
1

Finding High-quality Item Attributes
for Recommendation

Xiaolin Zheng Senior Member, IEEE , Yanchao Tan, Yan Wang Senior Member, IEEE , Xiangyu Wei,
Shengjia Zhang, Chaochao Chen, Longfei Li, Carl Yang Member, IEEE

Abstract—The sparse interactions between users and items on the web have aggravated the difficulty of their representations in
recommender systems. Existing approaches leverage item attributes (e.g., item categories and tags) to alleviate the data sparsity
problem, so as to enhance the performance and interpretability of recommendation. However, directly using all attributes of items
cannot avoid the negative impacts of low-quality attributes, where manually labeling the quality of attributes is time-consuming. To this
end, we propose HQRec to jointly measure the quality of attributes automatically and perform recommendation accurately. Specifically,
we first analyze the different qualities among item attributes, and propose to leverage item categories to select high-quality tags via
category-guided quality measurement and direction-aware optimization in an unsupervised fashion. Then, we propose to capture the
complex relations among users and items based on the high-quality attributes, where a novel quality-aware embedding fusion and
quality-aware embedding propagation mechanism for users and items is devised. Extensive experiments on four real-world benchmark
datasets show drastic performance gains brought by our proposed HQRec framework, which constantly achieves an average of
14.73% improvement over the state-of-the-art baselines in terms of Recall and NDCG metrics. Insightful case studies also show that
our automatic quality measurements are highly accurate and interpretable.
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1 INTRODUCTION
Tags and item categories have been used as item attributes in
recommendation systems (shown in Fig. 1(a)) to character-
ize items, profile users, and alleviate the sparsity problem.
Among them, tags are annotated by users, which are large
in volume and rich in semantics. However, there exists a lot
of noise (i.e., low-quality attributes) in tags. Compared with
tags, item categories are less in amount, but they can usually
provide cleaner semantics (i.e., high-quality attributes) due
to their always-standardized format. The below Example 1
is introduced to illustrate the qualities of attributes.

Example 1. As shown in Fig. 1(a), based on Linda’s inter-
actions with STEAK, “#Beef Wellington”, and “#Ribeye steak”,
and Jack’s interactions with SEAFOOD and “#Shrimp”, we
can distinguish the preferences of Linda and Jack as steak
and seafood. However, it is hard to do so based on “#Eat
here” of Linda and ‘#Your plate” of Jack. Therefore, at-
tributes like STEAK and “#Beef Wellington” are high-quality
attributes to distinguish users and items, while “#Eat here”
and “#Your plate” are examples of low-quality attributes.
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Existing attribute-based solutions mainly leverage either
tags only [4], [43], [44] or item categories only [6], [40]. They
manifest drawbacks as follows: (i) models that use tags only
are easily affected by the low-quality tags; (ii) a model that
leverages item categories only misses rich semantics from
tags and fails to provide finer profiles of items and users,
which are illustrated by Example 2.

Example 2. As shown in Fig. 1(b), when profiling users with
tags only, tags such as “#Eat here” and “#Your plate” fail to
reflect users’ preferences directly. Moreover, the proportion
of low-quality tags exceeding meaningful tags can impede
the modeling of users and items. When profiling users with
item categories only (e.g., STEAK and SEAFOOD), they fail
to distinguish Linda from Lisa and Ethan, where Linda likes
“#Ribeye steak” in addition to “#Beef Wellington” while Lisa
and Ethan only like “#Beef Wellington”.

With only tags or item categories, it is difficult to
accurately profile users and characterize items based on
both clean and rich semantics attributes. Although preva-
lent approaches leverage both types of attributes based on
attributed graphs, they cannot eliminate the influence of
low-quality attributes when training the model. Moreover,
since the neighbor aggregation and convolution layer are
widely used in graph learning, low-quality attributes can
easily affect the representation of users and items via high-
order relation propagation. For example, as shown by the
red dotted lines in Fig. 1(a), after two hops of propagation
(i.e., tag-item-user), “#Your plate” that indirectly profiles Lisa
will be also involved in the embedding learning of Lisa.
In this way, the negative impacts of low-quality tags are
exaggerated through the graph convolutions.
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Fig. 1. A toy example motivating example of leveraging both item categories and tags for profiling users and characterizing items. (a) shows an
attributed graph network that includes users, items, item categories, and tags. (b) Profiling users with tags only or item categories only. (c) Profiling
users and characterizing items with high-quality attributes, which can model users with both clean and rich semantics.

Therefore, it is in high demand to select and leverage
high-quality attributes from both item categories and tags
for improving the performance of recommendation. As
shown in Fig. 1(c), with both clean and rich semantics, we
can reduce the influence of noisy attributes and leverage
the high-quality attributes to improve the performance of
recommendation. Despite these benefits, modeling users
and items with high-quality attributes, however, has the
following open challenges.
Challenge I: How to automatically select high-quality item at-
tributes for more accurate recommendation? A straightforward
way is to manually label high-quality attributes. However,
such labeling is time-consuming due to a large number of
attributes and the significant differences among attributes
in different datasets. For example, the number of tags in
the ML20M dataset is 8,534. Moreover, the item categories
and tags in the NYC-R dataset are relative to food while
those in the ML20M dataset are relative to movies. Without
any contexts of item categories and tags, most existing
works filter attributes in the preprocessing stage directly
according to the occurrence frequency of an attribute [19].
However, such methods cannot filter the attributes that
show up frequently but are not helpful for distinguishing
users and items. Therefore, they fail to assure the quality
of selected attributes. Accordingly, we need to exploit an
automated quality measurement mechanism for attributes,
which can adapt to any datasets and help to profile users
and characterize items in recommender systems.
Challenge II: How to improve the performance of item recom-
mendation based on the high-quality attributes? Existing at-
tributed graph models for recommendation have provided
strong performance via performing the graph convolution
for high-order interactions [18], [38]. However, it is bet-
ter to perform recommendation only under high-quality
attributes rather than aggregating all attributes indiscrimi-
nately. In this case, the model can avoid the negative impact
of noisy information from high-order neighbors and make
use of its learning capacity. Since the existing attributed
graph models do not explicitly consider the qualities of
attributes, there are still open problems on how to im-

prove recommendation performance based on high-quality
attributes only.

To address the above challenges, in this paper, we pro-
pose HQRec, which is a framework that can automatically
measure and select high-quality attributes for improving the
performance of recommendation. The framework contains
two components: (i) Quality measurement module, which is in-
troduced to obtain quality scores by measuring the distances
between item categories and tags based on category-guided
metric learning with direction-aware optimization. After
calculating the distance between a tag and the categories
of one item, we can automatically quantify the quality of
attribute under the item and address Challenge I. (ii) Recom-
mendation module, which includes quality-aware embedding
fusion layer and quality-aware embedding propagation
layer based on the output of quality measurement mod-
ule. By leveraging the learned quality scores of attributes
as interpretable weights, we are able to jointly train the
quality measurement module and recommendation module
to accurately profile all items and users and address the
problem in Challenge II.

Our contributions are summarized as follows:
• Analysis: We make a detailed analysis of how different

quality of attributes influence models from empirical
analysis. This analysis helps us design a proper quality
measurement mechanism to achieve better leverage of
item categories and tags (Section 3).

• Model: We propose HQRec, a novel model for recommen-
dation based on high-quality attributes. In the quality
measurement module, we propose category-guided metric
learning and direction-aware optimization to automatically
rank the quality of attributes without supervision. In
the recommendation module, we introduce quality-aware
embedding fusion and quality-aware embedding propagation
based on the weighted high-quality attributes (Section 4).

• Experiments: We conduct extensive experiments on two
real-world datasets, which demonstrate significant im-
provements of the proposed HQRec framework on rec-
ommendation together with highly accurate and inter-
pretable attribute selection results (Section 5).



3

𝑣! 𝑣"

𝑡! 𝑡# 𝑡$𝑐!

(c) The entropy values of tag-category via co-
occurred of categories and tags.(a) The influence of a frequent tag 𝑡#

𝑐#

1.0 0.0

0.5 0.5

0.1 0.9

𝑡!

STEAK SEAFOOD

𝒕𝟐

𝑐! 𝑐#

𝑡$

#Wellington

#Eat here

#Shrimp

𝑢! 𝑢# 𝑢"

①
①

②
②

②

①

②

Steak Seafood

Interactions from data

The influence from a
tag to an item
The influence from an
item to a user

A frequent tag
②

(b) The histogram of entropy values of
user-category and user-tag on NYC-R

0.00

0.69

0.32

Entropy

Fig. 2. The differences between item categories and tags. (a) shows that a frequent tag “#Eat here” fails to distinguish users. (b) shows the entropy
distributions of categories and tags over users. A low entropy value means the user’s preference is consistent over the selective attributes. (c) shows
that “#Eat here” with a high entropy value is an example of a low-quality tag.

2 RELATED WORK

2.1 Recommender Systems

Collaborative filtering (CF) has been widely used in recom-
mender systems due to its relatively high performance with
easily collected data [10], [20], [33]. In general recommen-
dation, matrix factorization (MF) has become the de facto
method, which uses inner products to model the similarity
of user-item pairs [21], [28]. Recently, metric learning for
recommendations has attracted significant research atten-
tion [30], [32]. Existing methods in this line seek appro-
priate distance functions for input points instead of inner
products, which can address the limitations of MF. Based on
the Euclidean distance, [10] first proposed a method called
collaborative metric learning (CML), which learns a metric
space to encode not only users’ preferences but also the
user-user and item-item similarity. Since CML has a one-
to-many mapping problem which limits the representation
of users and items, [24] turned this problem to multiple one-
to-one mappings and [35] turned this problem to one-to-one
mappings between Euclidean and hyperbolic spaces. Con-
sidering that CML has a geometrically restrictive scoring
function and it has been proven to be an ill-posed algebraic
system, [34] learned latent user-item interaction relations
based on memory network and attention mechanism, which
helps to alleviate the potential geometric problem. However,
CF based models suffer from the cold-start problem and
could not perform well when users have limited records
[25].

To alleviate the data sparsity problem, many stud-
ies have incorporated auxiliary information, e.g., user at-
tributes [3], [11], item attributes [23], [42], social net-
work [17], [29], and so on. Among them, attribute enhanced
CF methods are widely studied as attributes can be easily
collected and used for recommendation [42]. Factorization
machine modeled pairwise interactions between all features
and was a generalized model since they can mimic most
factorization models with feature engineering [21], [27].

All these feature-enhanced CF models do not consider
the quality of attributes. However, attributes can be noisy
and low-quality, which may even harm the performance
after leveraging these attributes. Instead of removing low-
quality attributes manually, we design a model that learns
the quality of attributes in an unsupervised fashion.

2.2 Graph Convolutional Neural Networks

Recently, GCNs have shown huge success for graph rep-
resentation learning and related applications [5], [45]. As
the user-item behavior could be naturally regarded as a
graph structure, researchers have proposed graph based
recommendation models for better user and item embed-
ding learning [7], [39]. For example, LightGCN [7] proposed
simplified linear graph convolution operations and residual
learning between different layers, which is a state-of-the-
art content based GCN model for item recommendation.
EGLN [39] made the enhanced graph learning module and
the node embedding module iteratively learn from each
other via mutual information maximization. Furthermore,
it is common to incorporate additional attributes to alleviate
the data sparsity issue faced by graph learning models. For
example, AGCN [38] integrated linear graph convolution
operations with attribute inference based on incomplete
user/item attributes. KGCN [11] incorporated social ties
into the collaborative filtering architecture as side informa-
tion to characterize connectivity information across users.
AGNN [26] designed an attribute graph based on user
profiles and item features, which produced the preference
embedding for a cold user/item.

Although the above GCN-based recommendation mod-
els can learn weights to choose the important features via
weighted sum and attention operation, they cannot filter out
the frequent attributes that are not helpful for distinguishing
users and items. Therefore, a model that can assure the
quality of selected attributes and learn interpretable weights
for features is in great need.

3 PRELIMINARY STUDY

To investigate different qualities among categories1 and
tags, we conduct empirical studies on a real-world dataset
NYC-R (dataset statistics can be found in Section 5). Further-
more, we investigate how to select high-quality attributes
(e.g., categories and tags).

Although existing studies often select categories and tags
that are frequently used by users for improving the perfor-
mance of recommendations, they fail to filter the frequent
attributes that are not helpful for distinguishing users and
items, which can make users with different preferences close

1. The category in the following section of our paper typically corre-
sponds to item categories.
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to each other. As shown in Fig. 2(a), the tag “#Eat here” is
frequently used by all u1, u2, and u3. However, when pro-
filing users with “#Eat here”, it fails to distinguish u3 who
likes SEAFOOD from u1 and u2 who like STEAK, and thus
treats all three users with the same preference. Therefore, it
is important to find a metric other than frequency to select
high-quality attributes for profiling users.

Since the metric of entropy [16] can represent the data
distribution [1], we propose to calculate the entropy of
category and tag from an individual user’s perspective. The
entropy is calculated as follows:

H(E) = −
n∑

i=1

Pi logPi, (1)

where E = {E1,. . . ,Ei, . . . ,En} denotes the set of n possi-
ble events. The probabilities of these events are denoted as
{P1, . . . ,Pi, . . . ,Pn}.

Fig. 2(b) shows histograms of the entropy value via user-
category and user-tag matrices. Take category for example,
the entropy value of user u’s category is calculated via
H(Eu

c ) = −
∑Nc

i=1 P
u
c,i logP

u
c,i, where P u

c,i is the normal-
ized probability of interacting the i-th category (i.e., P u

c,i

= the number of interaction to category i
the number of interacted categories ). Nc is the number of

categories. A low entropy value of the user means the user’s
preference is consistent over the selective attributes.

Note that, the user’s distribution over categories is more
concentrated than that over tags, where most categories
have lower-value entropies than tags (e.g., 94.01% of the
categories and 0.06% of the tags have entropy values lower
than 4 in Fig. 2(b)). Since categories are more discriminative
for distinguishing users with different preferences, we have
an intuitive finding that the qualities of categories are higher
than tags.

However, a model that leverages categories only will
miss rich semantics from tags and fails to provide finer
profiles of items and users. Therefore, it is also needed
to leverage high-quality tags besides categories. Since both
categories and tags are attributes and categories have high
qualities, we then define how to obtain the entropy value
of tags by categories. A lower entropy value here means a
tag’s distribution over categories is concentrated and can
serve as a fine-grained description of categories. As shown
in Fig. 2(c), given the co-occurrence frequency of tags and
categories on items, the entropy of “#Ribeye steak” is 0 and
the entropy of “#Eat here” is 0.69. The low entropy of “#Beef
Wellington” shows that “#Beef Wellington” is closely related
to the category STEAK. As mentioned in Example 1, “#Beef
Wellington” is helpful to distinguish user’s preferences and
can serve as a fine-grained attribute of the clean semantic
STEAK. Therefore, “#Beef Wellington” can be regarded as
a high-quality attribute. However, “#Eat here” with a high
entropy value fails to differentiate the relations between
STEAK and SEAFOOD, which is a low-quality attribute.

In summary, categories are more consistently used by
users and thus more helpful to profile users, so we consider
that the qualities of categories are higher than tags. Among
a large number of tags, the tags with low entropy over cate-
gories can serve as the fine-grained attributes to categories,
which can be regarded as high-quality attributes as well.

TABLE 1
Notations

Notation Description
U ,V the embeddings of users and items
C,T the embeddings of categories and tags
M , N , Nc, Nt the number of users, items, categories, and tags
D, Da the dimensions for user/item and attributes
X, X̂ the original and predicted user-item matrix
XCa, XTa the item-category matrix and the item-tag matrix
W the learned quality score for tags

4 OUR FRAMEWORK

In this section, we would introduce our proposed HQRec
framework for joint quality assurance and recommendation.
We first introduce the problem statement and overall ar-
chitecture of the proposed model, followed by the detailed
model optimization process.

4.1 Problem Statement
We use u ∈ U , v ∈ V , c ∈ C, and t ∈ T to denote the
embeddings of user u, item v, category c, and tag t, where
U ∈ RD×M , V ∈ RD×N , C ∈ RDa×Nc

, and T ∈ RDa×N .
D and Da are the dimensions. M , N , Nc, and N t are the
number of users, items, categories, and tags. X ∈ RM×N

denotes the implicit feedback matrix between users and
items. XCa ∈ RN×Nc

and XTa ∈ RN×Nt

denote the item-
category matrix and the item-tag matrix. X, XCa, and XTa

are obtained from the original data.
In the real world, attributes have different qualities.

We first select high-quality tags via ranking the learned
quality score W ∈ RN×Nt

, and then leverage high-quality
attributes for better recommendation via the predicted pref-
erence X̂. The input and output are defined as follows:
• Quality Measurement Module: The goal of this module is

to leverage categories to select the high-quality tag ti for
item v according to the quality score Wi,v . The higher
value of score Wi,v , the higher quality of tag ti in item v.

• Recommendation Module: The goal of this module is
to predict users’ preferences to all items as: X̂ =
g([X,W ,U ,V ,C,T ,XCa,XTa]), where X̂ ∈ RM×N

denotes the predicted rating matrix.

4.2 HQRec Overview
We summarize the main components of the framework
HQRec in Fig. 3 to provide an overview. The inputs of
HQRec are interactions of user-item, item-category, and
item-tag matrix. We jointly perform quality measurement
for attributes and item recommendation as follows:.
• In quality measurement module, inspired by the empirical

and theoretical analysis in Section 3, we propose to lever-
age categories to automatically measure the quality of
tags via proposed category-guided metric learning and
direction-aware optimization.

• In recommendation module, HQRec presents a quality-
aware embedding fusion layer to integrate high-quality
attributes to the representation of items. The aggregated
attribute representations are further taken as an input of
the proposed quality-aware embedding propagation layer
to obtain high-order relations among users and items.
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Fig. 3. The overall design of our proposed HQRec framework.

After the joint training of quality measurement module
and recommendation module, the learned user and item
embeddings are used for recommendation.

4.3 Quality Measurement Module
Different attributes have different qualities, where high-
quality attributes are helpful by providing clean and rich
semantics while low-quality attributes bring about noises.
Therefore, directly leveraging all of them cannot improve
the performance of recommendation. As shown in Fig. 2(c),
the attribute in the red rectangle can influence both items
and users at the same time. To select the high-quality
attributes for recommendation, a straightforward way is to
manually label high-quality attributes from both categories
and tags. However, manual inspection and correction are
labor-intensive and hence scale poorly to large datasets.
Though it is widely used to filter attributes directly ac-
cording to their occurrence frequency in the pre-processing
stage, these methods fails to filter the frequent attributes
that are not helpful for distinguishing users and items (e.g.,
“#Eat here” in Fig. 2(b)).

To address the above problem, we propose to leverage
categories to automatically select high-quality attributes ac-
cording to the observations in Section 3. Specifically, in this
section, we introduce category-guided metric learning and
direction-aware optimization.

4.3.1 Category-guided Metric Learning
Since the quality of most categories are better than that
of tags, we can directly leverage all categories according
to XCa without selection. However, only leveraging the
information bring by categories is not enough, since it fails
to distinguish users and items via rich semantics of tags. As
shown in Fig. 1(b) and Example 2, only leveraging the cate-
gory STEAK fails to distinguish Linda from Lisa and Ethan,
where Linda likes “#Ribeye steak” besides “#Beef Wellington”

while Lisa and Ethan only like “#Beef Wellington”. Therefore,
it is important to make good use of the information of tags
in addition to categories.

To properly leverage tags, we propose to select high-
quality tags to ensure that we only bring in rich seman-
tic tags instead of noisy ones. Particularly, as shown in
Fig. 1, we only hope to adopt high-quality tags like “#Beef
Wellington” and “#Ribeye steak” instead of low-quality tags
like “#Eat here” and “#New York”. Based on the intuition
that the co-occurring tags should be closer to each other
than the not co-occurring ones, a straightforward way is
to leverage the relations among tags and perform a tag-
guided metric learning to select high-quality tags. However,
such a solution fails to distinguish low-quality attributes.
Moreover, it is easy to get negative impacts from low-
quality attributes. For example, due to the co-occurred of
t1 “#Beef Wellington” and t2 “#Eat here” on item v1 (shown
in Fig. 1), the distance between t1 and t2 should be closer
to the one between t1 and t6 “#Shrimp”. However, as shown
in Fig. 4(a), the tag-guided metric learning misleads “#Beef
Wellington” to stay close to SEAFOOD and “#Shrimp” to
move close to STEAK, leading to an opposite modeling on
the semantics of attributes. Therefore, selecting high-quality
tags is challenging without the supervision of exact labels.

Inspired by the analysis that the qualities of most cate-
gories are better than those of tags (cf. Section 2), we propose
to project categories and tags into one metric space and
provide a mechanism for learning the qualities of tags under
the guidance of high-quality categories. In this way, tags
with clean semantics can be simultaneously close to their
co-occurred categories (corresponding to the high-quality
tags), while tags with mixed semantics can be far away
from their co-occurred categories (corresponding to the low-
quality tags), which effectively select high-quality tags in an
unsupervised fashion. As shown in Fig. 2(b), “#Eat here”
will stay in the middle of STEAK and SEAFOOD while
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Fig. 4. An illustration of tag-guided metric learning vs. category-guided metric learning. In (a), the low-quality tag t2 “#Eat here” negatively influences
the modeling of categories and tags, which misleads t1 “#Beef Wellington” to stay closer to c2 SEAFOOD and t6 “#Shrimp” to stay closer to c1
STEAK. In the left handside of (b), an anchor tag is guided with the proxies that are generated by categories rather than tags, which can force t1 to
stay closer to c2 instead of c1 and thus overcome the limitation in (a). Furthermore, with adaptive margins, we can obtain a better metric space by
allowing categories with different semantics to stay away from each other.

“#Beef Wellington” can be close to STEAK. Moreover, since it
is unclear about the exact relations between the tags and
the categories of one item, we define a category proxy
as the mean pooling of the sampled categories. To make
the model learning more robust, we sample K co-occur
categories of the tag ti to form a positive category proxy
p+
i and K not co-occurring categories to form the negative

category proxy p−
i . Specifically, p+

i = 1
K

∑K
k=1 cj,k denotes

the average embedding of the sampled K categories, where
the k-th sampled category cj,k is selected according to the
co-occurring probability Φi,j∑Nc

z=1 Φi,z
. The tag-category matrix

Φ is obtained via multiplying tag-item matrix (i.e., (XTa)T )
and item-category matrix (i.e., XCa). The higher Φi,j value
means that ti co-occurs more times with cj . If two categories
have the same number of co-occurrence times with ti, one
of them is randomly selected. p−

i denotes the average em-
bedding of the K sampled categories that do not co-occur
with tag ti, which are randomly sampled from the categories
with Φi,j = 0.

Thereby, category-guided metric learning can be formu-
lated as follows:

Ltriplet =
∑
ti∈T

∥ti − p+
i ∥

2 − ∥ti − p−
i ∥

2 + α, (2)

where α is the tag margin to enforce the difference between
positive and negative triplets. ti denotes the embedding of
tag ti that belongs to tag set T .

Note that, in Eq. 2, margin hyperparameter α is fixed
for all tags. We find it largely limits the flexibility of ar-
ranging the tags with different qualities in the metric space,
thus hindering the modeling of relations between tags and
categories. Particularly, as shown in the left handside of
Fig. 4(b), based on the relations between t1 and t2 towards
the sampled proxy p−1 and p+1 , a fixed margin α makes it
impossible to keep distance between p−1 and p+1 . In con-
sequence, it is hard to distinguish STEAK and SEAFOOD.
However, if we allow tags to have adaptive margins like

α+ I1 and α+ I2 in Fig. 4(b), the model has more freedom
to arrange the metric spaces, which allows the categories
with different semantics to stay away from each other.

Inspired by the observation in Section 3(a), we associate
the margin α in Eq. 2 with a clear physical meaning, which
is related to the entropy of each tag. Specifically, tags have
a lower entropy value, meaning the tag is more likely
to interact with dedicated categories while others are not.
Therefore, a tag with a low entropy value can have a larger
margin than the one with a large value of entropy. Based
on this intuition about the negative correlation between the
entropy of tags and the margins, we propose to directly
compute the entropy of tags from the given data:

Ei,j =
Φi,j∑N c

z=1 Φi,z

, (3)

where Φ corresponds to tag-category matrix and is obtained
via multiplying tag-item matrix (XTa)T and item-category
matrix XCa. Then, we adaptively set the margins of tags:

Ii = 1− 1

logN c

N c∑
j=1

Ei,j logEi,j , (4)

where N c denotes the number of categories and Ii ∈ [0, 1].
The idea behind Eq. 4 is to leverage the one-hop neighbors
of ti on the bipartite tag-category graph to represent its
information level, i.e., the more diverse one-hop neighbor
ti, the more unstable connections between ti and specific
categories. In this case, ti does not need to maintain a large
margin between positive and negative categories. With such
adaptive margins, we rewrite Eq. 2 as follows:

LRank =
∑
ti∈T

∥ti − p+
i ∥

2 − ∥ti − p−
i ∥

2 + (α+ Ii), (5)

Finally, based on the learned embeddings of categories
and tags, we can quantify the quality of a tag so as to
provide interpretable weights for tags to be aggregated.
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Specifically, we calculate a quality score of the tag ti under
item v according to its similarity across categories of the
item as follows

Wv,i = e−∥ti−p∪
v ∥2

, (6)

where p∪
v = 1

∥XCa
v ∥X

Ca
v C denotes the union category proxy

by aggregating all the categories of item v.

4.3.2 Direction-aware Optimization
Our proposed CQM module adaptively pushes the negative
categories radially outward with respect to the anchor tag
as illustrated in Fig. 4(b). In Eq. 5, though the anchor tag
is shifted away from the negative proxy of categories and
attempts to move closer to the positive proxy of categories,
the method does not account for the fact that the positive
proxy locates close to the negative proxy. For example, as
shown in the dotted gray line in the left of Fig. 5(a), the
distance between positive and negative proxies is small,
where the angle between <t2, p

+
2 > (i.e., t2p+

2 ) and <t2, p
−
2 >

(i.e., t2p−
2 ) is acute. In this case, it is hard to keep moving

close to the positive proxy while pushing the negative proxy
away from the anchor tag, where the distance of t̃2p̃−

2 after
moving is almost the same as t2p

−
2 . However, compared

with <t2, p
+
2 , p

−
2 >, <t4, p

+
4 , p

−
4 > with obtuse angle between

t4p
+
4 and t4p

−
4 can better separate the positive and negative

proxies, which make more contributions to obtain even
more discriminative metric spaces. Note that, due to the
accumulation of gradients, such “misleading” behaviors of
<t2, p

+
2 , p

−
2 > can even impact the optimization in further

iterations, leading to the waste of model’s learning capacity.
In light of this, we propose to regularize the triplets

with acute angles between tp+ and tp− rather than naively
forcing all negative proxies away from the anchor tags,
which is inspired by the metric optimization in computer
vision [15]. Specifically, we propose a direction-aware opti-
mization strategy for HQRec, which takes the angle between
tp+ and tp− into consideration. To quantify the direction of
optimization and regularize the above triplets with acute
angle, we propose to leverage Cos metric. Based on the
above intuition about the negative correlation between the
angle and the degree of gradient penalty, we formulate the
regularization as follows:

LReg = −γCos(tip
−
i , tip

+
i ) = −γ

(p−
i − ti)

∥p−
i − ti∥

· (p
+
i − ti)

∥p+
i − ti∥

= −γ
ti · ti − p+

i · ti
∥p−

i − ti∥∥p+
i − ti∥

,

(7)
where γ is a parameter which controls the weight of regu-
larization applied to the original LRank loss (cf. Eq. 2). The
triplets with smaller acute angle between tp+ and tp− will
be regularized more on the gradients.

Taking the derivatives of LRank+γLReg , we get the new
gradients. Take t2 for example, the gradients of t2, p+2 , and
p−2 are as follows:

∂L
∂t2

= 2
(
p−
2 − p+

2

)
− γ

(t2−p+
2 )

∥p−
2 −t2∥∥t2−p+

2 ∥ − γ
∥t2−p+

2 ∥(p−
2 −t2)

∥p−
2 −t2∥3

,

∂L
∂p+

2

= 2
(
p+
2 − t2

)
− γ

(p+
2 −t2)

∥p−
2 −t2∥∥t2−p+

2 ∥ ,

∂L
∂p−

2

= 2
(
t2 − p−

2

)
− γ

(t2−p−
2 )

∥p−
2 −t2∥3∥t2−p+

2 ∥ .

(8)

As shown in Fig. 5(b), different from the gradient of anchor
tag t2 in Fig. 5(a) based on Eq. 2, the additional term t2−p+

2

in ∂L
∂t2

exerts a greater force on t2 in the direction leading
away from both positive and negative proxies, thereby pri-
oritizing increasing the learning of other informative triplets
(e.g., the triplet in the right of Fig. 5). The final gradient of
t2 is in the dotted blue line, which considers the gradients
in both red line and black line. Moreover, the gradient of
positive proxy of category p+2 behaves similar to the original
gradient of LRank in Eq. 2, unless the negative proxy of
categories is very close to the anchor tag. As shown in the

left of Fig. 5(b), the term (p+
2 −t2)

∥p−
2 −t2∥∥t2−p+

2 ∥ exerts an opposite

force on p+2 (in dotted red line on p+2 ) in the direction to
avoid being too close to the low-quality tag t2 as compared
to the previous formulation in Eq. 2, where LReg effectively
update p+2 to p̃+2 in the dotted blue line. Similarly, the
gradient of the negative proxy of category p−2 would also
not be shifted significantly owing to the anchor tag with
low-quality.

Note that, the proposed direction-aware optimization
inherently computes pair weighting based on the forces
acting upon the current anchor tags and hence leads to the
model mining for more informative examples to update the
embedding space if the current tag is low-quality.

4.4 Recommendation Module
As motivated in Section 1, it is important to consider the
quality of attributes in recommendation. Therefore, in this
section, we introduce quality-aware graph learning mod-
ule for recommendation. Specifically, the module contains
two components: the quality-aware embedding fusion layer
and the quality-aware embedding propagation layers. The
embedding fusion layer can fuse attribute-irrelevant and
attribute-relevant embeddings under the supervision of
the qualities of attributes. The quality-aware embedding
propagation mechanism can capture the higher-order graph
structure for both user and item representation learning via
propagating the quality-aware embeddings.

4.4.1 Quality-aware Embedding Fusion
Since we cannot identify whether a user interacts with
an item because of its attributes, it is important to model
users and items from both attribute-irrelevant and attribute-
relevant perspectives. For example, in Fig. 1, Linda may
be easily attracted by items’ attributes, and her interacted
Beef Wellington and Ribeye steak are both labeled as
STEAK. In this case, the interacted attributes can reflect
Linda’s preference. However, the reason why Jack interacted
with Seafood platter may be the recommendation from
his friends. In this case, it is not suitable to model Jack
as he likes SEAFOOD and “#Shrimp”. To comprehensively
model users and items, a straightforward idea is to directly
combine the output of the quality assurance module with
learnable user and item embeddings. However, this method
separates the quality assurance and recommendation, and
thus fails to leverage user-item interactions for refining
attribute embeddings and enhancing recommendation.

To jointly achieve high-quality attributes selection and
recommendation in a unified attribute-enhanced frame-
work, we propose to leverage the relations between items
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Fig. 5. An illustration of gradients without regularization vs. with regularization. In (a), the optimization directions of t2 and t4 are both towards
their positive proxies, which does not consider whether the angle between <t, p+> is acute and <t, p−> is obtuse. However, after adding a
regularization LReg in (b), the gradients of t2 and t4 are in different directions (see dotted blue lines of t2 and t4), i.e., t2 moves away from both
positive and negative proxies while t4 still moves towards its positive proxy.

and attributes as connections. The insight is that, an item
can be represented by its attributes that are learned from
the quality assurance module. After that, we can simul-
taneously update the representation of users, items, and
attributes. Specifically, we first denote learnable attribute-
irrelevant embeddings (i.e., uir and vir) to capture the
collaborative latent representations of users and items. Since
the attribute information of users is hard to obtain, we
propose to learn attribute-relevant embeddings for users
(i.e., ure) together with the attribute-irrelevant embeddings.

Note that items can have multiple attributes, represent-
ing items by all of their attributes equally may harm the
recommendation performance. As shown in Fig. 1(b), if
we profile Jack with the combination of 1

3“#Your plate”,
1
3“#Shrimp”, and 1

3“#New York”, we may fail to stress
Jack’s preference to SEAFOOD but mislead his preference
to STEAK since the tag “#New York” appears frequently
together with the STEAK category.

To accurately represent items’ attribute-relevant embed-
dings and obtain attribute-enhanced representation for both
users and items, we propose a quality-aware embedding
fusion mechanism, so as to properly fuse attribute embed-
dings under the supervision of the quality of attributes.
Specifically, since categories are in high-quality and tags
have quality scores, we first aggregate attribute embeddings
C and T with interpretable weights as follows:

vre =
[
XCa,W

] [ C
T

]
, (9)

where XCa denotes the item-category relations and W is
the learned quality score in Eq. 6. Then, we concatenate the
attribute-irrelevant embedding and the attribute-relevant
embedding to get the fused embeddings as follows:

u0
i = [uir

i ,ure
i ], v0

j = [vir
j ,vre

j ]. (10)

Along this line, HQRec could represent users and items
with both the collaborative signal and the attribute signal
via interpretable weights.

4.4.2 Quality-aware Embedding Propagation
To better capture similarity across user-item bipartite graphs
and encode such information into the final representation,

we propose to leverage higher-order information via stack
more propagation layers, which is under the graph convo-
lutional networks (GCNs) [7], [31], [38] to produce attribute
enhanced representations. The inputs of these layers are the
fused user embeddings ul

i and fused item embeddings vl
j .

With the help of quality-aware embedding fusion, the high-
quality item attributes will be propagated along with the
item attribute-irrelevant embeddings in GCNs.

To be specific, let ul
i and vl

j denote the embeddings of
user i and item j in the l-th layer. Their embeddings in the (l
+ 1)-th layer can be defined by their fusion embeddings and
the aggregation of corresponding connected items (users)
embeddings in l-th layer. Inspired by LightGCN [7] that
achieves the state-of-the-art performance with a very light
design, Our model also removes the feature transformation
and nonlinear activation module. This process can be for-
mulated as follows:

ul+1
i = ul

i+
∑
j∈Nu

1

|Nu|
vl
j , vl+1

j = vl
j+

∑
i∈Nv

1

|Nv|
ul
i, (11)

where Nu = {v|Xuv = 1} ∈ V is the item set that
user u interacts with. Similarly, Nv = {u|Xuv = 1} ∈ U
is the user set who interact with item v. Both 1

|Nu| and
1

|Nv| are symmetric normalization terms, which can avoid
the scale of embeddings increasing with graph convolution
operations [12]. Please note that, in the above equations, we
do not use any convolutional operations and any non-linear
activations, as its effectiveness has been well demonstrated
in [7] and it can alleviate the over-smoothing problem to
some extent. After L layers graph convolution, the final
embeddings of a user u and an item v are the L-th layer
as uL

i and vL
i .

We would like to highlight the benefits of the quality-
aware embedding fusion when performing embedding
propagation. Since the fused embeddings are quality-aware,
the embeddings of high-quality attributes will contribute
more to the embedding learning than other nodes via high-
order relations. This can largely avoid the noisy information
propagated from low-quality attributes.

To learn attribute-enhanced similarity, we utilize the
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TABLE 2
Statistics of the datasets used in our experiments.

Dataset #User #Item #Interaction #Category #Tag
NYC-R 15K 4.4K 130K 174 1,905
Amazon-CD 51K 26K 875K 389 5,373
ML-20M 62K 27K 17M 20 8,534
Amazon-Book 63K 73K 5M 518 10,091

largest margin nearest neighbour algorithm for optimizing:

LRec =
∑

(u,vp)∈I

∑
(u,vq)/∈I

[m+ g(u,vp)− g(u,vq)]+ , (12)

where I is the set of positive user-item pairs derived
from the implicit feedback data X. m is the collaborative
margin to enforce the difference between triplets. [(x)]+ =
max(x, 0) denotes the standard hinge loss.

The final objective function of the proposed HQRec
is given by considering the quality assurance module in
Section 4.3 as follows:

minLRec + βLRank + γLReg, (13)

where β is to control the weight of category-guided metric
learning, and γ is to control the weight of category-guided
optimization.

5 EXPERIMENTS

In this section, we evaluate our proposed category-aware
recommendation frameworks focusing on the following
four research questions:
• RQ1: How does our HQRec framework perform com-

pared to state-of-the-art recommendation methods?
• RQ2: What are the effects of different model components?
• RQ3: How do the hyperparameters affect the recommen-

dation performance and how to choose optimal values?
• RQ4: How does our HQRec framework improve the

interpretability of recommendations?

5.1 Experimental Setup
5.1.1 Datasets
In order to comprehensively verify the effectiveness of com-
pared methods, we use four real-world datasets from differ-
ent application domains with different sizes and densities,
i.e., the restaurants in New York City (NYC-R)2, Amazon-
CD3, ML-20M4, and Amazon-Book3. These datasets have
been widely adopted in previous literature [22], [33], [37],
and their statistics are summarized in Table 2.

5.1.2 Evaluation protocols
We split the data into training, validation, and testing sets
based on timestamps given in the datasets to provide a
recommendation evaluation setting. For each user, we use
the first 60% of data as the training set, 20% data as vali-
dation set, and 20% data as the testing set. We evaluate the
recommendation performance using two metrics: Recall@κ

2. https://www.tripadvisor.com.sg
3. https://nijianmo.github.io/amazon/index.html/
4. https://grouplens.org/datasets/movielens

and NDCG@κ instead of sampled metrics as suggested in
[13]. Intuitively, the Recall metric considers whether the
ground-truth is ranked amongst the top κ items while the
NDCG metric is a position-aware ranking metric.

5.1.3 Methods for comparison

The following representative state-of-the-art baselines for
comparison can be divided into 1) collaborative filtering
(CF) based methods, 2) metric learning based methods, and
3) attribute based methods.

1) CF based methods:

• BPR [28]: The Bayesian personalized ranking (BPR)
model is a popular method for Top-N recommendation.
We adopt matrix factorization for prediction.

• NeuMF [8]: NeuMF combines multiple perceptrons with
matrix factorization in its framework.

• LightGCN [7]: LightGCN devises a light graph convolu-
tion for training efficiency and generation ability.

• EGLN [39]: Enhanced graph learning network (EGLN)
lets the enhanced graph learning module and the node
embedding module iteratively learn from each other
without relying on any feature input.

2) Metric learning based methods:

• CML [10]: Collaborative metric learning (CML) is the first
model to use metric learning to solve the collaborative
filtering problem of recommender systems.

• LRML [34]: Latent relational metric learning (LRML) em-
ploys an augmented memory module to induce a latent
relation for each user-item interaction.

• SML [14]: Symmetric metric learning with learnable mar-
gins introduces a symmetrical positive item-centric metric
to pull and push items via the dynamic margins.

3) Attribute based methods:

• FM [27]: Factorization Machines (FM) is a generalized
MF model that captures interactions between categorical
variables (e.g., item categories) by projecting them into a
joint dot-product space.

• CMLF [10]: CMLF that based on CML integrates cate-
gories through a probabilistic interpretation of the model.

• AMF [9]: Aspect-based Matrix Factorization model
(AMF) is a MF-based model that decomposes the rating
matrix with reviews.

• KGAT [36]: Knowledge Graph Attention Network
(KGAT) explicitly models the high-order relations in col-
laborative knowledge graph to provide better recommen-
dation with item side information.

• AGCN [38]: Adaptive Graph Convolutional Network
(AGCN) leverages an attributed user-item bipartite graph
for joint item recommendation and attribute inference.

• AGNN [26]: Attribute Graph Neural Networks (AGNN)
designs an attribute graph based on user/item attributes
and utilizes a variational auto-encoder to produce the
preference embedding for a strict cold user/item.

5.1.4 Implementation Details

We implement the proposed HQRec with Pytorch. Imple-
mentations of the general recommendation methods are
either from open-source project or the original authors
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TABLE 3
Experimental results on four benchmark datasets. The best performance is in boldface and the second runners are underlined. HQRec achieves

the best performance on all datasets, where * denotes a significant improvement according to the Wilcoxon signed-rank test.

Method Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10
NYC-R Amazon-CD

BPR 0.0126 0.0230 0.0104 0.0149 0.0140 0.0235 0.0138 0.0172
NeuMF 0.0112 0.0196 0.0097 0.0131 0.0132 0.0210 0.0129 0.0167
LightGCN 0.0244 0.0479 0.0208 0.0307 0.0206 0.0447 0.0216 0.0305
EGLN 0.0250 0.0484 0.0212 0.0310 0.0211 0.0458 0.0218 0.0308
CML 0.0144 0.0281 0.0122 0.0180 0.0158 0.0355 0.0169 0.0252
LRML 0.0147 0.0289 0.0125 0.0187 0.0164 0.0361 0.0173 0.0265
SML 0.0156 0.0298 0.0134 0.0193 0.0172 0.0379 0.0181 0.0273
FM 0.0125 0.0231 0.0101 0.0139 0.0124 0.0206 0.0116 0.0146
CMLF 0.0175 0.0304 0.0155 0.0210 0.0177 0.0392 0.0191 0.0275
AMF 0.0116 0.0274 0.0080 0.0147 0.0138 0.0237 0.0133 0.0169
KGAT 0.0225 0.0458 0.0193 0.0294 0.0199 0.0421 0.0192 0.0292
AGCN 0.0251 0.0482 0.0217 0.0321 0.0214 0.0461 0.0225 0.0311
AGNN 0.0231 0.0463 0.0198 0.0307 0.0207 0.0432 0.0211 0.0304
HQRec 0.0306* 0.0530* 0.0282* 0.0375* 0.0316 0.0507 0.0294 0.0371
% Improv. 21.91 9.96 29.95 16.82 33.64 9.98 30.67 19.29

ML-20M Amazon-Book
BPR 0.0690 0.1187 0.4678 0.4312 0.0119 0.0241 0.0486 0.0473
NeuMF 0.0648 0.1147 0.4168 0.3884 0.0103 0.0213 0.0462 0.0453
LightGCN 0.0817 0.1401 0.5189 0.4767 0.0239 0.0376 0.1027 0.0945
EGLN 0.0825 0.1414 0.5239 0.4813 0.0241 0.0380 0.1037 0.0954
CML 0.0643 0.1199 0.4395 0.4119 0.0154 0.0281 0.0702 0.0676
LRML 0.0627 0.1204 0.4398 0.4092 0.0166 0.0293 0.0714 0.0685
SML 0.0667 0.1298 0.4481 0.4278 0.0178 0.0304 0.0729 0.0704
FM 0.0661 0.1188 0.4304 0.3928 0.0114 0.0227 0.0474 0.0466
CMLF 0.0660 0.1248 0.4450 0.4126 0.0194 0.0348 0.0834 0.0798
AMF 0.0635 0.1146 0.4230 0.3908 0.0123 0.0272 0.0491 0.0483
KGAT 0.0683 0.1203 0.4566 0.4259 0.0228 0.0361 0.0919 0.0896
AGCN 0.0824 0.1409 0.5142 0.4737 0.0243 0.0385 0.1174 0.1005
AGNN 0.0724 0.1351 0.4951 0.4640 0.0232 0.0370 0.0975 0.0943
HQRec 0.0874* 0.1487* 0.5514* 0.5049* 0.0276 0.0428 0.1288 0.1146
% Improv. 5.96 5.13 5.25 4.91 13.58 11.17 9.71 8.06

(BPR/CML5, NeuMF6, LightGCN7, EGLN8, LRML9, and
SML10). Specifically, we apply TFIDF method for the review-
based datasets, where we treat all reviews as a document to
extract keywords. We only keep the keywords that appear
at least 20 times to serve as tags. Then we can leverage
these tags to find high-quality attributes for review-based
datasets. Implementations of the attribute based methods
are constrained to leverage both categories and tags accord-
ing to the original authors algorithm (FM/CMLF5, AMF11,
KGAT12, AGCN13, and AGNN14). We optimize the com-
pared baselines with standard Adam optimizer. We tune all
hyperparameters through grid search. In particular, learning
rate in {1e-4, 5e-4, 1e-3, 5e-3, 1e-2}, the tag margin α in
{0, 0.25, 0.50, 0.75, 1.0}, the weight for direction-aware
optimization γ in {0, 0.001, 0.01, 0.1, 1.0}, the number of
graph layer L in {1, 2, 3, 4}, the collaborative margin m in
{0.00, 0.25, 0.50, 0.75, 1.00} We set the embedding dimension
D to 64 for those algorithms that do not include attribute in-
formation. As for attribute based models (i.e., CMLF, AMF,

5. https://github.com/cheungdaven/DeepRec
6. https://github.com/hexiangnan/neural collaborative filtering
7. https://github.com/gusye1234/LightGCN-PyTorch
8. https://github.com/yimutianyang/SIGIR2021-EGLN
9. https://github.com/vanzytay/WWW2018 LRML
10. https://github.com/MingmingLie/SML
11. https://github.com/cthurau/pymf
12. https://github.com/LunaBlack/KGAT-pytorch
13. https://github.com/yimutianyang/AGCN
14. https://github.com/lylbaidu/AGNN

KGAT, AGCN, AGNN and HQRec, we set the attribute
embeddings Da to 12 and the total embedding dimension
D is still 64. The batch size is set to 10000. We carefully
tuned the hyperparameters of all baselines through cross-
validation as suggested in the original papers to achieve
their best performance.

5.2 Overall Performance Comparison (RQ1)

In general, HQRec outperforms all 13 baselines across all
evaluation metrics on all datasets, whose improvements
are significant according to the Wilcoxon signed-rank test
on 5% confidence level. This answers RQ1, showing that
our proposed quality-aware recommendation framework is
capable of effective collaborative ranking. Compared with
the second best models (i.e., EGLN and AGCN), the per-
formance gains of HQRec on the two datasets range from
reasonably large (4.91% achieved with NDCG@10 on the
ML-20M dataset) to significantly large (33.64% achieved
with Recall@5 on the Amazon-CD dataset).

In particular, the six models that consider attributes
(i.e., FM, CMLF, AMF, KGAT, AGCN, and AGNN) cannot
outperform some competitors without attributes (e.g., Light-
GCN and EGLN). When the auxiliary data (e.g., reviews
and user profile) are not all attainable, those attribute based
methods cannot maintain competitive results. However, our
HQRec with quality measurement module for attributes can
achieve the best performance. This is particularly evident
on sparser datasets, where HQRec significantly outperforms
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TABLE 4
Ablation analysis of our proposed HQRec on the NYC-R dataset.

Method Recall@5 Recall@10 Recall@20 NDCG@5 NDCG@10 NDCG@20
HQRec-attribute 0.0175 0.0304 0.0518 0.0155 0.0210 0.0282
HQRec-graph 0.0212 0.0464 0.0851 0.0161 0.0272 0.0411
HQRec-naı̈ve 0.0216 0.0475 0.0852 0.0162 0.0271 0.0402
HQRec-CML 0.0232 0.0488 0.0873 0.0181 0.0290 0.0422
HQRec-remove 0.0248 0.0404 0.0706 0.0242 0.0209 0.0402
HQRec 0.0306 0.0530 0.0906 0.0278 0.0375 0.0494

time HGCF AGCN TaxoRec
Ciao 0.6 0.63 0.62
Amazon-CD 3.72 4.64 4.65
Amazon-Book 10.25 12.17 12.28
Yelp 5.4 8.7 9.8

Real
time HGCF AGCN TaxoRec
Ciao 0.60 0.63 0.62
Amazon-CD 1.89 1.47 3.91
Amazon-Book 10.25 86.00 83.10
Yelp 5.40 8.70 9.80

time LightGCN EGLN KGAT AGCN AGNN HQRec
NYC-R 1.60 1.71 1.84 1.73 1.76 1.72
ML-20M 80.09 98.23 258.29 100.17 112.58 102.28
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Fig. 6. Runtime analysis (per epoch) compared with graph based meth-
ods on different datasets.

AGCN by 29.95% with NDCG@5 on NYC-R and 33.64%
with Recall@5 on Amazon-CD.

Note that, the most time-consuming part of HQRec is
with the graph convolutional layers, which have also been
used in the second runners (e.g., EGLN and ACGN) to
capture higher-order graph structure. Relative to that, the
overhead from our quality measurement is quite minor.
Specifically, the time complexity of measuring qualities of
attributes is O(Nc +Nt), where Nc and Nt are the number
of categories and tags. Both Nc and Nt are far less than
the number of users and items. As shown in Fig. 6, we
also found the runtimes of HQRec are on the same scale as
most graph based baselines. These five baselines are selected
because of their good performance in terms of Recall and
NDCG (shown in Table 3).

5.3 Model Ablation (RQ2)
To better understand our proposed techniques, i.e.,
category-guide metric learning (CML), direction-aware op-
timization (DAO), and quality-aware graph learning, we
study HQRec as follows:
• HQRec-attributes is the basic metric learning model

based on attributes.
• HQRec-graph is the model with graph-enhanced repre-

sentation for both users and items.
• HQRec-naı̈ve is the model based on HQRec-graph, where

the similarities between categories and tags are calculated
from the co-occurrence matrix of categories and tags. The
more frequent appearance of a category and a tag, the
high similarity score of these two attributes, and thus the
high quality of the tag.

• HQRec-CML is the model with category-guide qual-
ity metric learning (CML), which integrates with both
quality-aware embedding fusion and quality-aware em-
bedding propagation in graph.

• HQRec-remove is the model with direction-aware op-
timization (DAO) and will remove the informative at-

TABLE 5
Performance comparisons of different propagation depth L.

Layer Recall@5 NDCG@10 NDCG@5 NDCG@10
L = 1 0.0127 0.0243 0.0105 0.0154
L = 2 0.0119 0.0285 0.0099 0.0169
L = 3 0.0306 0.0530 0.0278 0.0375
L = 4 0.0190 0.0270 0.0168 0.0243

tributes via a global threshold σ. The attribute with
quality scores lower than σ will be removed directly.
In the experiment, we search the hyperparameter σ
in {0.8, 0.85, 0.9, 0.95} and find that HQRec-remove
achieves the best performance when σ = 0.8.

• HQRec (full) is the model based on HQRec-CML with
direction-aware optimization (DAO), where the low-
quality attributes are leveraged via different weights.

From Table 4, we have the following observations:

• In general, the performance of HQRec-graph is better
than the basic HQRec-attribute in all cases, where the
performance gains of HQRec-graph over HQRec-attribute
achieve an average improvement of 46.02% on Recall
and 26.38% on NDCG, respectively. These results also
corroborate our conjecture that capturing the higher-order
graph structure for both user and item representation
learning is more helpful to improve performance than
directly combing all the attributes, which is consistent
with the observation in Table 3.

• We observe that HQRec-naı̈ve can slightly improve the
performance of HQRec-graph on Recall but will harm the
performance on NDCG. Since low-quality tags can appear
frequently with some categories, the similarities between
such a tag and the co-occurred categories are high. In this
case, HQRec-naı̈ve that fully leverages the low-quality
attributes cannot avoid their negative impacts, and thus
decrease the performance of recommendation.

• One step further, HQRec-CML that measures the quality
of attributes performs better than HQRec-naı̈ve by up to
7.41% on Recall and 11.73% on NDCG, respectively. Com-
pared with HQRec-naı̈ve, HQRec-CML not only leverages
the information of category-tag co-occurrence matrix, but
also considers the distribution of tags over the categories,
which can help distinguish low-quality tags from high
frequent tags. In this case, HQRec-CML can leverage
high-quality attributes from both categories and tags and
model users and items via clean semantics of categories
and rich semantics of tags.

• HQRec-remove can outperform HQRec-CML with 6.90%
on Recall@5 and 6.08% on NDCG@5 but decrease the
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Fig. 7. Performance regarding NDCG@5 and NDCG@10 of the best-performing baseline and HQRec with varying hyperparameters on NYC-R.

performance with an average of -12.92% on the remaining
cases. Note that, when removing the low-quality tags,
it also removes the relations of the items that they are
connected to. Such information can be useful especially
when the interactions between users and items are sparse.
Moreover, it has also been proved that retaining all infor-
mation with different weights in a probabilistic way is
better than removing all of them in a deterministic way
[2], [41].

• The performance gains of HQRec over HQRec-CML fluc-
tuate, ranging from 3.78% (achieved on Recall@20) to
25.79% (achieved with NDCG@5), showing that it is good
to take advantage of the existence of the positive category
proxy for a more optimal direction. Moreover, the per-
formance gains of HQRec over HQRec-remove achieve
an average of 27.63% on Recall and 37.49% on NDCG.
By keeping the low-quality tags and the infrequent ones
with low entropy into the model training, HQRec can
leverage the proposed direction-aware optimization to
retain the informative relations between items and alle-
viate the negative impacts brought by low-quality tags.
Such results are consistent with those in Table 3, showing
the effectiveness of applying quality measurement for
reasonably weighting attributes for recommendation.

5.4 Hyperparameter Study (RQ3)

Our proposed HQRec framework introduces five hyperpa-
rameters, which are α, m, β, γ, and L.

From Fig. 7, we have the following observations: (1) α is
the basic margin to enforce the difference between positive
and negative triplets, where we found that the optimal α
is about 0. Though the result seems counter-intuitive, this
special margin is designed for the low-quality attributes,
which decreases their contributions to the gradients. (2) m
is the margin to enforce the difference between positive
and negative triplets for users and items. The optimal m
value is about 0.25 and the optimal m can be obtained by
slight tuning. (3) β controls the weight of the category-guide
metric learning, which aims to organize the embeddings of
both categories and tags to select high-quality attributes.
The optimal β is about 1.0 (4) γ controls the weight of
the direction-aware optimization, where we found that the
optimal γ is about 0.5. The rules for selecting β and γ could
be the rule-of-thumb in practice across the used datasets.

Furthermore, Table 5 shows the performance of HQRec
with the varying layer depths of GCN L. HQRec achieves
the best performance with L = 3. Since NYC-R has sparse
interactions with 0.20% density, more neighbor aggregation
can alleviate the data sparsity issue. When L continues to
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Fig. 8. The quality-aware user profiles are obtained by our proposed
HQRec, which is consistent with the interacted items of users.

increase to 4, too many neighbors will lead over smoothing
on the graph, and the performance decreases.

5.5 Interpretable Case Studies (RQ4)
To provide more insights into the advantages of HQRec in
providing high-quality attributes for recommendations, we
demonstrate four random users with their closest attributes
retained by HQRec, and their interacted items from original
data, on NYC-R and ML-20M. The darker blue represents
the higher quality of the tag. Since the relations among users
and attributes can be measured through user-categories and
user-tag distance in the metric space, we obtain each user’s
top 2 categories and top 7 tags by ranking the distance be-
tween each user to all attributes, where the representations
of users, items, categories, and tags are learned by HQRec.

From Fig. 8, besides the high-quality categories, we
observe that the tags retained for each user are also in
high-quality and highly coherent to the selected categories,
such as “#Wagyu beef ” for User 1 on NYC-R and “#Pixar
animation” for User 3 on ML-20M, which can be regarded
as the fine-grained attributes of FRENCH and ANIMA-
TION, respectively. As a consequence, the quality-aware
user profiles are highly rational, which are consistent with
the interacted items (e.g., Danial Restaurant for User 1 on
NYC-R, as well as Toy Story 3 for User 3 on ML-20M).

Note that the exact quality scores of tags we represent
here are not perfectly accurate due to the implicit nature



13

of attributes’ qualities. However, they nonetheless provide
valuable insights into the users’ profiling in an unsuper-
vised fashion. The interpretable users’ categories and tags
can provide the potential for further user profiling and per-
sonalization, which has not been fully leveraged by existing
systems. In the meantime, such organic integration of users’
preferences towards attributes also hints at the application
of our framework in more novel recommendation scenarios
such as adaptive recommendation, where a user can freely
specify certain attributes, and let our framework retrieve
items that are both relevant to the specified attributes and
the user’s own preferences on other attributes.

6 CONCLUSION

In this paper, we have proposed quality-aware recommen-
dation framework based on item attributes and user-item
interactions, which can effectively enhance recommendation
in both accuracy and interpretability. Specifically, we have
proposed to leverage item categories to automatically select
high-quality tags without unsupervison. Extensive exper-
iments have demonstrated clear improvements of HQRec
over the state-of-the-art baselines and the insightful case
studies have showed the accuracy and interpretability of
our automatic quality assurance module.
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