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Abstract

Electronic health records (EHR) data contain rich information about patients’ health conditions including diagnosis,
procedures, medications and etc., which have been widely used to facilitate digital medicine. Despite its importance,
it is often non-trivial to learn useful representations for patients’ visits that support downstream clinical predictions,
as each visit contains massive and diverse medical codes. As a result, the complex interactions among medical codes
are often not captured, which leads to substandard predictions. To better model these complex relations, we leverage
hypergraphs, which go beyond pairwise relations to jointly learn the representations for visits and medical codes. We
also propose to use the self-attention mechanism to automatically identify the most relevant medical codes for each
visit based on the downstream clinical predictions with better generalization power. Experiments on two EHR datasets
show that our proposed method not only yields superior performance, but also provides reasonable insights towards
the target tasks.

Introduction

Nowadays, electronic health records (EHR) data are routinely collected across diverse healthcare institutions from
millions of patients. EHR contain rich information about patients such as diagnosis, medication and lab results, and
have been widely used to identify patterns for patients and assist with clinical decisions.1 In recent years, there is a
strong interest to apply machine learning techniques to support digital medicine.2 At the individual level, patient’s
health records can foster personalized disease diagnosis and medication recommendation;3 across populations, EHRs
can provide a vital resource to understand population health management and help to design better healthcare policies.4

Despite its tremendous importance, one of the critical challenges for EHR modeling is to convert the patient’s visit
data to meaningful representations1 for various kinds of medical codes and visits.5 Traditional techniques often rely
on expert-defined rules and feature engineering,6, 7 which can be labor intensive, and the resulting models often have
limited generalizability across datasets or institutions. With the development of deep neural networks (DNN), several
works directly learn distributed, low-dimensional embedding vectors for different medical codes.8, 9 However, these
works ignore interactions among medical codes and yield vectors with limited representational power. Recently, graph
neural networks (GNNs) have been proposed to learn over graph structures constructed from EHR data, in order to
model the relations among patient visits and medical codes.10 However, they only consider pairwise relations among
medical codes, which is still insufficient to characterize the complex relationships between visits and medical codes.

In reality, a visit typically contains a large set of medical codes including diagnosis, medication, and procedure codes
with varying sizes; and each medical code can also appear across a set of visits. Thus, modeling the interactions among
medical codes using the vanilla graph with pairwise edges would lead to very dense graphs as illustrated in Figure 1a.
Moreover, such graphs cannot capture which group of medical codes are present in the same visit. To the best of
our knowledge, existing work has not considered appropriate data structures to preserve the complex relations among
medical codes and visits, which is beneficial for learning embeddings for these units to support prediction tasks.

In this work, our central insight is to use hypergraph, a more flexible and general graph-based data structure, to model
the high-order interactions and produce better medical code and patient visit representations for clinical predictions.
Specifically, we view each visit as a hyperedge and each medical code as a node, and each hyperedge connects all the
nodes that appear in the corresponding visit. Figure 1b shows an example of hypergraph construction on EHR data with
two hospital visits. Compared with the vanilla graph construction where the degree for all edges is fixed to 2 as shown
in Figure 1a, the hypergraph modeling has two main advantages: (1) Preserving high-order interactions: Hypergraph

1We use the term ‘representation’ and ‘embedding’ interchangeably in the remaining of the paper.
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Figure 1: An example of encoding co-occurrence relationships in EHR with (a) vanilla graph and (b) hypergraph. Blue
lines in (a) denote normal pairwise edges, blue circles in (b) denote hyperedges, and the red circle in (c) denotes the
key factors within the hyperedge that are essential for the outcome prediction.

is capable of modeling high-order relationships beyond pairwise using its degree-free hyperedges. We argue that
harnessing this property is critical for the downstream tasks, as combinatorial properties among medical codes can be
relevant to a specific visit and its corresponding clinical outcomes. For example, Figure 1b shows that in a hospital
visit the patient is diagnosed with five diseases - type2 diabetes, kidney disease, renal failure, obesity and gout. These
five diseases all together indicate the patient’s high risk of having cardiovascular disease in the future. Through the
usage of hypergraphs, these different codes and visits can be collectively represented. (2) Explicitly modeling visits
and medical codes: Hypergraphs preserve both medical code and visit information, while vanilla graphs only model
interactions among medical codes. As a result, by using hypergraphs, we are able to preserve more information for
each clinical visit, which can potentially benefit the visit-level prediction tasks.

With the hypergraph structure, we care about how to leverage its rich information for reasonable clinical predictions.
Although there exist several neural architectures for hypergraphs,11, 12, 13 even with an application on EHR data,14

these methods mainly learn medical code representations by aggregating information from the hyperedge-connected
neighbors, which are less useful for predictions on the visit level. Moreover, they often use the mean pooling method
to aggregate visit and medical code embeddings, which treats different nodes in the hyperedges equally. In EHR data,
each visit contains multiple medical codes, but not all of them are equally important for the clinical predictions.

Motivated by the challenges above, we propose HypEHR, a hypergraph-based neural network model, to accurately
predict patients’ clinical outcomes. Specifically, we leverage set transformers15, 11 to directly model both nodes and
hyperedges as a function of its connected hyperedges and nodes, respectively. As set functions allow input sets of
any size, we are able to flexibly encode the full high-order relations among nodes and hyperedges. Furthermore, we
employ the self-attention mechanism in transformers to identify the most relevant medical codes for the visit. This not
only helps the model capture more task-aware information and filter out spurious noises, but also provides valuable
insights towards the prediction tasks. For example, based on the attention weights, we can extract type 2 diabetes,
kidney disease and renal failure as key factors, since kidney disease, diabetes and heart disease are highly correlated 2

and renal failure is also known as an end-stage kidney disease.

We conduct experiments on two real-world EHR datasets, a publicly accessible de-identified dataset named MIMIC-
III16 and a privately-owned de-identified dataset from Emory Healthcare system named CRADLE, for phenotypes
prediction and cardiovascular disease (CVD) risk prediction, respectively. The results illustrate that HypEHR achieves
superior performance with the average gain of 2.59% in Area Under the Receiver Operating Characteristic curve
(AUROC) and 4.00% in Area Under Precision/Recall curve (AUPR). Furthermore, the attention mechanism used in
our set transformer has additional benefits: when evaluated by a domain expert, HypEHR generates higher weights for
medical codes that are more relevant to the target tasks, justifying its efficacy on providing clinically useful insights.

2https://www.cdc.gov/kidneydisease/publications-resources/link-between-ckd-diabetes-heart-disease.html#:∼:text=When%20the%
20kidneys%20don’t,can%20lead%20to%20heart%20disease

https://www.cdc.gov/kidneydisease/publications-resources/link-between-ckd-diabetes-heart-disease.html#:~:text=When%20the%20kidneys%20don't,can%20lead%20to%20heart%20disease
https://www.cdc.gov/kidneydisease/publications-resources/link-between-ckd-diabetes-heart-disease.html#:~:text=When%20the%20kidneys%20don't,can%20lead%20to%20heart%20disease
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Figure 2: The framework of HypEHR. Two key steps include fV→E which aggregates node information to learn
hyperedge embeddings, and fE→V , which aggregates hyperedge embeddings to learn node embeddings. The thickness
of the arrows indicate the learnable attention weights during the information aggregations.

Related Works

Learning to represent different medical codes in a unified space to support the downstream prediction tasks is an
important topic for health informatics. With the development of DNNs, researchers started to explore the possibility of
efficient representation learning for clinical elements in EHR. Earlier research borrowed the idea from text embedding
models17, 18, 19 to learn dense representations for medical concepts20, 21 to support clinical predictions. However, these
approaches learn embeddings without explicitly modeling the relations among the different components.

More recently, graph-based models have been proposed for EHR modeling. They first build a co-occurrence graph
from the EHR data, and then leverage graph neural networks (GNNs) to learn the relations among medical codes within
each encounter for clinical outcome prediction.10 However, their graph structures are usually predefined with domain
expertise,22, 23 or prior knowledge,24 which can be expensive to obtain and are less generalizable. Besides, the GNNs
used in their studies are only able to encode pairwise relations, which is not ideal in EHR modeling, given the large
set of medical codes involved in each visit. More related to us, hypergraph-based neural networks have been proposed
to model the higher-order relationships among elements.12, 13, 25 However, little attention has been paid to adopting
these techniques for supporting medical prediction tasks. In the following section, we will introduce HypEHR, and
illustrate how we leverage hypergraph neural networks to design accurate clinical predictive models.

Method

In this section, we propose HypEHR, our hypergraph-based framework for EHR modeling. We first introduce the
definition of the problem. Then, we describe the framework to transform EHR data to hypergraphs for encoding the co-
occurrence relationships among visits and medical codes. After that, we design a set transformer-based neural network
to learn the relations among different medical codes and visits in the representation spaces and support downstream
clinical prediction tasks. The overall process of our framework is shown in Figure 2.

Hypergraph Construction The EHR data used in this study comprises multiple types of medical codes C, including
diseases, medications, procedures and services. For each visit record, the input X ⊂ C is a set of medical codes
involved in the visit. We notice that EHR data have a characteristic that each visit contains massive medical codes
for each visit and each medical code appears in multiple visits. While existing works often build a fully-connected
graph22, 26 for modeling co-occurrence relationships, these works only encode pairwise relationships and cannot cap-
ture the complete hypergraph information. Furthermore, such fully-connected graphs are often too dense and can
cause the memory-inefficient issue during the model training.

To better characterize the visit-level information, hypergraph structure is more beneficial in our setting as it can model
their high-order interactions by jointly modeling hyperedges and nodes, and project both of them into an unified low-
dimension space to facilitate prediction tasks. To transform the EHR into hypergraphs, we view each clinical visit as
a hyperedge and each medical code as a node. Each hyperedge connects all the nodes appeared in the corresponding
visit. We denote the hypergraph as G = (V, E), where V, E stand for nodes and hyperedges, respectively.



Hypergraph Learning Since we aim to make a clinical prediction via the given visit, we seek to learn a better repre-
sentation for hyperedges. While there exist various models for hypergraph representation learning,25, 12 these models
mainly focus on node-level representation learning without dedicated designs for learning hyperedge embeddings.
Thus, we design a neural network-based model to jointly learn node and hyperedge embeddings. In particular, our
proposed hypergraph neural network comprises of L layers. In each layer, the update rule can be summarized as

E(l)
e = fV→E

(
Ve,X(l−1)

)
, X(l)

v = fE→V
(
Ev,E(l−1)

)
, (1)

where E
(l)
e and X

(l)
v denote the embeddings of hyperedge e and node v in the l-th layer (1 ≤ l ≤ L), respectively.

Ve,X is the hidden representations of node that contain the hyperedge e, and Ev,E is the hidden representations of
hyperedges that contain the node v. In other words, hyperedge embeddings are obtained by aggregating information
from nodes within each hyperedge, and similarly, node embeddings are derived by aggregating information from
hyperedges that connect with the node. These two message passing processes are conducted iteratively as shown in
Figure 2. In this way, we explicitly model the hypergraph embeddings to support the clinical prediction tasks.

To realize the two message passing function fV→E(·) and fE→V(·) (we use f(·) to represent these two functions in the
following), several previous works only use mean pooling techniques to aggregate neighborhood information.12, 23, 25

However, for hypergraphs induced from EHR data, we argue that there can exist a fraction of nodes for each hyperedge
that is irrelevant to target prediction tasks. As a result, it often requires greater care to filter the nodes that are irrelevant
to target prediction tasks to ensure the discriminative power of the hyperedge embeddings.

Towards this end, we leverage multi-head self-attention27, 28 to automatically identify the most important elements
from neighbors during propagation.29 Given the matrix S ∈ R|S|×F which represents the embedding of nodes or
hyperedges S (e.g. Ve and Ev in Eq. 1) of F -dimensional vectors, the output of MultiHead attention y = f(S) =
MultiHead(S) ∈ R1×d can be expressed as

MultiHead(S) = ∥hi=1O
(i) = ∥hi=1SAi(S), SAi(S) = softmax

(
WQ

i (SW
K
i )⊤√

⌊d/h⌋

)
SWV

i ,

where WQ
i ∈ R1×⌊d/h⌋,WK

i ∈ RF×⌊d/h⌋,W V
i ∈ RF×⌊d/h⌋ are learnable weight matrices, h is the number of

attention heads, d is the dimension of the output vector. In this way, we automatically assign higher weights to
the most relevant elements within the set of hyperedges or node with learnable parameters, thereby improving the
discriminative power of the embeddings. By stacking L set transformer layers, we obtain the embeddings of nodes
and hyperedges at the last layer as X(L) and nodes as E(L) respectively.

HypEHR incorporates additional techniques, namely jumping knowledge (JK)30 and PairNorm (PN).31 These tech-
niques are introduced to combat the oversmoothing phenomenon.32, 33 Since EHR-based graphs tend to be dense,
two hyperedges with several shared edges maybe indistinguishable from one another but in reality should be quite
different. For example, take a patient with type 2 diabetes and metformin versus a patient with type 2
diabetes, metformin, and high blood pressure. The second will be at higher risk of cardiovascular dis-
ease and the embeddings should reflect this difference. Specifically, JK stacks embeddings from different transformer
layers for downstream predictions, and PN adds a normalization layer for the learned node and hypergraph embeddings
to prevent the embeddings from being identical.

Experimental Settings

Datasets We adopt a publicly accessible dataset named MIMIC-III16 that comprises over forty thousand de-identified
patients in critical care units of the Beth Israel Deaconess Medical Center from 2001 to 2012. We conduct pheno-
typing prediction on MIMIC-III and formulate it as a 25-class multi-label classification problem.34 Specifically, it
is to predict whether the 25 acute care conditions as described in the first two column of Table 3 will be present in
patients’ next visits, given their current ICU stay records. We identify these 25 phenotypes using Clinical Classifi-
cations Software (CCS) from the Healthcare Cost and Utilization Project (HCUP)3. Among them, there are 12 acute
conditions, 8 chronic conditions and 5 mixed conditions, which are recurring acute diseases. During preprocessing,

3https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt


we extract patients who have more than one hospital visit and get all pairs of adjacent visits for each patient. For each
pair, we set the former one as input and the phenotypes in the latter one as labels. This gives us 12353 hyperedges with
labels. Then we leverage the graph structure on these 12353 hyperedges with labels, as well as other 36875 hyperedges
without labels from patients with only one encounter, to train the model.

Additionally, we use Project CRADLE (Emory Clinical Research Analytics Data Lake Environment), a privately-
owned database that contains de-identified electronic health records at Emory Healthcare from 2013 to 2017. We
focus on the patients with type 2 diabetes and predict whether those patients will experience cardiovascular disease
(CVD) endpoints within a year after the initial diabetes diagnosis. The CVD endpoint is defined as the presence
of coronary heart disease (CHD), congestive heart failure (CHF), myocardial infarction (MI), or Stroke, which are
identified by their ICD-9 and ICD-10 clinical codes. We set the outcome label to be 1 if the patient have a CVD
complication within a year, and 0 otherwise. Then for those positive patients, we preprocess the data to select the
earliest recorded encounter within a year of the presence of the CVD endpoint as the input. And for those patients
with label 0, we randomly select one encounter as the input from all the encounters that are at least one year before
the last recorded encounter. Patients are excluded if they meet any of the following three criteria: (1) less than two
encounters at Emory Healthcare, (2) the time interval from the first encounter to the last is less than one year, or (3)
already have a history of a CVD condition. Eventually, there are 36611 patients remaining for the study. The sample
characteristics of the two datasets are presented in existing works,16, 35 and detailed statistics are shown in Table 1. For
both datasets, we use the ratio of 7:1:2 to split them into train/validation/test set.

Stats MIMIC-III CRADLE
# of diagnosis 846 7915
# of medication 4525 489
# of procedure 2032 4321
# of service 20 —
# of hyperedges 36875/12353 36611
Prevalence see Table 3 21.4%

Table 1: Dataset statistics. For # of hyperedges in MIMIC-III, the first number indicates the hyperedges without labels,
while the second one indicates ones with labels.

Evaluation Metrics. According to the label distribution shown in Table 1 and 3, both MIMIC-III and CRADLE are
imbalanced. Thus we use accuracy, Area Under the Receiver Operating Characteristic curve (AUROC), Area Under
Precision/Recall curve (AUPR) and macro-F1 score as the metrics.14, 22 For both accuracy and F1 score, we set 0.5 as
the threshold to classify the predicted scores into different classes.

Implementation Details. We implement our model in PyTorch4. We use Adam as the optimizer with a learning rates
of 1e-3. We set the weight decay to 1e-3, the number of set transformer layers L = 3, the hidden dimension d = 48,
and the number of attention heads h = 4.

Baselines. We compare HypEHR with a comprehensive set of baselines5:

⋄ Non-graph Baselines. These baselines learn the hidden relations within EHR data without leveraging graph struc-
tures. We select Logistic Regression (LR),36 Support Vector Machine (SVM)37 and Multi-layer Perceptron (MLP)38 in
this category. For these methods, we first learn the embeddings for each medical code via Med2vec,20 then pass the
embedding with the model mentioned above for target classification tasks.

⋄ Graph-based Baselines. These methods encode relations among different items in EHR using graphs. Specifically,
they create an edge between two medical codes if they co-occur in a visit. We consider two baselines: GCT ,22 which
proposes Graph Convolutional Transformer to learn the hidden EHR structure for predictive tasks, and GAT ,39 which
uses attention-based massage passing mechanism for aggregating neighbor features. For these two methods, a task-
specific MLP is stacked on the top of the model for prediction.

4https://pytorch.org/
5For other graph-based baselines, we also use JK and PN as additional techniques to ensure the fair comparison.

https://pytorch.org/


⋄ Hypergraph-based Baselines. These baselines uses the same hypergraph structure as HypEHR but with different
neural architectures for hypergraph learning. Specifically, we select two representative methods HyperGCN12 and
HCHA,13 in our experiments. HyperGCN replaces each hyperedge of the hypergraph by a set of weighted pairwise
edges connecting the vertices of the hyperedge to transform the hypergraph learning task to a vanilla graph learning
problem. HCHA adopts clique based expansion to transform the hypergraph to a vanilla graph, and use attention
weights conditioning on node features for message passing.

Experimental Results

Model
MIMIC-III CRADLE

ACC AUROC AUPR F1 ACC AUROC AUPR F1

LR36 68.66 ± 0.24 64.62 ± 0.25 45.63 ± 0.32 13.74 ± 0.40 76.22 ± 0.30 57.22 ± 0.28 25.99 ± 0.26 42.18 ± 0.35
SVM37 72.02 ± 0.12 55.10 ± 0.14 34.19 ± 0.17 32.35 ± 0.21 68.57 ± 0.13 53.57 ± 0.11 23.50 ± 0.15 52.34 ± 0.22
MLP38 70.73 ± 0.24 71.20 ± 0.22 52.14 ± 0.23 16.39 ± 0.30 77.02 ± 0.17 63.89 ± 0.18 33.28 ± 0.23 45.16 ± 0.26

GCT22 76.58 ± 0.23 78.62 ± 0.21 63.99 ± 0.27 35.48 ± 0.34 77.26 ± 0.22 67.08 ± 0.19 35.90 ± 0.20 56.66 ± 0.25
GAT39 76.75 ± 0.26 78.89 ± 0.12 66.22 ± 0.29 34.88 ± 0.33 77.82 ± 0.20 66.55 ± 0.27 36.06 ± 0.18 56.43 ± 0.26

HyperGCN12 78.01 ± 0.23 80.34 ± 0.15 67.68 ± 0.16 39.29 ± 0.20 78.18 ± 0.11 67.83 ± 0.18 38.28 ± 0.19 60.24 ± 0.21
HCHA13 78.07 ± 0.28 80.42 ± 0.17 68.56 ± 0.15 37.78 ± 0.22 78.60 ± 0.15 68.05 ± 0.17 39.23 ± 0.13 59.26 ± 0.21

HypEHR 79.07 ± 0.31* 82.19 ± 0.13* 71.08 ± 0.17* 41.51 ± 0.25* 79.76 ± 0.18* 70.07 ± 0.13* 40.92 ± 0.12* 61.23 ± 0.18*

Table 2: Performance on MIMIC-III and CRADLE compared with different baselines. The result is averaged over 5
runs. We use * to indicate statistical significant results (p < 0.05).

Phenotype Type Prevalence
HypEHR GAT MLP

AUROC AUPR AUROC AUPR AUROC AUPR

Acute and unspecifed renal failure acute 29.3% 67.19 45.31 63.24 40.63 56.35 35.42
Acute cerebrovascular disease acute 7.1% 58.11 11.16 53.4 8.69 49.06 7.22
Acute myocardial infarction acute 7.4% 73.56 20.52 66.31 14.99 51.69 8.77
Cardiac dysrhythmias mixed 43.2% 76.61 72.57 72.79 68.91 55.88 49.89
Chronic kidney disease chronic 25.5% 86.42 74.33 78.37 60.52 61.11 32.99
Chronic obstructive pulmonary disease chronic 18.0% 82.16 56.15 78.24 46.88 55.57 20.52
Complications of surgical/medical care acute 84.0% 70.65 91.96 66.63 90.50 64.87 89.79
Conduction disorders mixed 2.4% 63.83 4.08 61.39 3.99 57.25 3.86
Congestive heart failure; nonhypertensive mixed 39.2% 82.52 74.95 79.27 69.59 54.62 44.16
Coronary atherosclerosis and related chronic 29.6% 82.31 69.56 77.15 60.71 56.81 39.00
Diabetes mellitus with complications mixed 36.2% 92.80 88.63 89.72 85.12 56.16 40.14
Diabetes mellitus without complication chronic 42.1% 86.80 85.48 83.89 79.67 56.75 46.57
Disorders of lipid metabolism chronic 27.6% 76.65 54.52 72.64 47.29 55.24 34.31
Essential hypertension chronic 35.4% 76.15 64.26 71.75 57.97 51.22 38.58
Fluid and electrolyte disorders acute 44.4% 64.12 59.25 63.35 57.86 60.39 53.22
Gastrointestinal hemorrhage acute 27.8% 65.18 43.51 62.44 39.99 53.42 29.08
Hypertension with complications chronic 59.5% 76.64 80.99 74.32 77.83 56.28 63.85
Other liver diseases mixed 21.9% 68.75 45.90 64.01 40.46 56.55 24.19
Other lower respiratory disease acute 35.4% 67.16 55.57 64.93 52.95 57.18 42.50
Other upper respiratory disease acute 9.5% 63.81 26.87 58.64 22.24 54.88 11.22
Pleurisy; pneumothorax; pulmonary collapse acute 33.9% 65.50 49.20 64.12 47.89 57.10 42.05
Pneumonia acute 21.7% 63.85 32.05 59.72 26.21 57.38 30.21
Respiratory failure; insufciency; arrest acute 32.8% 66.31 51.30 64.38 48.66 56.76 41.09
Septicemia (except in labor) acute 26.5% 64.26 37.85 60.91 35.68 60.36 35.38
Shock acute 12.2% 62.74 17.93 59.83 17.79 60.67 18.04

Table 3: Description and label distribution of the 25 phenotypes in MIMIC-III and their associated model performance.

Table 2 summarizes the experimental results on the two datasets. Note that since accuracy and F1 are influenced by
the threshold used for separating predicted scores into different classes, they are less comprehensive than AUROC and
AUPR in demonstrating model performance. From the results, we have the following findings:



(1) Disorder of skin and/or subcutaneous tissue
(2) Pure hypercholesterolemia
(3) Office or other outpatient visit for the evaluation and management of an established patient
(4) Degeneration of intervertebral disc
(5) Essential hypertension
(6) Primary malignant neoplasm of prostate
(7) Aspirin received within 24 hours before emergency department arrival or during emergency 
department stay (EM)
(8) Computed tomography, head or brain; without contrast material
(9) Low back pain
(10) Electrocardiogram, routine ECG with at least 12 leads; interpretation and report only
(11) Frontotemporal dementia
(12) Opioids in combination with non-opioid analgesics
(13) Cholelithiasis without obstruction
(14) Tremor
(15) Other opioids
(16) Emergency department visit for the evaluation and management of a patient.
(17) Nausea
(18) Dizziness and giddiness
(19) Type 2 diabetes mellitus without complication
(20) Chest x-ray

Label 1 (The patient would experience CVD complications in the next year.)

Visit 
Information

Figure 3: The first case study: the green highlighted items are the ones with high attention weights.

⋄ HypEHR outperforms all the baselines over four different evaluation metrics on both datasets. Compared to the best
baselines, HypEHR raises the performance by 2.59% in AUROC and 4.00% in AUPR. This verifies that jointly learn-
ing both node and hyperedge embeddings is better than only tuning node features towards clinical outcome prediction
tasks, as visit information is more related to the outcome labels. Moreover, leveraging self-attention mechanism dur-
ing neighborhood aggregation enhances the model performance compared to the mean pooling used in previous works
(HyperGCN), as it is able to automatically identifying critical medical codes in each visit for the target task.

⋄ Graph-based models generally have a better performance than traditional machine learning methods. This phe-
nomenon demonstrates that explicitly considering the interaction between nodes via message passing is beneficial
for EHR modeling. We also observe that GAT has a slightly better performance than GCT, which verifies that the
attention mechanism that focuses on the most relevant parts of the input raises the performance. However, the general
performance gain of graph-based methods over traditional machine learning methods is limited, indicating that there
exists better ways for encoding co-occurrence relationships.

⋄ Hypergraph-based models can further improve the prediction performance over the graph-based models. This illus-
trates that modeling higher-order interactions beyond pairwise contributes to performance gain, especially on clinical
EHR data, as it naturally involves a great number of medical codes in each visit. We notice that HCHA also lever-
ages attention mechanism, but it cannot outperform HyperGCN. This is because their attention weights are calculated
based on the node and hyperedge attributes, but the hyperedge attributes are not provided in our EHR data. Thus, the
attention module in HCHA is less powerful when applying to EHR datasets.

Moreover, we summarize the per-task performance results for the 25 phenotypes in MIMIC-III in Table 3. For illus-
tration purposes, we only present MLP and GAT but the performance trends of the other models follow the results in
Table 2. We observe that HypEHR outperforms the other two baseline models on all the 25 phenotypes in terms of
AUROC and AUPR, and GAT outperforms MLP on 23 phenotypes out of the total 25. The phenomenon demonstrates
that our gain is consistent over almost all the phenotyping tasks, and again illustrates that graph-based methods have
more expressive power than traditional machine learning methods.

Case Studies

To illustrate that self-attention mechanism is able to provide some valuable insights towards the clinical outcome, we
analyze the important medical codes (i.e., high attention weights) in each visit to demonstrate that they identify key
factors that are relevant to the clinical outcome. First, we randomly sample a handful of visits from the CRADLE



(1) Office or other outpatient visit for the evaluation and management of an established patient
(2) Essential hypertension
(3) Obesity
(4) Hyperlipidemia
(5) Electrocardiogram, routine ECG with at least 12 leads; with interpretation and report
(6) Dipeptidyl peptidase 4 (DPP-4) inhibitors
(7) Hypertensive complication
(8) Cardiovascular stress test
(9) Combinations of various lipid modifying agents
(10) Preoperative cardiovascular examination
(11) Antiinflammatory agents, non-steroids
(12) ACE inhibitors and calcium channel blockers
(13) Antiinflammatory preparations, non-steroids for topical use
(14) Tricuspid valve disorder, non-rheumatic
(15) Insulins and analogues for injection, intermediate- or long-acting combined with fast-acting
(16) Office consultation for a new or established patient
(17) Type 2 diabetes mellitus without complication
(18) Pre-surgery evaluation
(19) Echocardiography, transthoracic, real-time with image documentation (2D)
(20) Acetic acid derivatives and related substances
(21) Other cardiac preparations
(22) Myocardial perfusion imaging, tomographic (SPECT)
(23) Biguanides
(24) Preparations inhibiting uric acid production
(25) Combinations of oral blood glucose lowering drugs

Label 1 (The patient would experience CVD complications in the next year.)

Visit 
Information

Figure 4: The second case study: the green highlighted items are the ones with high attention weights.

dataset. We then sort the attention weight into descending order and select the top 30% nodes as the extracted subset.
With the visit information and the extracted elements, a medical domain expert evaluated by the key factors and the
CVD outcome. We present two cases (see Figure 3 and 4) to demonstrate the quality of HypEHR’s explanations.

According to the analysis provided by the domain expert, the subsets in both Figure 3 and 4 extracted by attention
weight from the original set contain many key factors that indicate the patient’s CVD condition in the next year.
Specifically, in the first case (Figure 3), the extracted record shows that the patient had frontotemporal dementia,
received aspirin before arriving at the emergency department and had a CT of the head. Frontotemporal demetia
(FTD), as shown by existing studies,40, 41 has a specific association with cardiovascular disease. Moreover, the CT
of the head was performed to better understand the patients’ FTD severity. Additionally, aspirin indicates a high risk
of atherosclerosis.42 Thus, these factors imply that the patient is likely to have Stroke or myocardial infarction (MI),
which are complications captured in the CVD endpoint.

In the second case, the patient is on an insulin regimen. Patients on this regimen are predisposed to develop many CVD
related diseases such as inflammation, atherosclerosis, hypertension, dyslipidemia, heart failure (HF), and arrhyth-
mias.43 The stress testing, echocardiography and myocardial perfusion imaging extracted by the attention weights
also suggest that the patient might already experience some symptoms associated with CVD,44, 45 but has not been
diagnosed formally with CVD.

To summarize, the medical codes with higher attention weights can be considered as key factors and provide meaning
insights towards the clinical prediction tasks. The rationality of these extracted subsets are verified by a domain expert,
and supported by existing medical literature, and thus can be potentially applied to assist medical decision making.

Conclusion

In this work, we propose HypEHR, a hypergraph-based neural network model to accurately predict patients’ clin-
ical outcomes. Specifically, we leverage hypergraph to effectively model the complex interactions among patients’
visits and medical conditions. Such a hypergraph structure goes beyond the pairwise relationships used in existing
graph-based EHR models and can flexibly encode medical conditions at the visit level. Furthermore, we employ set



transformers with self-attention mechanism to automatically identify the key factors within each visit to learn accurate
hyperedge and node representations and provide insight into the clinical predictions. The experiments on two real-
world EHR datasets demonstrate that HypEHR outperforms the best existing baseline by 2.59% in AUROC and 4.00%
in AUPR. In addition, as has been verified by a domain expert, the attention weights can be used to provide valuable
insights towards the target clinical predictions. For future works, we consider including chronological information or
unstructured data for better generalization. We also consider modeling various node types as a heterogeneous graph.
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