal
interactions between objects. Generating high-quality heterogeneous
graphs allows us to understand the implicit distribution of heteroge-
neous graphs and provides benchmarks for downstream heterogeneous
representation learning tasks. Existing works are limited to either
merely generating the graph topology with neglecting local seman-
tic information or only generating the graph without preserving the
higher-order structural information and the global heterogeneous dis-
tribution in generated graphs. To this end, we formulate a general,
end-to-end framework - HGEN for generating novel heterogeneous
graphs with a newly proposed heterogeneous walk generator. On top
of HGEN, we further develop a network motif generator to better
characterize the higher-order structural distribution. A novel hetero-
geneous graph assembler is further developed to adaptively assemble
novel heterogeneous graphs from the generated heterogeneous walks
and motifs in a stratified manner. The extended model is proven
to preserve the local semantic and heterogeneous global distribu-
tion of observed graphs with the theoretical guarantee. Lastly, com-
prehensive experiments on both synthetic and real-world practical
datasets demonstrate the power and efficiency of the proposed method.

Keywords: Heterogeneous Graph, Graph Generation, Deep Generative
Models, Graph Neural Network
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Fig. 1: Examples of heterogeneous graphs in the academic field.

1 Introduction

Graphs have emerged as an important data genre found in a wide class of
applications. Researchers have devoted themselves to studying various types
of graph problems, resulting in a rich literature of related papers and methods
[1–7] in recent years, which can be primarily categorized into two directions: 1)
graph representation learning aims at encoding graph topological and seman-
tic information into vector space [8]; and 2) graph generation, which reversely
aims at constructing graph-structured data from low-dimensional space con-
taining the graph generation rules or distribution [9]. Many efforts have been
devoted to studying both representation learning and graph generation on
homogeneous graphs. However, as the superclass of the homogeneous graph,
heterogeneous graphs come with different types of information attached to
nodes and edges, which can contain considerably richer semantic information
than homogeneous graphs [10]. Figure 1(b) shows a citation network with
author, paper, venue, and term as nodes and “authorship”, “containment”
and “publishment” as edges. The local semantic information based on certain
combinations of node types and edge types reflect the key patterns of heteroge-
neous graphs [11, 12], and such combinations of nodes and edges are typically
referred to as meta-path. Meta-paths characterize the rich and diverse relations
among nodes [12, 13]. For example, as shown in Figure 1(b), two authors can
be connected via a meta-path since they both contribute to a paper, while two
authors can alternatively be connected because their papers are accepted at
the same venue.

As a more powerful, realistic, and generic superclass of traditional homo-
geneous graphs, heterogeneous graphs have recently been intensively studied.
Existing literature focuses generally on learning network representations and
latent embeddings for various network mining and analytical tasks, such
as meta-relation detection [14, 15], heterogeneous node embedding learning
[16, 17], and heterogeneous link prediction [18]. However, the other perspec-
tive of heterogeneous graph study - heterogeneous graph generation- remains
paucity. Other than providing benchmarks for many heterogeneous graph stud-
ies, realistic heterogeneous graph generation has at least two advantages: 1)
generating high-quality heterogeneous graphs requires us to comprehensively
capture the latent graph distribution, which can significantly enrich our under-
standing of the implicit properties of heterogeneous graphs; 2) generating



Springer Nature 2021 LATEX template

Motif-guided Heterogeneous Graph Deep Generation 3

heterogeneous graphs is helpful in specific downstream applications (e.g., rec-
ommendation system [19], knowledge graph reasoning [18], and node proximity
search [11]). Given the importance of the research problem, there is only one
work [20] that has tried to generate random heterogeneous graphs with hand-
crafted rules, which fails to decode the real data distribution underlying the
observed graphs.

In the past few years, we have witnessed plenty of deep homogeneous graph
generative models [2, 9, 21–23] that can learn the observed graph distribution
without prescribed rules, which have shown advantages in preserving various
static graph properties in the generated graphs. However, existing deep gener-
ative models designed for homogeneous graphs cannot be trivially adapted to
heterogeneous graphs due to the following technical difficulties: 1) Difficulties
in preserving heterogeneous semantic information. Current works for homoge-
neous graphs have been either using random walks as a tool to learn the graph
topological distribution as learning the distribution of random walks ([22, 24])
or directly modeling an overall distribution of the edges ([23, 25]) over the
homogeneous graphs. However, objects in heterogeneous graphs are intercon-
nected via various meta-paths, as shown in Figure 1(c). As meta-paths carry
the complex local semantic information, adapting current works to the hetero-
geneous graph scenario without any elaborations on meta-path would bring
difficulties in learning and preserving the distribution of such complex semantic
patterns spanning different graph entities (i.e., edges and nodes) in the newly
generated heterogeneous graphs. 2) Difficulties in preserving heterogeneous
higher-order structural information. In the study of heterogeneous graphs,
meta-paths may also fall short of expressing more intricate relationships among
nodes in heterogeneous graphs. As marked in Figure 1(b), some common and
symmetric higher-order structures spanning meta-paths will likely be observed
repeatedly, which forms a triangle or orbit structure (e.g., one author writes
two papers that are accepted by the same venue, and two papers of an author
focus on the same research topic). These higher-order connectivity patterns
are known to be important in understanding the structure and organiza-
tion of heterogeneous networks, and many works [26, 27] have proposed to
utilize this information to boost the performance of downstream heteroge-
neous graph mining tasks. In terms of generating high-quality and realistic
heterogeneous graphs, it is also inevitable to consider modeling the higher-
order structural information. However, previous works either are designed for
homogeneous graph generation [2, 22] that neglected the importance of the
higher-order structural information or fail to consider integrating the higher-
order structures into the overall generation block [28]. The distributions of
these higher-order graph structures are also hard to capture in heterogeneous
graphs, bringing more challenges to effective heterogeneous graph generation.
3) Difficulties in preserving heterogeneous global information. Meta-paths are
also well-recognized to play a fundamental role in preserving the global pat-
terns of heterogeneous graphs [11]. For example, the ratio of different node
types, and edge types, and their meta-paths are apparently different between
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the citation networks of the computer system domain and the data mining
domain, as shown in Figure 1(a). It is essential to preserve the global distri-
bution of meta-path patterns during heterogeneous graph generation, which is
again extremely difficult as it is entangled with the preservation of node type
ratios, edge type ratios, and graph topological patterns.

In coping with these challenges, we introduce an end-to-end graph gen-
erative framework, namely Heterogeneous Graph Generation (HGEN), whose
goal is to generate novel heterogeneous graphs by preserving all the complex
local semantic and heterogeneous global property through directly modeling
the distribution of meta-paths in observed heterogeneous graphs. Particularly,
HGEN learns a joint distribution of the random walks and the associated meta-
paths from the observed heterogeneous graphs in order to capture the local
semantic distribution. In order to tackle the second difficulty, we extend the
meta-path-based generator in HGEN and make it capable of characterizing
the higher-order structural distribution via directly modeling and generating
network motifs. On top of that, we encode heterogeneous higher-order struc-
tural information into nodes via embedding learning and use it to guide the
generation of meta-paths and network motifs that form different high-order
heterogeneous structures. Finally, to tackle the third challenge, we develop a
novel heterogeneous graph assembly method, which is theoretically proved to
preserve the global heterogeneous graph patterns in node types, edge types,
and meta-paths.

We conclude our major contributions as follows:

• Problem Formulation. We propose to formulate a new paradigm of het-
erogeneous graph generation, which can effectively identify and resolve its
unique challenges in preserving various heterogeneous graph properties.

• Framework Design. We propose an end-to-end generative framework for
heterogeneous graph generation. The proposed framework can effectively
learn the underlying distribution of heterogeneous graphs. It generates het-
erogeneous graphs with ensuring the preservation of various heterogeneous
graph properties.

• Model Extension. We further extend our proposed model to leverage net-
work motifs to capture more intrinsic higher-order structural information
as well as multiple meta relations on edges. We also adapt the proposed
graph assembler to adaptively assemble novel graphs by various generated
instances.

• Evaluation. We conduct extensive experiments on both synthetic and
real-world heterogeneous graphs. Compared with state-of-the-art baselines,
HGEN achieves competitive results in preserving most of the static graph
properties. In addition, HGEN is shown to be capable of generating realistic
heterogeneous graphs by preserving important meta-path information.
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2 Related Work

2.1 Graph Generation.

Generative models for graphs have a rich history due to the wide range
of applications in different domains, such as link prediction [22, 23], protein
structure analysis [29], and information diffusion analysis in social networks
[30]. Traditional graph generation methods (e.g., random graphs, stochastic
block models, and Bayesian network models) fail to model complex dependen-
cies in our real-world scenarios. In addition, they cannot effectively preserve
the statistical properties of the observed graphs. In the last few years, there
has been a surge in research focusing on deep graph generation. According
to [9], the current deep graph generation can be divided into two categories:
sequential-based and one-shot-based. Sequential-based graph generation meth-
ods [1, 2, 22] autoregressively generate the nodes and edges with the LSTM
model. However, the sequential-based generation (e.g., GraphRNN [2]) is lim-
ited in following a fixed node/edge permutation order, which greatly loses the
generation flexibility and model scalability. On the other hand, one-shot-based
generation methods [22, 23, 28, 29, 31–33] try to build a probabilistic graph
model based on the matrix representation that can generate graph topology as
well as node/edge attributes in a one-shot, but most of them cannot easily be
applied in large graphs due to the large time complexity. For example, Graph-
VAE [23] is a new and first-of-its-kind variational autoencoder for whole graph
generation, though it typically only handles very small graphs and cannot
scale well to large graphs in both memory and runtime. NetGAN [22] follows
the GAN model [34] and uses a generator to generate synthetic random walks
while discriminating synthetic walks from real random walks sampled from a
real graph. Finally, multi-attributed graph generation [2, 21, 35, 36] aims at
generating homogeneous graphs by preserving node/edge attributes. Instead,
the key patterns of heterogeneous graphs are the higher-order local semantics
reflected by the combinatorial of the types of nodes and edges, which cannot
be captured by methods for homogeneous graphs.

2.2 Heterogeneous Network Motif (Meta-graph)

Compared to the commonly-adopted homogeneous graph, the heteroge-
neous graph carries much richer semantic information and has therefore gained
much attention in recent literature [37]. The concept of meta-paths in a het-
erogeneous graph [11, 13] is one of the most important concepts proposed to
capture numerous semantic relationships across multiple types of objects sys-
tematically. Compared to the commonly adopted heterogeneous meta-paths,
heterogeneous Network Motifs (also known as meta-graph) [38] are proposed to
capture more complex structural information in heterogeneous graphs. Specif-
ically, a meta-graph is a special directed acyclic graph containing at least two
embedded metapaths, such as a DAG containing as shown in Figure 1(b),
where the higher-order structure one author may publish two papers in a venue
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Table 1: Description of Important Notations

Notations Descriptions

G = {V, E} A heterogeneous graph G with node set V and edge set E = V × V
o = φ(vi) Each node vi ∈ V is associated with a node type o = φ(vi)
l = φ(eij) Each edge eij ∈ E is associated with a relation type l = ψ(eij)

(v,o)
A heterogeneous walk that consists of a random walk (v1, v2, ..., vi, ...) on G

and an associated meta-path
(
(o1, o2, ..., on), (l1, l2, ..., ln−1)

)
of v

v̂, ô Generated heterogeneous walk

S
Symmetric adjacency matrix with size V × V

to record the sampled edge frequency

contains two meta-paths of author-paper-venue. Network motifs have served
as a building block for learning latent embeddings that contain higher-order
relationships in a graph [39]. However, in terms of graph generation, graph
generative models are successful at retaining pairwise associations in the under-
lying networks but often fail to capture higher-order connectivity patterns
known as network motifs. To date, one attempt [40] leverages network motifs
as the basic unit to generate homogeneous graphs. However, this method only
learns the structural distribution but fails to capture the meta-relation within
the network motifs.

3 Problem Formulation

A heterogeneous graph [10, 37] is a graph G = {V, E} with multiple types
of objects and relations. V is the set of objects (i.e., nodes), where each node
vi ∈ V is associated with a node type o = φ(vi). E ⊆ V × V is the set of
edges, where each edge eij ∈ E is associated with a relation type l = ψ(eij).
All notations are summarized in Table 1.

In the study of heterogeneous graphs, the concepts of meta-paths are widely
considered as cornerstones and adopted to systematically capture numerous
semantic relationships across multiple types of objects, which are defined as
a path over the graph [10, 13]. Hence meta-paths are indispensable to be
considered as basic units for heterogeneous graph generation. Concretely, a
meta-path o is defined as a sequence of object types and edge types o =(
(o1, o2, ..., on), (l1, l2, ..., ln−1)

)
= o1

l1−→ o2
l2−→ ...

ln−1−−−→ on, where each oi
and lj are node type and edge type in the sequence, respectively. Each meta-
path captures the rich semantic information between its two ends o1 and on.
In heterogeneous graphs, the local semantic information is carried on each
of walks v = (v0, v1, ..., vn) and its associated meta-path o. We again take
Figure 1(c) as an example, there exist two meta-paths between papers: (Paper,
Author, Paper) and (Paper, Venue, Paper). The utilization of different meta-
paths allow the heterogeneous graph to contain rich topological and semantics
among diverse objects, which has been shown beneficial to many real-world
graph mining applications [10, 16, 17].
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With the preliminary notion of the heterogeneous graph, we formalize the
heterogeneous graph generation problem as follows:

Problem 1 (Heterogeneous Graph Generation) The goal of the heterogeneous
graph generation is to learn a distribution pdata(G) from the observed heterogeneous
graphs such that a new graph Ĝ can be obtained by sampling Ĝ ∼ pdata(G).

Challenge 1 (Difficulties in modeling the complex local semantic infor-
mation.) Although the existence of meta-paths allows heterogeneous graph to
characterize the combinatorial of node types and edge types, it is unclear how to
model their distributions and generatively assemble them into heterogeneous graphs.

Challenge 2 (Difficulties in characterizing the heterogeneous structural
patterns.) The local structural patterns in heterogeneous graphs are often expressed
in higher-order proximity among the nodes and edges (e.g., triangles, orbits, and
other higher-order structures). Such a higher-order local structure may fuse multiple
walks under one or more meta-paths with richer semantic information, yet brings
more difficulties in learning its distribution.

Challenge 3 (Difficulties in capturing heterogeneous global meta-path
information.) Meta-paths indeed play a significant role in preserving the global
patterns of heterogeneous graphs. In heterogeneous graph generation, it is important
yet challenging to preserve the global distribution of meta-path patterns since the
distribution of meta-path patterns often involves node type ratios, edge type ratios,
and graph topological patterns.

4 Heterogeneous Graph Generation

To address the above challenges, we propose a new heterogeneous graph
generation framework, named HGEN. To address the first and second chal-
lenge, we propose a heterogeneous walk generator in Section 4.1 to jointly learn
the distribution of local walks and the associated meta-paths so that both het-
erogeneous topological and local semantic information can be well captured.
To overcome the second challenge, we leverage the heterogeneous node embed-
ding to make the generator be aware of any potential higher-order structures
that each node may be involved with. Finally, for the third challenge, we pro-
pose a novel heterogeneous graph assembler in Section 4.3, which can construct
new heterogeneous graphs by capturing the global heterogeneous property,
namely different meta-path ratios. We further prove that the global heteroge-
neous property can be well-preserved through our Theorem 1 introduced in
Section 4.4.
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Fig. 2: The illustration of the heterogeneous walks generation in HGEN.

4.1 Heterogeneous Walk Generator

In the observed graph G, a heterogeneous walk is defined as a tuple
that consists of two components: a walk v and an associated meta-path
o. The proposed heterogeneous walk generator G is defined as a proba-
bilistic sequential learning model to generate synthetic heterogeneous walks:
(v̂, ô) =

(
(v̂1, v̂2, ..., v̂n), ((ô1, ô2, ..., ôn), (l̂1, l̂2, ..., l̂n−1))

)
, where the v̂ and ô

are denoted as the generated walk and associated meta-path, respectively. We
use v̂i, ôi, and l̂i to denote each of the generated node, node type, and edge
type in (v̂, ô), respectively. Figure 2(a) illustratively summarizes the whole
generative process of each synthetic heterogeneous walk.
Heterogeneous Walk Generation. We model G as a sequential learning
process based on a recurrent architecture, and each unit fθ in the sequential
model is parameterized by θ so that it can generate a node type ô and a
corresponding node v̂ that belongs to this node type in a hierarchical manner.
Precisely, the node type ô is determined based on the previously generated
sequence, and the node v̂ is then coherently determined by the generated node
type as well as the generated sequence. Both generated node type ô and node
v̂ together provide information for the generation of the next node type and
node instance.

Specifically, at each recurrent block (i.e., time step) t, fθ produces two
outputs (mmmt,hhht), where the mmmt is the current memory state and the hhht is
a latent probabilistic distribution (i.e., hidden output of fθ) denoting the
information carried from previous time steps. We first sample the node type
ôt ∼ go(hhht) based on the probability distribution hhht, where the go(·) is a node
type decoding function. We then sample the node v̂t by a node decoding func-
tion v̂t ∼ gv(hhht, ôt) that takes hhht and ôt as inputs. Lastly, the generated node
type ôt and node hhht are fused by a heterogeneous node encoding function
gc(ôt, v̂t), which then serves as the input of next recurrent block.
Heterogeneous Node Sampling. To overcome the second challenge, we
cannot uniformly sample v̂t based on the node type ôt because such a way
may cause the neglection of (1) node structural distribution and (2) node
semantic distribution. For example, we may observe an author always tends
to cite a paper with high citation (namely, high node degree of this paper
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node). Then such distribution needs to be modeled with structural informa-
tion. On the other hand, we may observe a data mining paper is unlikely to
cite a computer system paper, and we may also need to characterize this ten-
dency in the distribution. Both of the above distributions cannot be tackled
by uniformly sampling. Therefore, to tackle this challenge, since latent node
embedding could encode both topological and semantic information into the
node, we propose to calculate a latent embedding ṽt of the next node vt, then
we select with a higher probability the closer embedding among all the embed-
dings that belong to node type ôt so that the next node vt can be determined
by the sampled embedding.

More specifically, we first calculate the latent node embedding ṽt based on
the sampled node type ôt by a simple linear transformation. We then calculated

the distance between ṽt and other node embedding ṽ
(ôt)
i , meaning any node

ṽi belonging to the sampled node type ôt. In this case, given a total number
of k embeddings that belong to the type ôt, the next node v̂t can be sampled
from a multinomial distribution:

v̂t ∼ Multi(ṽ
(ôt)
1 , ṽ

(ôt)
2 , ..., ṽ

(ôt)
k ; p1, p2, ..., pk),

where each pi = −
∥∥∥d(ṽt, ṽ

(ôt)
i )

∥∥∥2 and d(·, ·) is a distance metric such as

Euclidean distance. Note that the node embedding ṽ
(ôt)
i can be obtained from

a conventional heterogeneous node embedding technique such as [14].
In order to generate a variable-length heterogeneous walk, we incorporate

a end-of-sequence token as an additional node type so that the heterogeneous
walk generator stops when the sampled node type is the token at any steps.
Therefore, the proposed generator is able to produce variable-length hetero-
geneous walks. Finally, the edge type lt can be predicted by a simple edge
decoding function ge(ôt, v̂t, ôt−1, v̂t−1) that takes its two end nodes v̂t−1 and
v̂t as well as their node types ôt−1 and ôt as inputs. In all, we summarize the
overall generative process as follows:

aaa0 = 0, mmm0 = f0(zzz), zzz ∼ N (0, 1)

aaa1 = gc(ô1, v̂1), v̂1 ∼ gv(hhh1, ô1), ô1 ∼ go(hhh1), (mmm1,hhh1) = fθ(mmm0, aaa0)

aaa2 = gc(ô2, v̂2), v̂2 ∼ gv(hhh2, ô2), ô2 ∼ go(hhh2), (mmm2,hhh2) = fθ(mmm1, aaa1)

l̂1 = ge(ô2, v̂2, ô1, v̂1)

· · ·
v̂n ∼ gv(hhhn, ôn), ôn ∼ go(hhhn), (mmmn,hhhn) = fθ(mmmn−1, aaan−1)

l̂n−1 = ge(ôn, v̂n, ôn−1, v̂n−1)

In this work, we utilize LSTM as the recurrent architecture, and fθ becomes
a single LSTM unit. To initialize the whole generative process, G takes a ran-
dom noise zzz as input, which is drawn from a standard Gaussian distribution.
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Fig. 3: The process of heterogeneous graph assembler.

Data 
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Fig. 4: Various graph motifs (meta-graphs) in academic heterogeneous
network: one author publishes two paper that one paper cites the other one;
one author publishes two papers that related to the same topic; and one
author publishes two co-cited papers at one venue.

Additionally, for the node type decoding function go(·), we apply the Gumbel-
softmax trick [41] in go(·) to make the whole sampling differentiable. Finally,
in most of the real-world scenarios, the edge type lt can be determined by the
types of its two end nodes ôt and ôt−1 if there does not exist multi-typed rela-
tions between two node types. In this case, the heterogeneous walk generator
can be simplified only to generate node sequences and associated node types.

4.2 Extension of Heterogeneous Motif Generator.

In the previous section, the proposed heterogeneous walk generator can well
characterize pairwise relationships within the heterogeneous graph and asso-
ciated heterogeneous graph statistics via meta-paths; however, higher-order
relationships (aka. heterogeneous network motifs) in a heterogeneous graph
are fundamental for our understanding of the network behavior and function.

Definition 1 (Heterogeneous Network Motifs) A Heterogeneous Network Motif
(Meta Graph) M is a directed acyclic graph (DAG) with a single source node vs
(i.e., with in-degree 0) and a single target node vt (i.e., with out-degree 0) defined on
a heterogeneous graph G = {V, E}. Then we define a Heterogeneous Network Motif
as M = (VM, EM, vs, vt), where VM ⊆ V and EM ⊆ V.

As we emphasized in Section 3, meta-path is the natural way to rep-
resent local semantics in heterogeneous networks; however, meta-path may
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not be the best way to characterize the rich semantics, especially seman-
tics encoded in higher-order structures. As can be clearly seen in Figure 4,
separate meth-paths (i.e., author-paper-topic and author-paper-venue) can
form an orbit structure, which cannot be simply described by meta-paths.
Current heterogeneous graph generation methods either rely on meta-paths
as the basic generation unit [28] or completely ignore the rich semantics
encoded in heterogeneous meta-structures [20], which is a major shortcoming
for applications that aim to generate heterogeneous graphs that realistically
mimic real-world heterogeneous networks or predict unobserved heterogeneous
higher-order structures.

In order to make our algorithm better preserve the higher-order structural
distribution in the generated graph, other than utilizing heterogeneous node
embedding, we generalize the proposed heterogeneous walk generator to be
able to generate heterogeneous network motifs. While a complete enumera-
tion of the network motifs present in a large-scale heterogeneous network is
computationally prohibitive, we instead focus on three motif structures (e.g.,
triangle, orbit, overlapped triangle) as visualized in Figure 4.

Since graph motifs contain DAG structure, we may not trivially generate
them as varying-length sequences and leverage the end-of-sequence token to
indicate the stop. Instead, we propose to sample from a learnable logit τ , where
each τi ∈ τ represents the probability of the motif chosen to be generated and
‖τ‖ = 1. Note that we initialize τ0 ∈ τ to be the probability of choosing meta-
path to generate so that the motif-based generation model can be combined
training with the meta-path-based generator. We provided the updated model
overview as follows.

Generated Heterogeneous Walks and Motifs

Motif Generation Unit

Meta-path Generation Unit

Motif Generation Unit

0 0.5 1

Fig. 5: The illustration of the extended heterogeneous walk/motif generation.
We separate the generation unit for meta-paths and heterogeneous network
motifs, and we leverage the sampling-based method to choose each unit.

4.3 Heterogeneous Generator Training and Utilization

In the following, we will introduce how to train the above-mentioned gen-
erator and how to use the heterogeneous walks and motifs generated by it to
construct heterogeneous graphs. Since we extend our framework to be able to
generate both meta-paths and motifs, we refer the generated meta-paths and
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motifs to heterogeneous instances for the sake of simplicity in the following
context. Concretely, we utilize a heterogeneous discriminator D to distinguish
between real and fake heterogeneous instances, where the real instances are
uniformly sampled from the observed graph. We then propose a heterogeneous
graph assembler to construct new graphs based on the sampled heterogeneous
instances. More details are presented as follows.

We first introduce the overall objective function of the Wasserstein
heterogeneous GAN [34], which is written as:

LHGEN = max E(o,v)∼p(G)[Do(o) +Dv(v)]

− Ez∼p(z)[Do(ô) +Dv(v̂)], s.t. G(z) = (ô, v̂),
(1)

where v and o are the random walk/motif and associated meta-path/meta-
graph, respectively, directly sampled from the observed heterogeneous graph G.
They are the real data for training our heterogeneous generator G. Specifically,
given an observed heterogeneous graph G = {V, E}, we utilize random-walk-
based method to uniformly sample a set of random walks {v1,v2, ...}, where
each vi is a node sequence s.t. vi = (v1, v2, ..., vn). In addition, we extract the
meta information oi =

(
(o1, o2, ..., on), (l1, l2, ln−1)

)
from each vi.

The heterogeneous discriminator D in Equation (1) is designed as a parallel
recurrent architecture in order to individually distinguish whether each unit in
the heterogeneous component are valid or not. Specifically, at each recurrent
block (i.e., each step) t, the discriminator D takes two inputs: the generated
node type ôt and node index v̂t, each of which is fed into an individual recurrent
unit. After processing both sequences, the discriminator returns a single score
Dv(v)+Do(o) that represents the probability of the heterogeneous component
being real.

4.3.1 Heterogeneous Graph Assembler

To assemble a heterogeneous graph from the generated heterogeneous
instances, we further propose a novel stratified heterogeneous edge sampling
strategy to achieve the following steps: 1) it first samples a node v̂i and its
type ôi from all of the generated heterogeneous walks; 2) based on the node
type ôi, we then sample a meta-path that starts with ôi; 3) we iteratively sam-
ple the next node v̂i+1 in the sampled meta-path if both of the node type ôi+1

and edge type l̂i fits the meta-path pattern.
More specifically, the generator G firstly produces a sufficient number of

heterogeneous walks as shown in Figure 3(a). We then construct an symmetric
adjacency matrix S with size |V|×|V| to record the count of edges observed
from the sampled heterogeneous walks in each entry Sij , where the |V| is the
size of the node set. Next, we collect all of the meta-path patterns generated
by the generated heterogeneous walks, as shown in Figure 3(b-c). For the first
step of the stratified heterogeneous edge sampling, we sample the a node v̂i

and its type type ôi based on the node degree distribution
∑
j Sij

|V| . For the
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second step, among all the meta-paths {o(f)
1 ,o

(f)
2 , ...} that start with the node

type ôi, we sample a meta-path o
(f)
i based on the probability

c(o
(f)
i )

T ôi
, where

T ôi is the total count of generated meta-paths that starts with node type

ôi and c(o
(f)
i ) is the count of meta-path pattern o

(f)
i . For the third step, by

following this meta-path pattern or = (o1, o2, ..., on), we iteratively sample all
the nodes whose node types are regulated by the the meta-path. Precisely, we
sample the next node vj by sampling all the neighbors of the current node vi
with the probability pvivj = (Sij)/(

∑
s Sis) such that all the nodes vs belong

to the specific node type oj following the meta-path o
(f)
i . The sampled node

sequence vr = (v0, v1, ...) is then added to the score matrix S. We continue
the stratified heterogeneous edge sampling strategy until the desired amount
of edges is reached. The final assembled graph is visualized in Figure 3 (d).
Extension of Heterogeneous Graph Assembler with Motif Consider-
ation. To assemble a heterogeneous graph from the generated heterogeneous
instances, we further extend our stratified heterogeneous graph assembler
and leverage the learned logit τ in order to make the assembler generate
heterogeneous graph that has the closer higher-order structural distribution.
Specifically, after the generator G produces a sufficient number of hetero-
geneous instances, we leverage the learned τ to firstly sample the exact
heterogeneous instance pattern (i.e., walk, triangle, or orbit). After collecting
such a pattern, we then follow the aforementioned stratified heterogeneous edge
sampling strategy to sample exact nodes under the specific pattern. This strat-
egy allows us to more closely model the local semantic, higher-order, and global
distribution if the learned τ can correctly characterize the ratio of different
heterogeneous component patterns in the observed heterogeneous graph.

4.3.2 Complexity Analysis.

The computational complexity of HGEN is O(W · L), where W is the
weights of a single LSTM unit, and L is the length of the generated hetero-
geneous instances. However, the length of our proposed heterogeneous walk
is considerably small (1 ≤ L ≤ 3) while the walk length in other random-
walk-based graph generative method [22] is (≥ 16). For auto-regressive graph
generation models [2, 3], the time complexities are at least O(|V|2 ·W ), where
|V| is the cardinality of the node set. They convert graph as a long sequence
by performing a large number of breadth-first-search (BFS) enumerations for
each graph. Additionally, HGEN also has linear complexity in graph assem-
bly, it only needs to run the trained model Ts times to sample heterogeneous
walks for constructing the score matrix S. To sum up, the overall complexity of
HGEN can be reduced to O(W +Ts), which makes our proposed model highly
efficient for handling large graphs, since the overall process is not sensitive to
the number of nodes at all.
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(a) Observed heterogeneous
graph 

(b) Inaccurate generated
graph 

Data
Mining

Data
Mining

Fig. 6: Example of two heterogeneous graphs with different semantic
information: the observed meta-path patterns are different, although the
node and edge distribution are the same between two graphs. Specifically,
since we do not observe a direct link between (author, venue) and (paper,
paper) in the observed graph Figure 6(a). It is not accurate for the generated
graph Figure 6(b) that generate such links.

4.4 Meta-path Information Preservation Analysis

As we discussed in Sec. 3, it is significant to preserve the meta-path infor-
mation in our generated graph. Taking Fig. 6 as an example, although both
graphs have exactly the same structure, they are still regarded as two dif-
ferent heterogeneous graphs since their meta-path distributions are different.
Given the importance of the meta-path information in heterogeneous graph
generation, we further show that our framework can successfully preserve this
meta-path information as proved in Theorem 1.

Theorem 1 The distribution of meta-path patterns O(r)
of the generated het-

erogeneous graph equals the distribution of meta-path patterns O in the observed

heterogeneous graph, namely p(O(r)
) = p(O).

Proof . We will prove that the ratio of the meta-path patterns can be preserved in
three steps: 1) the ratio of different meta-path patterns can be preserved during the
sampling procedure; 2) the ratio of generated meta-path patterns can be preserved
during the generation procedure; 3) the meta-path patterns can be preserved during
the graph assembling procedure.

Meta-path Ratio Preservation in Sampling. Let O = (o1,o2, ...) be the collec-
tion of meta-paths obtained from the observed heterogeneous graph G, each oi is a
meta-path in one-hot format oi ∈ {0, 1}1×R, where the R is the total number of

different meta-path patterns. O(τ)
= (o

(τ)
1 ,o

(τ)
2 , ...,o

(τ)
K ) is the sequence of sampled

meta-paths with sampling size K, where each meta-path o
(τ)
j ∈ {0, 1}1×R is drawn

independent and identically distributed (i.i.d) from O.
Suppose that µ = [µ1, µ2, ..., µR]T denotes the probability of each individ-

ual meta-path pattern in O, it is obvious that E[oi|µ] =
∑

oi
p(oi|µ)oi =

[µ1, µ2, ..., µR]T = µ. Now consider the total K observations O(τ)
=
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# of Nodes # of Edges Average Degree # of Node Types # of Edge Types

Syn100 100 490 9.8 3 6

Syn200 200 1,090 10.9 3 6

Syn500 500 2,987 11.95 3 6

SynMulti 300 1,352 12.13 3 8

PubMed 1,565 13,532 17.29 4 10

IMDB 1,653 4,267 5.432 4 4

DBLP 11,240 47,885 8.52 4 3

Table 2: Dataset Overview.

(o
(τ)
1 ,o

(τ)
2 , ...,o

(τ)
K ), the corresponding likelihood function takes the form:

p(O(τ)|µ) =

R∏
i

K∏
j

µ
o
(τ)
ij

j =

K∏
j

µ

∑
n o

(τ)
nj

j =

K∏
j

µ
mj
j (2)

We see that the likelihood function depends on the K data points only through the

R quantities: mj =
∑
n o

(τ)
nj . Since the number of observations of o

(τ)
j equals 1, we

achieved sufficient statistics for this distribution. Therefore, p(O(τ)
) = p(O) can be

proved.
Meta-path Ratio Preservation in Generation. Since we have proved the meta-path

ratio can be preserved during the sampling, the next step is to show that the distribu-

tion of generated meta-paths p(O(g)
) is equal to p(O(τ)

). Proving p(O(g)
) = p(O(τ)

)
is equivalent to prove whether pdata = pg in the GAN setting. As being proved in
the works of GANs and their variants [34, 42], it showed that the objective function
of the generator G is equivalent to optimize the distribution distance between pdata
and pg if the discriminator D is optimal. Therefore, global optimality of pg = pdata
can be achieved if both generator G and discriminator D have enough capability.

Therefore, p(O(g)
) = p(O(τ)

) if both G and D are optimal in our framework.
Meta-path Ratio Preservation in Assembling. Finally, we show that our graph

assembling method can also preserve the meta-path ratio from the generated data

O(g)
such that p(O(g)

) = p(O(r)
). As discussed in Sec. 4.3, the new graph Ĝ is directly

assembled by meta-paths (o
(g)
1 ,o

(g)
2 , ...,o

(g)
Q ) that are sampled i.i.d from O(g)

with

sampling size Q, which is exactly the reverse procedure of Eq. (2).
Therefore, if both generator G and discriminator D are optimal, the multinomial

distribution p(O) of distinct meta-path patterns can be preserved in all three steps
of our generation framework. �

5 Experiment

In this section, we compare HGEN to the adaption of closest state-
of-the-art baselines, demonstrating its effectiveness in generating realistic
heterogeneous graphs in diverse settings. The code and dataset can be found
at: https://github.com/lingchen0331/HGEN.



Springer Nature 2021 LATEX template

16 Motif-guided Heterogeneous Graph Deep Generation

5.1 Data

We perform experiments on three synthetic heterogeneous graph datasets
and three real-world heterogeneous graph datasets. We summarize the statis-
tics of datasets in Table 2.
Synthetic Datasets. We synthesis random heterogeneous graphs of different
sizes through the combination of N overlapping homogeneous graphs, where
the overlap is accomplished by node sharing. We generate three random het-
erogeneous graphs (named as Syn100, Syn200, and Syn500) with node size 100,
200, and 500, respectively. The number of node types in each of the synthetic
heterogeneous graph is 3. In addition, we sample a random heterogeneous
graph SynMulti with node size 300 that contains multiple edge types between
two nodes.
Real-world Datasets. We also employ three large-scale real-world heteroge-
neous graph datasets in our experiment.

• PubMed. This dataset consists of four classes of nodes: Gene (G), Disease
(D), Chemical (C), and Species (S). We construct a sub-graph that relates to
all Chemical nodes labeled in [10]. There are 1, 565 nodes and 13, 532 edges.

• IMDB. This movie-related heterogeneous graph is adopted from [17], which
contains three node types: Director (D), Actor (A), Movie (M), and Genre
(G). We construct a subgraph that contains all the movies with a score
≥ 7.5. This graph contains 1, 653 nodes and 4, 267 edges.

• DBLP. This heterogeneous graph adopted from [17] contains Paper (P),
Author (A), Venue (V), and Term (T) as node types. We sample a sub-
graph that is related to five computer science venues: KDD, WSDM, WWW,
ICDM, and ICML. There are 1, 565 nodes and 47, 885 edges.

5.2 Experiment Setting

In our experiment, we focus on meta-paths with length 1, 2, and 3 as they
are the most common ones in heterogeneous graphs [11]. We sample 10 graphs
from each of the trained models and report their average results and standard
deviation in Table 3. We randomly select 60% of the edges for training, and
the remaining graph is used for testing.
Baselines. Since no baseline is available for the novel task of heterogeneous
graph generation, we carefully adapt four state-of-the-art graph generation
methods: NetGAN [22], GraphVAE [23], VGAE [25], and GraphRNN [2]. We
utilize node type information as node features of the input graph in GraphVAE
and VGAE. In addition, we modify NetGAN and GraphRNN to make them
available to generate node types. HGEN refers to the model that does not
generate network motifs for the proposed method. We further compare HGEN-
Motif, which generates network motifs along with meta-paths.
Evaluation Metrics. The evaluation of heterogeneous graph generation can
be divided into three aspects. 1) Graph Statistical Properties: we focus on
six typical statistics as widely used in [22, 31, 36] for measuring the struc-
tural similarity, including LCC (the size of the largest connected component),
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TC (Triangle count), Clustering Coef. (clustering coefficient); Powerlaw Coef.
(power-law distribution of the node degree distribution), Assortativity, and
Degree Distribution Dist. (Node degree distribution Maximum Mean Discrep-
ancy distance). 2) Graph Novelty and Uniqueness. Ideally, we would want the
generated graphs to be diverse and similar, but not identical. To quantify this
aspect, we check the uniqueness between the generated graphs by calculat-
ing their edit distances. Specifically, we align the node order between the test
graph and the generated graph, and calculate the EO Rate (edge overlapping
rate) between the generated graphs and the testing graphs for measuring the
novelty of the generated graphs. A higher EO Rate indicates the generation
method tends to generate more similar graphs than other approaches. The
uniqueness is utilized to capture the diversity of generated graphs. To calcu-
late the uniqueness of a generated graph, we let each model to generate 100
graphs, and the generated graphs that are subgraph isomorphic to some other
generated graphs are first removed. The percentage of graphs remaining after
this operation is defined as uniqueness. For example, if the model generates
100 graphs, all of which are identical, the uniqueness is 1/100 = 1%. 3) Meta-
path Ratio Properties: We measure the preservation of meta-path distribution
in two metrics. Firstly, we measure the meta-path length ratio preservation.
Secondly, under different meta-path lengths, we also measure the distribution
of the frequent meta-path patterns.

5.3 Quantitative Analysis

Preservation of Graph Statistical Properties. We evaluate the perfor-
mance of HGEN and its extended model HGEN-Motif against all the baselines
on the standard graph statistics, and the results are shown in Table 3. Over-
all, HGEN and HGEN-Motif achieve competitive performance with very few
exceptions on all metrics over synthetic and real-world datasets. We report sev-
eral observations from the table: 1) Node-level similarity : HGEN-based models
are the dominant performer in most node-level metrics. Although there are no
significant differences in both Assortativity and Power-law Coef. among all the
algorithms, HGEN rank top with very few exceptions in the node degree dis-
tribution distance with at least 40% improvement, which indicates that HGEN
can effectively capture the degree distribution of all types of nodes through
jointly learning both meta-path and random walk distribution. 2) Graph level
similarity : HGEN-based models still exceed other baselines by effectively pre-
serving the community distribution. Specifically, for all the datasets with rich
local community information (e.g., PubMed and synthetic datasets), HGEN-
based models can utilize the heterogeneous node embedding for preserving
the higher-order structural information in the generated heterogeneous walks,
which leads to better performance in metrics like LCC, TC, and Clustering
Coef.. However, in heterogeneous graphs with rare high-order structures, the
performance of HGEN-based models are comparatively less impressive. 3) As
shown in Table 3, the random-walk based method HGEN and NetGAN can
generally achieve stable performance than one-shot based (e.g., VGAE and
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Graphs Models LCC TC Clustering Coef. Powerlaw Coef. Assortativity Degree Distribution Dist. EO Rate Uniqueness

Syn-100

GraphRNN 78.43± 2.23 16.62± 5.42 0.002± 0.01 1.611± 0.09 −0.153± 0.07 2.19e−2± 3.21e−3 37.21%± 1.08% 33.09%± 7.06%
NetGAN 80.12± 3.45 6.79± 1.76 0.001± 0.00 1.524± 0.21 −0.213± 0.09 1.33e−2± 6.46e−3 8.74%± 0.82% 94.03%± 0.49%

GraphVAE 99.01± 0.00 224.81± 5.13 0.70± 0.04 4.579± 0.05 −0.73± 0.05 3.71e−1± 1.98e−2 11.5%± 1.09% 65.54%± 2.98%
VGAE 48.9± 4.63 63.7± 46.25 0.184± 0.06 1.87± 0.10 0.1± 0.03 2.23e−1± 6.08e−2 3.23%± 0.09% 51.1%± 3.04%
HGEN 81.13± 2.42 53.12± 3.78 0.079± 0.01 1.782± 0.01 −0.114± 0.03 8.79e−3± 3.12e−3 10.2%± 0.17% 92.97%± 0.72%

HGEN-Motif 80.54± 3.12 47.34± 2.69 0.089± 0.01 1.673± 0.02 −0.207± 0.06 6.28e−2± 1.77e−3 13.7%± 0.17% 89.32%± 1.32%

Real 85 36 0.072 1.832 -0.169 N/A N/A N/A

Syn-200

GraphRNN 132.76± 1.08 2.54± 0.77 0.001± 0.00 1.603± 0.01 −0.05± 0.01 5.15e−2± 3.07e−3 25.81%± 2.65% 27.72%± 3.07%
NetGAN 153± 1.56 2.24± 0.35 0.001± 0.00 1.579± 0.31 −0.008± 0.001 6.43e−2± 4.2e−3 11.32%± 0.77% 95.88%± 3.19%

GraphVAE 195.43± 1.12 51.32± 1.01 0.002± 0.001 5.377± 0.21 −0.75± 0.05 5.38e−1± 1.7e−2 1.78%± 0.41% 64.37%± 2.94%
VGAE 86.2± 16.93 860.4± 185.9 0.23± 0.04 1.787± 0.08 0.2± 0.15 8.53e−2± 2.14e−2 3.74%± 0.08% 59.65%± 1.46%
HGEN 158.5± 2.64 38.5± 5.26 0.043± 0.01 1.732± 0.02 −0.065± 0.04 2.25e−2± 5.5e−3 4.22%± 0.67% 96.31%± 5.11%

HGEN-Motif 169± 4.89 29.28± 3.43 0.049± 0.01 1.72± 0.02 −0.015± 0.08 3.73e−3± 2.5e-4 8.6%± 1.3% 93.57%± 3.61%

Real 180 28 0.037 1.809 -0.089 N/A N/A N/A

Syn-500

GraphRNN 311.59± 2.14 11.53± 5.57 0.004± 0.001 1.862± 0.01 1.862± 0.002 4.05e−2± 1.1e−3 21.87%± 0.86% 29.54%± 4.32%
NetGAN 305.81± 14.28 3± 1.21 0.001± 0.001 1.812± 0.07 0.03± 0.12 4.83e−2± 7.4e−4 6.72%± 0.13% 93.98%± 0.21%
VGAE 97.0± 29.24 4346.2± 453.62 0.193± 0.02 1.77± 0.06 −0.022± 0.09 2.22e−1± 2.4e−2 5.46%± 1.12% 63.65%± 3.1%
HGEN 347.88± 7.63 74.88± 4.78 0.031± 0.01 1.865± 0.02 −0.097± 0.01 2.81e−2± 3.4e−3 1.49%± 0.11% 95.89%± 1.18%

HGEN-Motif 398± 7.23 59.63± 5.68 0.024± 0.03 1.72± 0.02 −0.015± 0.08 3.73e−3± 2.5e-4 10.32%± 2.5% 89.67%± 1.32%

Real 417 8 6.5e−3 1.978 -0.12 N/A N/A N/A

Syn-Multi

GraphRNN 219.32± 32.65 23.67± 13.88 0.003± 0.001 0.962± 0.02 1.373± 0.04 3.77e−2± 2.9e−3 36.71%± 4.66% 42.12%± 4.99%
NetGAN 215.48± 6.99 23± 4.74 0.02± 0.001 1.076± 0.03 0.67± 0.22 3.78e−2± 3.5e−3 19.87%± 0.54% 89.13%± 0.34%
VGAE 106.8± 37.12 1432.8± 283.12 0.087± 0.03 1.48± 0.09 −0.039± 0.12 2.22e−1± 2.4e−2 7.93%± 0.78% 27.78%± 9.3%
HGEN 295.82± 3.91 35.71± 5.76 0.019± 0.008 1.381± 0.03 −0.055± 0.03 1.38e−2± 1.3e−3 1.49%± 0.11% 95.89%± 1.18%

HGEN-Motif 282.78± 3.79 43.32± 2.99 0.023± 0.003 1.087± 0.05 −0.079± 0.04 1.21e−2± 2.4e−4 2.88%± 0.57% 91.32%± 1.07%

Real 275 47 0.027 1.243 -0.36 N/A N/A N/A

PubMed

GraphRNN 1563.23± 32.46 1549.79± 33.62 0.01± 0.007 1.753± 0.04 −0.03± 0.01 1.61e−1± 3.71e−2 13.41%± 1.24% 54.62%± 4.32%
NetGAN 793.2± 41.5 18.3± 0.9 0.001± 0.00 1.47± 0.11 −0.12± 0.02 6.69e−2± 1.5e−3 4.32%± 0.54% 78.03%± 0.19%
VGAE 347.9± 7.03 70, 982.2± 4, 086.53 0.234± 0.01 2.48± 0.01 −0.466± 0.01 1.38e−1± 4.8e−3 ≈ 0% 22.87%± 1.68%
HGEN 825.6± 22.1 1569.3± 31.3 0.034± 0.003 1.634± 0.07 −0.143± 0.08 3.92e−2± 7.5e−4 0.07%± 0.01% 93.91%± 0.12%

HGEN-Motif 897.3± 12.5 1972.3± 46.7 0.051± 0.002 1.505± 0.04 −0.162± 0.07 5.21e−2± 6.2e−4 0.12%± 0.03% 94.12%± 0.33%

Real 948 2, 114 0.068 1.75 −0.208 N/A N/A N/A

IMDB

GraphRNN 1425.47± 121.5 142.13± 5.87 0.179± 0.02 2.97± 0.05 0.05± 0.04 1.98e−1± 2.61e−3 9.87%± 0.51% 21.52%± 3.31%
NetGAN 932.5± 8.49 0.0± 0.0 0.0± 0.0 2.08± 0.01 −0.25± 0.07 1.36e−1± 1.89e−3 7.62%± 0.07% 82.69%± 1.27%
VGAE 635.2± 4.16 7, 752.4± 281.32 0.141± 0.01 2.02± 0.02 −0.49± 0.15 1.9e−1± 2.33e−3 ≈ 0% 42.71%± 1.47%
HGEN 945.2± 11.54 26.0± 3.28 3.56e−3± 0.0 2.16± 0.01 −0.19± 0.04 4.36e−2± 4.25e−4 2.69%± 0.04% 88.71%± 0.39%

HGEN-Motif 932.12± 7.58 53.1± 4.66 4.66e−3± 0.0 2.23± 0.04 −0.21± 0.03 1.29e−2± 3.13e−3 5.32%± 0.13% 87.43%± 0.52%

Real 1, 074 1 4.43e−4 2.51 -0.235 N/A N/A N/A

DBLP

NetGAN 10, 353± 72.71 0.0± 0.0 0.0± 0.0 3.308± 0.41 −0.059± 0.03 5.03e−1± 2.1e−2 5.48%± 0.32% 72.51%± 0.32%
VGAE 3, 771± 236.29 1214.69± 452.61 0.271± 0.06 1.579± 0.07 −0.44± 0.11 8.71e−2± 1.77e−3 ≈ 0% 17.26%± 0.41%
HGEN 5, 163± 21.41 1068± 12.83 0.018± 0.001 1.793± 0.21 −0.157± 0.03 5.82e−3± 1.67e−4 1.55%± 0.09% 66.59%± 0.17%

HGEN-Motif 5,624± 78.32 788± 65.32 0.012± 0.001 1.705± 0.14 −0.157± 0.03 3.57e−3± 2.55e−4 1.26%± 0.1% 58.89%± 1.79%

Real 5, 513 0.0 0.0 1.855 −0.201 N/A N/A N/A

Table 3: Performance evaluation over compared baselines. The Real rows
include the values of real graphs, while the rest are the evaluation results of
different algorithms. The best performance (the closest to real value) achieved
under each metric for a particular dataset is highlighted in bold font. Note that
we do not include GraphVAE in datasets with (≥ 300) nodes and GraphRNN
in datasets with (≥ 10, 000) nodes because the programs return errors.

GraphVAE) and sequential-based (GraphRNN) generative models across all
datasets. The reason is that random walk based methods learn the overall
graph distribution by learning the distribution of its discrete random walks,
which is not sensitive to various graph characteristics. 4) Table 3 also shows
that VGAE cannot produce realistic graphs even though it achieves the best
performance in some metrics, which is expected since the primary purpose
of VGAE is learning node embeddings but not generating entire graphs. In
addition, as the size of the graph increases, GraphRNN also fails to generate
realistic graphs because of the weak scalability of auto-regressive models.
Graph Novelty and Uniqueness. The results of graph novelty and unique-
ness are reported in the right two columns in Table 3. Specifically, HGEN
achieves a generally lower EO rate across all datasets, indicating that HGEN
does not purely memorize the seen heterogeneous walks in the training data.
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Fig. 7: The meta-path distribution comparison. 7a and 7b are the generated
meta-path length distribution for Syn 500 dataset and PubMed dataset,
respectively. 7c - 7e and 7f - 7h are frequent meta-path patterns distribution
with length 1, 2, 3 for Syn 500 dataset and PubMed dataset, respectively.

In contrast, GraphRNN has a higher EO rate, indicating GraphRNN regen-
erates graphs it saw during training. In addition, VGAE achieves the lowest
EO rate since it fails to generate realistic heterogeneous graphs. For Unique-
ness, HGEN also exceeds other one-shot and sequential-based algorithms by
an evident margin, demonstrating the generated graphs’ diversity.
Preservation of Graph Semantic Properties To further demonstrate the
performance of HGEN, we evaluate the performance of meta-path distribution
preservation with other baselines. Specifically, we measure the meta-path dis-
tribution from two aspects: 1) the overall meta-path length ratio preservation
in generated graphs and 2) frequent meta-path patterns under each length.
In general, all the methods can approximately maintain the meta-path length
ratio except for VGAE. However, HGEN can constantly achieve a better per-
formance as shown in Figure 7a and 7b. 2) As shown in Figure 7c - 7e and
7f - 7h, HGEN can outperform other methods by at least 10% in preserving
the ratio of specific meta-path patterns under each length, which is expected
since HGEN is able to learn and maintain the meta-path distribution from the
observed graphs while others cannot.
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Method
NetGAN GraphRNN GraphVAE VGAE HGEN HGEN-Motif

F-1 AUC F-1 AUC F-1 AUC F-1 AUC F-1 AUC F-1 AUC

Syn 100 73.24 88.93 79.67 89.67 54.32 78.63 66.78 87.89 78.93 92.63 81.52 93.11
Syn 200 76.29 81.63 82.54 93.41 58.67 77.63 59.63 77.89 77.92 89.68 79.25 92.66
Syn 500 81.32 89.86 80.54 92.67 77.85 84.63 61.76 83.81 73.69 89.63 84.32 93.42
PubMed 68.54 77.63 71.32 78.77 56.53 75.45 54.32 76.42 72.89 79.96 71.32 79.63
IMDB 64.96 77.82 52.42 71.63 62.53 77.64 67.21 81.53 70.83 80.82 68.32 82.78
DBLP 70.54 81.32 64.32 84.31 52.53 59.63 62.53 82.81 72.57 89.92 73.58 74.51

Syn Multi – – – – – – – – 69.54 87.63 72.45 80.32

Table 4: Link Prediction Performance (in %). We randomly sampled 60%
edges as a training graph and the rest of the edges as testing. For Syn Multi
dataset, since no existing methods are capable of generating different
meta-relations between edges, we only compare HGEN with its variant
HGEN-Motif.

HGEN-S HGEN-E HGEN-A HGEN HGEN-Motif Real

LCC 1563.76 824.14 819.32 825.6 897.3 948
TC 1453.23 784.34 863.53 1569.3 1972.3 2114
OC 512.38 379.63 432.67 453.28 509.45 576

Clustering Coef. 0.026 0.015 0.016 0.034 0.051 0.068
Power Law Coef. 1.649 1.652 1.621 1.634 1.505 1.75
Assortativity -0.09 -0.132 -0.131 −0.143 −0.162 -0.208

Node Degree Dist. 0.0354 0.0388 0.0515 0.0392 0.0521 N/A

Table 5: Ablation Study in PubMed Dataset

5.4 Link Prediction

Link prediction is commonly used as an evaluation to predict the existence
of unobserved links (i.e., edges) in a given observed graph, and we use it to eval-
uate the generalization power of HGEN and other approaches. We randomly
mask out 40% of the edges as a testing set and report the performance with
two commonly used metrics: area under the ROC curve (AUC) and F1 score
(F1). We conducted the experiments with other approaches on all datasets;
note that the Syn-Multi dataset contains multiple edge relations while other
approaches cannot handle the multi-typed edge generation job. We, therefore,
only compare HGEN variants.

The results are reported in Table 4. Although there is no overall domi-
nant method, HGEN-based methods still achieve comparably more impres-
sive performance. With the effort to preserve local semantic distribution
and higher-order structural information, HGEN-based models can leverage
observed heterogeneous information to complement the rest. In addition to the
normal link prediction, HGEN-based models can still perform well in recover-
ing the multi-edge type information, proving HGEN can characterize different
meta-path distributions in the observed heterogeneous graph.

5.5 Ablation Study

We further conduct ablation studies on the PubMed dataset to evaluate
the effect of different components in HGEN, and the results are exhibited
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in Table 5. The ablative experiments are conducted based on each of the
essential components in our architecture. Specifically, we select a single large
heterogeneous walk length - 8 to replace the heterogeneous walk length 1,
2, and 3 in our model, and the resulting model is called HGEN-S. We also
independently remove the heterogeneous node embedding to let the generator
uniformly sample the next node, and the resulting model is named HGEN-E.
Moreover, we replace the heterogeneous graph assembler with a probability-
based graph assembler, namely HGEN-A. Lastly, we add another evaluation
metric - OC (Orbit Count) to quantify how HGEN and HGEN-Motif perform
when preserving higher-order structures.

As shown in Table 5, all the ablative models achieve similar results in node-
level metrics like Powerlaw Coef., Assortativity, which is because HGEN can
well capture this node-level information through learning the heterogeneous
walk distribution. Other than that, we observe: 1) HGEN-S can construct a
larger sub-graph since the length of the heterogeneous walk is largely greater
than HGEN, but the large subgraph doe not makes any improvements in terms
of capturing the heterogeneous structural information. The reason is there are
rarely long meta-path in the heterogeneous graph since longer meta-paths are
highly redundant because of the shared sub-parts [11]. We instead choose 1,
2, and 3 as our meta-path lengths to make the whole generation more flexible.
2) removing the heterogeneous node embedding would make HGEN-E hard
to capture the local graph structure since HGEN relies on the encoded neigh-
borhood information to make the node sampling aware of the local structure.
3) as shown in the node degree distribution evaluation, replacing the hetero-
geneous graph assembler with a probabilistic graph assembler would cause
HGEN-A hard to capture the latent heterogeneous node distribution because
it uniformly samples edges from the generated walks and completely neglects
the generated meta-path information. However, HGEN takes meta-paths as a
basic unit to sample edges so that it can effectively preserve the overall dis-
tribution of meta-paths as proved in Theorem 1. Therefore, the node degree
distribution under each type can be well preserved. Finally, HGEN-Motif per-
forms better than HGEN in generating the most similar triangle and orbit
counts with the observed graph, which also justifies the choice of adding motif
as the based generation unit.

5.6 Running Time Comparison

Figure 8 shows the results of our running time experiments. The running
times on both synthetic and real-world datasets, including both training and
inference time, are shown with respect to the growth of the number of nodes
in both synthetic and real-world datasets. All running times are in the log−10
scale. As shown in both figures, random-walk-based generative models (HGEN
and NetGAN) have a constant running time growth in terms of the number
of nodes, which is especially important when dealing with large graphs. Even
though VGAE is much faster in running time, it is indeed a representation
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Fig. 8: Running time comparison of different models in both synthetic and
real-world datasets. It is clear that GraphVAE is not scalable in generating
graphs with more than 200 nodes. GraphRNN also fails in generating large
graphs (with more than 10, 000 nodes). The proposed HGEN exhibits a
linear running time growth in terms of the growth of graph size.

learning framework based on GCN and lacks the ability to generate realis-
tic heterogeneous graphs, and the results are also reflected in Table 3. Both
GraphRNN and GraphVAE fail to compare with HGEN in model scalability
because their designs require at least O(|V|2) to process the transformed node
sequence and adjacency matrix.

5.7 Graph Visualization

Since it is nearly impossible to judge whether a graph is realistic only by
statistics, we visualize the generated graph to further demonstrate the perfor-
mance of HGEN (Figure 9). Visually, HGEN looks the most similar, while both
GraphVAE and VGAE is the most dissimilar. This result is consistent with the
quantitative results obtained in Table 3. For one-shot based generative mod-
els, GraphVAE and VGAE, they fail to capture the structural similarity of
the observed heterogeneous graph. For the sequential-based and random walk
based graph generative methods, GraphRNN and NetGAN can successfully
mimic the structure similarity but fail to preserve the global heterogeneous
graph properties (e.g., overall meta-path ratio).

6 Conclusion

This paper focuses on a new problem: heterogeneous graph generation. To
achieve this, we propose a novel framework - HGEN for the heterogeneous
graph generation. Specifically, the proposed method consists of a novel het-
erogeneous walk/motif generator that can hierarchically generate meta-paths
and a heterogeneous graph assembler that can construct new graphs by sam-
pling from the generated heterogeneous walks in a stratified manner. As the
extension of the meta-path-based HGEN, this paper proposes a novel module
HGEN-Motif that considers the network motif as one of the basic genera-
tion units in order to better capture the higher-order structural distribution.
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(a) Real (b) NetGAN (c) GraphRNN (d) GraphVAE (e) VGAE (f) HGEN

(g) Real (h) NetGAN (i) GraphRNN (j) GraphVAE (k) VGAE (l) HGEN

(m) Real (n) NetGAN (o) GraphRNN (p) VGAE (q) HGEN

(r) Real (s) NetGAN (t) GraphRNN (u) VGAE (v) HGEN

Fig. 9: 9a - 9f are the generated graph of the Syn 100 dataset, 9g - 9l are the
generated graph of the Syn 200 dataset, 9m - 9q are the generated graph of
the Syn 500 dataset, and 9r - 9v are the generated graphs of the PubMed
dataset. (Better to see with color)

We further unified the training framework to enable the generator to gener-
ate various heterogeneous instances to meet different statistics of the observed
heterogeneous graph. Compared to existing deep graph generation methods,
HGEN is tailored for heterogeneous graph generation and can provide more
insights into heterogeneous graph mining studies. It is evaluated from the
experiments that existing deep graph generation methods cannot well pre-
serve the local semantic, higher-order structural, and global distribution of
an observed heterogeneous graph, and thus cannot handle the unique job of
heterogeneous graph generation. As the first-of-its-kind heterogeneous graph
generation method, HGEN can not only provide benchmarks for the many
heterogeneous graph-related studies, but it can also enrich our understanding
of the implicit properties of heterogeneous graphs.
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