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ABSTRACT
User-User interaction recommendation, or interaction recommen-
dation, is an indispensable service in social platforms, where the
system automatically predicts with whom a user wants to inter-
act. In real-world social platforms, we observe that user interac-
tions may occur in diverse scenarios, and new scenarios constantly
emerge, such as new games or sales promotions. There are two
challenges in these emerging scenarios: (1) The behavior of users
on the emerging scenarios could be different from existing ones
due to the diversity among scenarios; (2) Emerging scenarios may
only have scarce user behavioral data for model learning. Towards
these two challenges, we present KoMen, a Domain Knowledge
Guided Meta-learning framework for Interaction Recommenda-
tion. KoMen first learns a set of global model parameters shared
among all scenarios and then quickly adapts the parameters for
an emerging scenario based on its similarities with the existing
ones. There are two highlights of KoMen: (1) KoMen customizes
global model parameters by incorporating domain knowledge of
the scenarios1, which captures scenario inter-dependencies with
very limited training. (2) KoMen learns the scenario-specific pa-
rameters through a mixture-of-expert architecture, which reduces
model variance resulting from data scarcity while still achieving the
expressiveness to handle diverse scenarios. Extensive experiments
demonstrate that KoMen achieves state-of-the-art performance on
a public benchmark dataset and a large-scale real industry dataset.
Remarkably, KoMen improves over the best baseline w.r.t. weighted
ROC-AUC by 2.14% and 2.03% on the two datasets, respectively. 2
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1 INTRODUCTION
Interaction recommendation is an essential factor for improving
user stickiness and activeness [14, 25, 29, 30, 34, 42], which aims
to predict the interpersonal interactions between users. A typical
scenario of interaction recommendation is “item sharing” in e-
commerce platforms, where the system predicts with whom the
current user wants to share an item.

Prior studies on interaction recommendation mainly focus on
a single scenario with one type of interaction, such as “follow” or
“like” [10, 22, 29, 38]. However, in real-world social platforms, we ob-
serve that there are often diverse scenarios where user interactions
occur [31, 37]. As shown in Fig. 1a, a user may send messages, share
videos, or subscribe to the same blogger (i.e., share subscriptions)
with others. Furthermore, new scenarios constantly emerge (e.g.,
two users may play together in a newly-released game or share
coupons in a new sales promotion). It is challenging to handle these
emerging scenarios for two reasons: (1) A user may interact with
different groups of people in different scenarios (e.g., they could
message many people but only share videos with friends with mu-
tual interest). (2) There are very limited records in these emerging
scenarios, which makes it difficult to train a model from scratch.

Considering these two challenges, we formulate interaction rec-
ommendation as few-shot link prediction on multiplex graphs, as
illustrated in Fig. 1(a) and 1(c). We regard users as nodes and in-
teractions among users as edges. Each scenario corresponds to an
individual type of edge, making the graph “multiplex”. Each emerg-
ing scenario corresponds to a new edge type that only emerges in
inference with few visible edges, making the problem “few-shot”.

Recent studies on representation learning of multiplex graphs
are closely related to our formulation. These methods learn differ-
ent parameters for different edge types (scenarios) based on their
own training data [3, 20, 44]. However, this may lead to over-fitting
when it comes to emerging scenarios as the training data is scarce.
To handle the emerging scenarios, one solution is to regard each sce-
nario as one task and apply meta-learning techniques [8, 11, 39, 40],
which aims to quickly adapt a model to individual tasks. Neverthe-
less, general meta-learning methods keep a set of global parameters
for all the diverse scenarios and only rely on a few gradient steps for
customization [8, 12, 45, 46]. To better customize for each scenario,
existing studies show that model performance can be improved
if edge types with similar topological structures share more pa-
rameters and vice versa [2, 39–41]. Yet, emerging scenarios may
only have a small percentage of edges available, which have limited
expressiveness to represent the generic topological structure.

One key observation missing in prior studies is that, in practice,
there is often readily available domain knowledge that reflects the
meaning of different scenarios, such as a taxonomy organizing
the scenarios by their purposes and functions [36]. As shown in

https://doi.org/10.1145/3485447.3512177
https://github.com/Veronicium/koMen
https://doi.org/10.1145/3485447.3512177


WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xie et al.

… …

(b) Domain knowledge about the 
purpose and function of each scenario.

Share 
video

Share 
subscription

Message

Content Social

Root

U1

U2

U3

U4

(a) Friend recommendation for emerging 
scenarios (in this case, Share video).

Message

Share subscription
Share video

1
1

(c) Our formulation: few-shot link 
prediction on multiplex networks.

? ? ? ?
? ? ? ?
? ? ?
? ? ?

Share 
video

Existing
Scenarios

Emerging
Scenarios

1

11

1

11

? ?
? ? ? ?

? ?
? ?

Share subscription
1

1
1

1

1
1
1

1

? ?
?

? ?
? ? ?

Message

(d) Performance of  an emerging 
scenario, “Share video” adapted 
from the parameters of two 
existing scenarios separately.

5OC-A8C P5-A8C F10.50

0.60

0.70

0.80

AdaSt fURP ''6haUe subsFUiStiRn''
AdaSt fURP ''CRntaFt''
Adapted from “Share subscription”
Adapted from “Message”

Figure 1: The illustrations of our setting and formulation, and a case study indicating the usefulness of domain knowledge.

Fig. 1b, “share video” and “share subscription” are both about the
content of a user’s interest, while “message” reveals the user’s
social relations. Intuitively, user behaviors under scenarios with
similar purposes and functions are also similar. For instance, a
user may send messages to many friends, but only prefer to share
videos and subscriptions with friends with mutual interest. Our
experimental results also support this intuition – we observe that
the emerging scenario “share video” obtains better performance
when directly copying the parameters of “share subscription” than
“message” (Fig. 1d). Although the complicated inter-dependencies
between scenarios may not be perfectly captured by a taxonomy, the
purposes and functions of scenarios represented by the taxonomy
are still helpful for understanding and predicting user behaviors,
especially when we do not have massive user data.

Based on our observation, in this paper, we propose a Domain
Knowledge Guided Meta-learning Framework for Interaction Rec-
ommendation (denoted by KoMen) to tackle the challenge of data
scarcity in emerging scenarios. Our framework consists of two
modules: a domain knowledge guided scenario representation mod-
ule and a scenario similarity aware link prediction module. The
first module learns a representation for each scenario that reflects
their similarities. The representations are initialized by encoding
the domain knowledge about the purposes and functions of each
scenario and updated based on training data, in case the domain
knowledge is not perfect. The link prediction module extracts the
information in each edge type (i.e., scenario) by a graph neural
network (GNN) [13] and aggregates the information in all exist-
ing edge types with a mixture-of-expert (MoE) [24] architecture
to facilitate the prediction. The aggregating coefficients depend on
the scenario representations. The use of MoE reduces the variance
of the aggregating coefficients for emerging scenarios with scarce
data, while still preserving the expressiveness for handling diverse
scenarios. The two modules are optimized using meta-learning,
which aims to quickly adapt a model to individual scenarios.

We examine the effectiveness of KoMen on both a public dataset
(Youtube) and a real industry dataset (Taobao). Empirical results
show that KoMen achieves significant improvements over the state-
of-the-art methods – 2.14% and 2.03% gains over the best baseline
under weighted ROC-AUC on the respective datasets. We also con-
duct ablation and case studies to demonstrate the utility of domain
knowledge and the effectiveness of our model structure for inte-
grating domain knowledge into the meta-learning paradigm.

Contributions. (1) Our work is the first attempt for few-shot inter-
action recommendation, which predicts with whom a user wants
to interact under an emerging scenario with scarce data. (2) We
propose a novel method KoMen, which incorporates domain knowl-
edge into data-driven learning to capture the similarities among
scenarios, and leverages the MoE architecture to learn scenario-
specific parameters with relatively small variance. (3) Experiments
show that KoMen outperforms state-of-the-art methods on a public
dataset as well as a real-world industry dataset.

2 PROBLEM SETUP
Supervised Interaction Recommendation. We formulate inter-
action recommendation as link prediction. Considering diverse
scenarios, we are given a graph 𝐺 = (V, E,X), where the node set
V represents users, the node attributes X represents user profiles
and the edge set E =

⋃
𝑟 ∈R E𝑟 represents the interactions between

users under |R | different scenarios. For each edge type 𝑟 ∈ R,
only a subset of the edges E (tr)𝑟 ⊂ E𝑟 are visible, and interaction
recommendation aims to find all missing edges E (ts)𝑟 = E𝑟 \ E (tr)𝑟 .
Few-shot Interaction Recommendation. Considering the ex-
istence of emerging scenarios, we further distinguish the edge
types into existing ones and emerging ones R = R (ex) ⋃R (em) .
During training, only the edges of existing types R (ex) are visi-
ble. In inference, a small percentage of edges of emerging types
E (tr)𝑟 , 𝑟 ∈ R (𝑒𝑚) are available for fine-tuning, and few-shot inter-
action recommendation aims to find all missing edges of these
emerging edge types R (em) .

An example of this problem is shown in Fig. 1a and Fig. 1c, where
“Share subscription” and “Message” are two existing edge types
and “Share video” is an emerging one. The entries with “1” in the
adjacency matrices correspond to visible edges E (tr)𝑟 . In addition,
we assume the access to domain knowledge is available, which
is exemplified by the taxonomy of scenarios (formulated as edge
types) as in Fig. 1b but is not restricted to any particular form.

3 METHODOLOGY
The overall framework of KoMen is shown in Fig. 2(b), which
consists of a scenario representation module (Sec. 3.1) and a link
prediction module (Sec. 3.2). The scenario representation module
aims to represent the similarities between scenarios in a set of
low-dimensional vectors. These vectors are initialized based on
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GATNE K�M��: Domain Knowledge-Guided Few-Shot Link Prediction
on Multiplex Networks

ABSTRACT
Friend recommendation is an indispensable service in social plat-
forms, where the system predicts whom a user wants to interact
with. We observe two challenges in friend recommendation: (1)
There are diverse scenarios where user interactions occur and the
behaviors of the same users may vary among scenarios; (2) The
scenarios follow a long-tail distribution, namely, a large portion of
tail scenarios only have very limited user behavioral data for model
learning. Besides, there are new scenarios that constantly emerge,
which also have sparse data. This raises a dilemma that the scenario
diversity calls for scenario-speci�c models, while the data scarcity
encourages the models to properly share as much information as
possible. To achieve a prominent trade-o�, we present K�M��, a Do-
main Knowledge-guided Meta-learning framework for Multiplex
Networks.1 Unlike traditional meta-learning frameworks that learn
a global initialization for all the diverse scenarios, we customize
the global initialization into scenario-speci�c ones by incorporat-
ing domain knowledge (e.g., a taxonomy organizing scenarios by
their semantic meaning) before �ne-tuning on training data. This
enables the model to capture the correlation between scenarios
with very limited data. Besides, K�M�� learns the scenario-speci�c
weights of a mixture-of-expert model to reduce model variance
resulting from data scarcity while achieving model diversity. Exten-
sive experiments demonstrate that K�M�� achieves state-of-the-art
performance on a public dataset and a real industry dataset.

1 INTRODUCTION
There have been a surge of social platforms in recent years, where
interpersonal interactions between users have been shown to be
the essential factor for improving user stickiness and activeness [22,
26, 31]. To better connect the users, friend recommendation has
been an important service of the e-commerce platforms and social
networks [13, 26]. A typical scenario is “item sharing” where the
recommender system predicts whom the current user wants to
share an item to.

There are two major challenges of friend recommendation in a
real-world social platform. The �rst one is the existence of diverse
scenarios. As shown in Fig. 1a, a user may contact, share video or
share subscription with another user on a social media platform.
The same users may have di�erent behaviors in di�erent scenarios,
1The code is available at https://github.com/KoMen-Taxonomy/KoMen
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hence, each scenario may require an individual set of model param-
eters. Another challenge is data scarcity. In reality, the scenarios
usually follow a long-tail distribution in the real world, where a
large number of scenarios only have very limited records. Besides,
there are new scenarios that constantly emerge. For example, when
a new game is released or a sales promotion is initiated, whom a
user wants to play together with, or to request for comments from,
could be di�erent from the existing scenarios. Normally, there are
also limited records in these new scenarios, and such data scarcity
causes severe challenges in model learning.

To deal with the challenges of friend recommendation, we �rst
formalize the problem as few-shot link prediction on the multiplex
network, as illustrated in Fig. 1a and Fig. 1c. Speci�cally, we regard
users as nodes, user pro�les as node attributes, and interactions
among users as edges. To accommodate the multi-scenario setting,
we treat each scenario as one type of edges, which makes the whole
network “multiplex”.

Regarding the scenario diversity, some multiplex network em-
bedding methods capture di�erent proximity in di�erent edge types
by learning edge type-speci�c embeddings for each node [3, 33].
However, these methods cannot quickly generalize to new scenar-
ios with a few gradient steps, and thus they still su�er from the data
scarcity. For the large number of tail scenarios and new scenarios
with limited records, learning the edge type-speci�c embeddings
simply by their own training data may lead to over-�tting and large
variance. These problems can be alleviated by regarding the link
prediction in each edge type (i.e., scenario) in the network as one
task and apply meta-learning techniques [7, 10], which aims at
leaning global meta-knowledge that can be quickly adapted to each
individual task. To distill the knowledge that can bring in positive
transfer while ignoring the negative in diverse tasks [28, 29], ex-
isting network-based meta-learning methods encourage tasks (i.e,
scenarios) with similar topological structure to share more meta-
knowledge in the form of model parameters [2, 30]. However, they
still su�er from the data scarcity problem. A tail or new task may
only have a small percentage of edges available, which has limited
power to represent the generic network structure.

Fortunately, in practice, there is often domain knowledge that
re�ects the conceptual similarities between di�erent tasks. For in-
stance, human may use a taxonomy to represent the relations of
di�erent tasks. As shown in Fig. 1b, “share video” and “share sub-
scription” are about the content of a user’s interest, while “contact”
reveals the social relations. Intuitively, if two tasks are conceptually
close to each other, they may also need similar meta-knowledge.
Supporting this intuition, our experimental results in Fig. 1d show
the new task “share video” obtains a better performance when
adapting from the parameters of its sibling “share subscription”
than “contact”.

In this paper, we propose a Domain Knowledge-guided Meta-
learning Framework for Multiplex Networks named (denoted by
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K�M��: Domain Knowledge-Guided Few-Shot Link Prediction
on Multiplex Networks

ABSTRACT
Friend recommendation is an indispensable service in social plat-
forms, where the system predicts whom a user wants to interact
with. We observe two challenges in friend recommendation: (1)
There are diverse scenarios where user interactions occur and the
behaviors of the same users may vary among scenarios; (2) The
scenarios follow a long-tail distribution, namely, a large portion of
tail scenarios only have very limited user behavioral data for model
learning. Besides, there are new scenarios that constantly emerge,
which also have sparse data. This raises a dilemma that the scenario
diversity calls for scenario-speci�c models, while the data scarcity
encourages the models to properly share as much information as
possible. To achieve a prominent trade-o�, we present K�M��, a Do-
main Knowledge-guided Meta-learning framework for Multiplex
Networks.1 Unlike traditional meta-learning frameworks that learn
a global initialization for all the diverse scenarios, we customize
the global initialization into scenario-speci�c ones by incorporat-
ing domain knowledge (e.g., a taxonomy organizing scenarios by
their semantic meaning) before �ne-tuning on training data. This
enables the model to capture the correlation between scenarios
with very limited data. Besides, K�M�� learns the scenario-speci�c
weights of a mixture-of-expert model to reduce model variance
resulting from data scarcity while achieving model diversity. Exten-
sive experiments demonstrate that K�M�� achieves state-of-the-art
performance on a public dataset and a real industry dataset.

1 INTRODUCTION
There have been a surge of social platforms in recent years, where
interpersonal interactions between users have been shown to be
the essential factor for improving user stickiness and activeness [22,
26, 31]. To better connect the users, friend recommendation has
been an important service of the e-commerce platforms and social
networks [13, 26]. A typical scenario is “item sharing” where the
recommender system predicts whom the current user wants to
share an item to.

There are two major challenges of friend recommendation in a
real-world social platform. The �rst one is the existence of diverse
scenarios. As shown in Fig. 1a, a user may contact, share video or
share subscription with another user on a social media platform.
The same users may have di�erent behaviors in di�erent scenarios,
1The code is available at https://github.com/KoMen-Taxonomy/KoMen
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hence, each scenario may require an individual set of model param-
eters. Another challenge is data scarcity. In reality, the scenarios
usually follow a long-tail distribution in the real world, where a
large number of scenarios only have very limited records. Besides,
there are new scenarios that constantly emerge. For example, when
a new game is released or a sales promotion is initiated, whom a
user wants to play together with, or to request for comments from,
could be di�erent from the existing scenarios. Normally, there are
also limited records in these new scenarios, and such data scarcity
causes severe challenges in model learning.

To deal with the challenges of friend recommendation, we �rst
formalize the problem as few-shot link prediction on the multiplex
network, as illustrated in Fig. 1a and Fig. 1c. Speci�cally, we regard
users as nodes, user pro�les as node attributes, and interactions
among users as edges. To accommodate the multi-scenario setting,
we treat each scenario as one type of edges, which makes the whole
network “multiplex”.

Regarding the scenario diversity, some multiplex network em-
bedding methods capture di�erent proximity in di�erent edge types
by learning edge type-speci�c embeddings for each node [3, 33].
However, these methods cannot quickly generalize to new scenar-
ios with a few gradient steps, and thus they still su�er from the data
scarcity. For the large number of tail scenarios and new scenarios
with limited records, learning the edge type-speci�c embeddings
simply by their own training data may lead to over-�tting and large
variance. These problems can be alleviated by regarding the link
prediction in each edge type (i.e., scenario) in the network as one
task and apply meta-learning techniques [7, 10], which aims at
leaning global meta-knowledge that can be quickly adapted to each
individual task. To distill the knowledge that can bring in positive
transfer while ignoring the negative in diverse tasks [28, 29], ex-
isting network-based meta-learning methods encourage tasks (i.e,
scenarios) with similar topological structure to share more meta-
knowledge in the form of model parameters [2, 30]. However, they
still su�er from the data scarcity problem. A tail or new task may
only have a small percentage of edges available, which has limited
power to represent the generic network structure.

Fortunately, in practice, there is often domain knowledge that
re�ects the conceptual similarities between di�erent tasks. For in-
stance, human may use a taxonomy to represent the relations of
di�erent tasks. As shown in Fig. 1b, “share video” and “share sub-
scription” are about the content of a user’s interest, while “contact”
reveals the social relations. Intuitively, if two tasks are conceptually
close to each other, they may also need similar meta-knowledge.
Supporting this intuition, our experimental results in Fig. 1d show
the new task “share video” obtains a better performance when
adapting from the parameters of its sibling “share subscription”
than “contact”.

In this paper, we propose a Domain Knowledge-guided Meta-
learning Framework for Multiplex Networks named (denoted by

Figure 2: (a) The graphical model of KoMen. 𝜓 is the parameters in scenario representation model and 𝜃 is the ones of link
prediction model. (b) The overall framework. The scenario representation model encodes the domain knowledge as the initial
representation d𝑟 and maps it to the (updated) scenario representation g𝑟 by a trainable neural network𝜓 . The link prediction
model trains a set of experts, each of which learns the attention over edge types separately. Different scenarios choose differ-
ent combinations of experts based on their representations g𝑟 . (c) Each emerging scenario aggregates the information from
existing edge types with a set of coefficients (denoted by ◦ and ×). In KoMen, each expert learns the attention over existing
edge types, and each scenario learns the attention over experts, so the coefficients will be confined in the expert simplex.

domain knowledge about the scenarios and are transformed by
several trainable layers. By our design, the (updated) representation
of a scenario depends on both its purposes and functions and the
pattern of its training data. The link prediction module contains a
Graph Neural Network (GNN) [13] that encodes the information
in each edge type and an MoE [24] architecture that aggregates
the information of different edge types, where the coefficients can
be different among scenarios based on their (updated) representa-
tions. This allows scenarios with similar representations to use the
multiplex graph in a similar way. Overall, as shown in Fig. 2(a), we
exploit meta-learning to optimize the model with domain knowl-
edge guided scenario-specific initialization (Sec. 3.3 and Sec. 3.4).

3.1 Domain Knowledge Guided Scenario
Representation Learning

As shown in Fig. 2(b), KoMen aims to learn a set of low-dimensional
vectors as scenario representations, so that two scenarios with
similar user behaviors will also have representations with small
distance in the Euclidean space.

Although pure data-driven methods may be effective for some ex-
isting scenarios with massive records, they may lead to over-fitting
when the training data are limited, which is common for emerg-
ing scenarios. To solve the data scarcity issue, before training our
model, KoMen deducts a prior from available domain knowledge
and incorporates it into our learning-based models.

To exemplify this idea, one possible form of domain knowledge
is a taxonomy of scenarios, where each scenario is a leaf node and
is organized by its purposes and functions, as shown in Fig. 1b. We
obtain the initial representation d𝑟 of each scenario by training
Poincaré embeddings [19] on the taxonomy. It is an embedding
method designed for tree structures, which encourages scenarios
with smaller distances in the taxonomy to have similar embeddings.

In addition to the domain knowledge, the observed data of an
emerging scenario also provides crucial information on user behav-
ior. Hence, we further pass the initial representation d𝑟 to several

multilayer perceptron (MLP) layers ℎ𝜓 , which are trained on the
observed data. We take one layer as an example:

g𝑟 = ℎ𝜓 (d𝑟 ) = 𝜎 (Wd𝑟 + b), (1)

where 𝜎 is the activation function. Only the parameter𝜓 = (W, b)
are updated during training while the initial representation d𝑟 is
fixed. In this way, the (updated) scenario representation g𝑟 encodes
the domain knowledge because it is conditioned on the initial repre-
sentation d𝑟 . It also reflects the distribution of training data because
it is also conditioned on𝜓 , which is trained on the observed data
R (𝑒𝑥) . On one hand, the domain knowledge serves as a prior that
confines the search space of g𝑟 . On the other hand, even if the
domain knowledge is not perfect, g𝑟 could still be adjusted based
on the training data.

Notice that we only use taxonomy as an example and the model
can take various forms of domain knowledge with the initial repre-
sentations computed in different ways. For instance, given a short
paragraph describing the function of each scenario, the model may
use the document representation of each paragraph as the initial
representation d𝑟 . We could also design several features for the sce-
nario as d𝑟 , such as whether the interaction is one-way or two-way
or whether the user gets rewards after the interaction.

Furthermore, in case that domain knowledge is not available,
g𝑟 can still be learned from the training data. For instance, we can
also replace d𝑟 with a set of low-dimensional embeddings, which
is randomly initialized and updated during training. In this way, g𝑟
is learned in a purely data-driven way.

3.2 Scenario Similarity Aware Link Prediction
As Fig. 2(b) shows, our link prediction module consists of a GNN [13]
and an MoE [24] architecture. The GNN encodes the information
of each edge type individually, and each expert in MoE computes
the attention over all existing edge types. By passing the scenario
representations reflecting the similarities between scenarios into
the MoE, we encourage scenarios with similar user behaviors to
use the multiplex graph in similar ways.
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Base Encoder. For each node 𝑣𝑖 , we calculate its base embed-
ding under each edge type by applying the graph neural network
(GNN) [13]. For simplicity, we take one layer as an example:

u𝑖,𝑟 = 𝜎 (W𝑔mean{x𝑗 ,∀𝑒𝑖 𝑗 ∈ E (tr)𝑟 } + b𝑔 ) (2)
where W𝑔 and b𝑔 are learnable parameters, x𝑖 is the node attributes
and 𝜎 denotes the Sigmoid function. For each node, we concatenate
the base embeddings of all existing edge types as a 𝑠-by-𝑚 matrix
U𝑖 = [u𝑖,1, u𝑖,2, . . . , u𝑖,𝑚], where 𝑠 is the dimension of embeddings
and𝑚 is the number of existing edge types. For an emerging sce-
nario and its corresponding edge type 𝑟 , the base embeddings u𝑖,𝑟
reflects its own training data, and the matrix U𝑖 captures the infor-
mation in all existing scenarios to facilitate the prediction.
Scenario Similarity Aware Aggregation. As the user behaviors
could vary among diverse scenarios, we allow different scenarios to
aggregate the information of all edge types in different ways. Specif-
ically, we train an MoE [24] structure with 𝐾 experts, each of which
learns an aggregated embedding v(𝑘)

𝑖
as a weighted summation of

the vectors in U𝑖 . The aggregating weights a(𝑘)
𝑖

over the existing
edge types are computed using self-attention mechanism [16]:

a(𝑘)
𝑖

= Softmax(wT
𝑘

tanh(W𝑘U𝑖 ))T,

v(𝑘)
𝑖

= MT
𝑘
U𝑖a
(𝑘)
𝑖
,

(3)

where w𝑘 ∈ R𝑝 , W𝑘 ∈ R𝑝×𝑠 and M𝑘 ∈ R𝑠×𝑠 are the parameters of
the 𝑘-th expert, and 𝑝 is the hidden dimension. Noted that the ex-
perts have the same architecture but respective model parameters.

After the transformation𝜓 , the scenario representation g𝑟 has
the same dimension as the number of experts. We then take the
Softmax function over it so that each entry of 𝑔𝑟 becomes the
weight of its corresponding expert. The final node embedding used
for predicting links of 𝑟 is computed as follows:

x𝑖,𝑟 = 𝛽u𝑖,𝑟 + (1 − 𝛽)V𝑇𝑖 Softmax(g𝑟 ), (4)

where V𝑖 = [v(1)
𝑖
, . . . , v(𝐾)

𝑖
] is a 𝑠-by-𝐾 matrix, 𝛽 is a scalar to

balance the influence of the information from the edge type 𝑟 itself
and that from all the existing edge types. In short, scenarios with
similar user behaviors are trained to have similar representations
g𝑟 , and the MoE allows them to aggregate the information in the
graph in similar ways.
Advantages. Although both existing multiplex graph embedding
methods [3, 44] and KoMen produce the final node embedding for
each type by aggregating the information in all edge types, their ag-
gregating coefficients are determined in different ways: (1) In [3, 44],
each scenario directly aggregates U𝑖 = [u𝑖,1, u𝑖,2, . . . , u𝑖,𝑚] with the
coefficients learned sorely from its own training data, E (tr)𝑟 . There
could be multiple layers associated with the computation of the co-
efficients, easily leading to over-fitting for emerging scenarios with
scarce training data. In contrast, KoMen aggregates the outputs of
experts instead of edge types, each of which has been a mixture of
U𝑖 . Thus, deducing from Eq. (3) and Eq. (4), the coefficients of each
edge type should be [a(1)

𝑖
, . . . , a(𝐾)

𝑖
]g𝑟 . Since the parameters of each

expert and𝜓 are shared by all the scenarios, none of the involved
parameters are learned solely from the training data of edge type
𝑟 . Hence, KoMen alleviates the over-fitting issue resulting from
data scarcity, while still having the same expressiveness for diverse

scenarios. (2) Fig. 2(c) illustrates the difference between KoMen
and GATNE [3] by visualizing their possible distributions over the
edge types (i.e., the possible aggregating coefficients). Due to the
very limited number of training examples of emerging scenarios, in
GATNE, the variance of their estimated mixing coefficients could
be huge, separating around the edge type simplex. In comparison,
KoMen regularizes the aggregating coefficients to lie in the expert
simplex, which is often a more reserved subset of the edge type sim-
plex so that the variance of the estimated aggregating coefficients
would be reduced.

3.3 Optimization
In this section, we describe how to optimize the two modules to
make them cooperate with each other well and be capable of quickly
adapting to emerging scenarios. For simplicity, we pack the model
parameters shared by all scenarios as 𝜃𝐺 = (W𝑔 , b𝑔 ), the param-
eters in experts as 𝜃𝐸 = {(w𝑘 ,W𝑘 ,M𝑘 ) |1 ≤ 𝑘 ≤ 𝐾}, and the
parameters regarding the scenario representations as𝜓 = (W, b).

To estimate the existence of 𝑒𝑟
𝑖 𝑗

, an edge of edge type 𝑟 , we
compute the conditional probability of observing 𝑣 𝑗 given 𝑣𝑖 :

Pr(𝑒𝑟𝑖 𝑗 ∈ E𝑟 ) = Pr(𝑣 𝑗 |𝑣𝑖 , 𝑟 ) =
xT
𝑖,𝑟
x𝑗,𝑟∑

𝑣𝑗′ ∈V xT
𝑖,𝑟
x𝑗 ′,𝑟

, (5)

where the probability is parmeterized by the model parameters of
the link prediction module (i.e., 𝜃𝐺 , 𝜃𝐸 ) customized by g𝑟 accord-
ing to Eq. 4. With the defined conditional probability, we aim to
optimize 𝜃𝐺 , 𝜃𝐸 and𝜓 by minimizing the negative log-likelihood
of observed co-occurrences for each existing edge type 𝑟 ∈ R (ex) :

L(
⋃

𝑟 ∈R (ex)

E (𝑡𝑟 )𝑟 ) = −
∑

𝑟 ∈R (ex)

∑
𝑣𝑖 ∈V

∑
𝑣𝑗 :𝑒𝑟𝑖 𝑗 ∈E

(tr)
𝑟

log Pr(𝑣 𝑗 |𝑣𝑖 , 𝑟 ) . (6)

In practice, we construct the negative samples by randomly choos-
ing node pairs with no edge in the training set. Due to the huge
number of nodes, we adopt either noise contrastive estimation
(NCE) [9] or negative sampling (NS) [18] to approximate Eq. 5 by
log Pr(𝑣 𝑗 |𝑣𝑖 , 𝑟 ) ≈ log(𝜎 (xT

𝑖,𝑟
x𝑗,𝑟 )) +

∑
𝑗 ′∼Pr𝑛 (𝑣) [log(𝜎 (−xT

𝑖,𝑟
x𝑗 ′,𝑟 ))],

where Pr𝑛 (𝑣) stands for a distribution overV used for sampling
“negative” examples.

To handle emerging scenarios, we adopt gradient-based meta-
learning [8] to optimize 𝜃𝐺 , 𝜃𝐸 and𝜓 jointly, which aims to learn
an initialization for the model parameters that can quickly adapt to
any particular task after fine-tuning on very few examples. Unlike
traditional meta-learning methods [8] which uses a global initializa-
tion (i.e., 𝜃𝐺 , 𝜃𝐸 ) for all scenarios, since the combination of experts
is based on scenario representations g𝑟 , we allow each scenario to
have its specific initialization (i.e., 𝜙𝑟 ). This idea is presented via
the graphical model shown in Fig. 2 and discussed in Sec. 3.4. The
pseudocode of our training procedure is presented in Algorithm 1.

To make the training procedure more efficient, instead of updat-
ing all parameters in both the inner and outer loop as most existing
methods [8, 39] do, we fix the parameters of the base encoder, i.e.,
𝜃𝐺 in the inner loop and only update it in the outer loop [23].
Analysis. Theoretically, we can recast optimization-based meta-
learning in the hierarchical Bayesian framework, which enables us
to interpret KoMen by the graphical model shown in the upper left
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Algorithm 1 Meta-learning with task-specific customization.

Input Multiplex graph𝐺 = (V,⋃𝑟 ∈R (ex) E (tr)𝑟 ,X), initial scenario
representations d𝑟 , 𝑟 ∈ R (ex) , step size 𝛼1, 𝛼2, update steps 𝐾
Output Model parameters 𝜃𝐺 , 𝜃𝐸 and𝜓 .

1: Randomly initialize 𝜃𝐺 , 𝜃𝐸 and𝜓
2: while not converge do
3: for 𝑟 ∈ R (ex) do
4: Sample E(spt)

𝑟 , E(qry)
𝑟 from E (𝑡𝑟 )𝑟

5: Initialize𝜓 (0) ← 𝜓

6: for 𝑡 in [0 : 𝑇 − 1] do
7: Update𝜓 (𝑡+1) ← 𝜓 (𝑡 ) − 𝛼1∇𝜓 (𝑡 )L(E

(spt)
𝑟 ;𝜓 (𝑡 ) )

8: end for
9: Compute g𝑟 based on𝜓 (𝑇 ) by Eq. 3

10: Initialize 𝜃 (0)
𝐸,𝑟
← {Softmax(g𝑟 )𝜃𝐸,𝑘 |1 ≤ 𝑘 ≤ 𝐾}

11: for 𝑡 in [0 : 𝑇 − 1] do
12: Update 𝜃 (𝑡+1)

𝐸,𝑟
← 𝜃

(𝑡 )
𝐸,𝑟
− 𝛼2∇𝜃 (𝑡 )

𝐸,𝑟

L(E(spt)
𝑟 ;𝜃 (𝑡 )

𝐸,𝑟
)

13: end for
14: end for
15: Update 𝜃𝐺 , 𝜃𝐸 and 𝜓 by minimizing overall loss∑

𝑟 ∈R (𝑒𝑥 ) L(E
(qry)
𝑟 ; {𝜃𝐺 , 𝜃 (𝑇 )𝐸,𝑟

,𝜓 (𝑇 ) })
16: end while

of Fig. 2. The corresponding generative process can be defined by:
Pr(E,D |𝜃𝐺 , 𝜃𝐸 ,𝜓 ) =∏

𝑟∈R
(
∫∫∫

Pr(E𝑟 |𝜙𝑟 , 𝜃𝐺 ) Pr(𝜙𝑟 |𝜃𝐸 , g𝑟 ) Pr(g𝑟 |𝜓, d𝑟 ) Pr(d𝑟 ) dd𝑟 d𝜙𝑟 dg𝑟 ),

(7)
where 𝜙𝑟 represents the parameters of the link prediction module

customized by g𝑟 from 𝜃𝐸 . In KoMen, we derive d𝑟 from the domain
knowledge by a certain adopted embedding algorithm and regard it
as a point estimate: Pr(d𝑟 ) = 𝛿 (d𝑟 ), where 𝛿 denotes the Dirac delta
function. Moreover, we consider the point estimates Pr(g𝑟 |𝜓, d𝑟 ) =
𝛿 (ℎ𝜓 (d𝑟 )) and approximate Pr(E𝑟 |𝜙𝑟 ) Pr(𝜙𝑟 |𝜃𝐸 , g𝑟 ) by using Eq. 5
as well as Eq. 4. The approximations enhance the computational
efficiency and thus enable KoMen to deal with large-scale graphs.

3.4 Discussion
Our framework is highlighted by (1) its mechanism of synthesizing
information from the multiplex graph, and (2) the domain knowl-
edge guided parameter adaptation. In this section, we elaborate the
rationale behind them by comparing with related prior studies.
GATNE [3]. KoMen is reduced to GATNE when we ignore the
domain knowledge and force each scenario to use its own dedicated
expert. In this way, the attention over edge types a(𝑘)

𝑖
becomes

scenario-specific (i.e., a(𝑟 )
𝑖

), and is only updated by E (𝑡𝑟 )𝑟 .
MAML [8]. KoMen is reduced to MAML when 𝐾 = 1, i.e., using
only one expert for all the scenarios. In this case, the prediction no
longer depends on g𝑟 and each scenario directly adapts from the
same global parameter without any customization.
Meta-Graph [2] and GFL [41]. Both of the methods customize
the global initialization 𝜃𝐸 for 𝜙𝑟 by a graph signature which is
extracted based on the graph topological structure. Since the access
to the whole graph structure is unavailable in the few-shot link

Table 1: Dataset Statistics.

Datasets # Nodes # Edges
# Existing

e-types
# New
e-types

YouTube 2,000 1,310,617 2 2
Taobao 267,869 258,306 20 5

prediction setting, we further leverage the domain knowledge to
guide the customization.
T-NAS [15]. When we regard the scenario representation g𝑟 as the
architecture parameters and force g𝑟 to be hard (i.e., one-hotted),
updating𝜓 is equivalent to adapting the neural architecture.

4 EXPERIMENTS
In this section, we conduct extensive experiments to answer four
research questions: (RQ1) How do KoMen and its ablations per-
form compared against adapted state-of-the-art approaches for
interaction recommendation on emerging scenarios? (RQ2) Can
KoMen also help with existing scenarios? (RQ3) Which kind of
scenarios benefit the most from KoMen, and how does KoMen
perform on specific scenarios? (RQ4) How is KoMen impacted by
its hyper-parameters?

4.1 Experimental Settings
Datasets. We validate the performance of our method on few-shot
interaction recommendation on a publicly available benchmark
dataset YouTube [26] and a real-world industry dataset Taobao. We
also conduct experiments under the standard supervised setting to
demonstrate that our method can also help existing scenarios. The
statistics of both datasets are listed in Table 1. Under the few-shot
setting, we train our model on existing edge types and test the
performance on emerging edge types. Under supervised setting, we
only focus on link prediction on existing edge types. More details
about dataset construction are put in the Appendix.
Baselines. We compare the performance of KoMen with several
state-of-the-art methods adapted for interaction recommendation
under both the few-shot and supervised settings.
Baselines for the few-shot setting. To test our framework on
emerging scenarios, we first compare KoMen with Meta-learning
methods, which are state-of-the-art methods in few-shot learning.
These methods include general meta-learning methods: MAML [8]
and HSML [39], and graph-based meta-learning methods: G-Meta
[12] and Meta-graph [2]. To adapt general meta-learning methods
to our setting, we use GATNE [3] as the model structure and train
its parameters using meta-learning approaches. For G-Meta and
meta-graph, we follow their original setting and treat each edge
type as an individual graph. Following previous studies [12, 32], we
also compare with several basic methods [27]: KNN, Fine-tune
and No-fine-tune. All three methods use GCN [13] to encode
the input graph. KNN compares each test pair with the K-nearest
train pairs in the embedding space. Fine-tune and No-fine-tune
further train several fully connected layers on the top of GCN. In
Fine-tune, both the GCN model and the top layers will be updated
on each emerging scenario’s support set, while No-fine-tune only
updates the parameters of the top layers. Finally, we compare our



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xie et al.

Table 2: Experimental results under the few-shot setting on YouTube and Taobao datasets.

Methods YouTube-new Taobao-new

ROC PR F1 wROC wPR wF1 ROC PR F1 wROC wPR wF1
KNN 48.90 48.18 50.76 47.16 46.34 49.99 48.71 49.43 49.13 50.03 50.08 50.06

No-fine-tune 54.96 53.84 53.54 54.26 52.98 53.44 54.13 51.86 52.63 51.58 50.27 50.73
Fine-tune 58.61 57.29 54.69 62.61 58.71 57.38 52.48 48.71 50.29 51.25 50.16 50.13

MoE 70.17 68.17 65.68 69.19 66.69 64.94 54.50 53.53 53.39 55.90 54.64 54.42
G-Meta 68.21 67.62 66.98 66.27 65.38 64.46 57.78 55.43 57.27 60.46 57.19 57.82

Meta-graph 71.35 64.71 65.32 70.27 62.95 65.26 N/A N/A N/A N/A N/A N/A
MAML 70.61 67.91 66.29 69.60 66.54 65.44 61.60 59.86 58.62 60.89 59.28 58.09
HSML 71.85 68.73 66.95 70.32 66.62 65.85 60.63 58.58 57.48 60.08 58.07 57.59

KoMen (no taxo.) 72.82 69.64 67.77 71.24 67.65 66.33 61.86 59.53 58.86 62.02 59.20 58.80
KoMen (no expert) 73.17 69.95 68.06 71.40 67.74 66.63 62.01 59.69 58.90 62.39 59.54 59.01

KoMen 73.74 70.69 68.84 72.46 68.76 67.59 62.63 60.49 59.47 62.92 60.15 59.47

method with a multi-task learning method MoE [24], which does
not contain any scenario-specific parameters or distinguish existing
and emerging scenarios. We also use GCN as its base encoder and
fine-tune the model on the test support set.
Baselines for the standard supervised setting. Although our
focus is interaction recommendation for emerging scenarios, we
also want to see how our method affects the performance under
existing scenarios. We first compare with Graph-based methods,
which include GCN [13] and GATNE [3]. To adapt GCN to our
setting, we consider each edge type as an individual graph and
make predictions independently. We choose GATNE among all
other link prediction methods for multiplex graphs because it is
the current state-of-the-art method on the YouTube dataset. We
also compare with Multi-task learning methods, including MoE [24],
MMoE [17], and Tree-MMoE [14]. To be fair, we use GATNE as
the graph embedding model for all these methods and add several
fully connected layers as top layers.
Ablations. To validate the utility of the domain knowledge and the
MoE architecture, we compare KoMen with two ablations that re-
move the two modules respectively. KoMen (no taxo.) substitutes
the initial representations d𝑟 with one-hot vectors. KoMen (no
expert) forces each scenario to use its own expert during training
and initializes the parameters of an emerging scenario by copying
the parameters of the existing scenario closest to it in the taxonomy.
We also compared to an additional ablation in the Appendix.
Metrics. Following previous work [3], we use ROC-AUC, PR-AUC,
and F1 as our evaluation metrics. Since the number of edges may
be imbalanced for different edge types, we also introduce weighted
ROC-AUC, weighted PR-AUC, and weighted F1 (noted as wROC-
AUC, wPR-AUC, and wF1), which sum up the performance on all
edge types with weights proportional to their test sample size.

4.2 Main Results
Results under the Few-shot Setting. Table. 2 presents the results
under the few-shot setting. The highest score under each metric is
highlighted in bold, and the highest score among baselines is un-
derlined. Overall, KoMen consistently yields the best performance
among all methods on both the public dataset and real-world indus-
try dataset. For instance, KoMen improves over the best baseline

w.r.t. weighted ROC-AUC by relative gains 3.04% and 3.33% on the
two datasets, with p-values≪ 0.01 in t-test.

Among all the baselines, we observe that meta-learning methods,
especially MAML and HSML, significantly outperform basic meth-
ods. With the help of meta-optimization by gradient, MAML is able
to quickly generalize for an emerging scenario. However, MAML
initializes the parameters for all scenarios in the same way, while
KoMen customizes the initialization for each scenario. The scenario
representations allow similar scenarios to share more information,
allowing the model to better use the meta-knowledge.

Although HSML and Meta-graph also use scenario-specific ini-
tialization, they customize the initialization in a solely data-driven
way, where the limited data for emerging scenarios may not be ad-
equate to represent the generic topological structures. Their weak-
ness is especially serious when the graph is relatively large and
sparse. We can observe that HSML beats MAML under all metrics
in YouTube, but is significantly outperformed by MAML in Taobao.
Both MAML and HSML are outperformed by KoMen, which in-
corporates domain knowledge into data-driven learning, which
captures the scenario similarities better and hence obtains a better
scenario-specific initialization. Although MoE is not designed for
fast generation to emerging scenarios, MoE (with fine-tune) is also
quite competitive in YouTube. This again shows the importance of
obtaining a global initialization with high quality.

The comparison between our full model and KoMen (no taxo.)
further demonstrates that by combining domain knowledge with
data-driven learning, KoMen can capture the similarities among
scenarios in a more accurate way and thus give better general-
ization results. The comparison between KoMen and KoMen (no
expert) validates the utility of the MoE architecture, which balances
between generalization and customization.

Results under Supervised Setting. Although our method aims to
handle interaction recommendation for emerging scenarios, exper-
iments also show that KoMen outperforms the adapted baselines
on existing scenarios under the supervised setting. For instance,
as shown in table 3, KoMen outperforms the best baseline w.r.t.
PR-AUC by 1.68% and 1.46% on the two datasets. We also achieve
𝑝 < 0.01 in t-test under weighted PR-AUC score in both datasets.
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Table 3: Experimental results under the supervised setting.
Although the major focus of our work is on the few-shot set-
ting, KoMen also achieves the best performance when there
is abundant training data.

Methods YouTube-existing Taobao-existing

ROC PR F1 ROC PR F1
GCN 81.52 81.68 74.08 79.78 77.38 72.60

GATNE 84.61 81.93 76.83 81.52 80.44 73.69
MoE 83.55 78.18 76.37 80.04 75.20 70.38

MMoE 84.73 80.77 77.20 79.96 78.91 68.74
Tree-MMoE 83.57 80.75 76.19 80.28 77.52 69.91

G-Meta 75.30 77.50 74.33 75.26 72.39 68.76
Meta-graph 82.83 81.55 74.79 N/A N/A N/A

MAML 83.30 80.69 76.21 80.41 80.19 72.32
HSML 81.89 79.37 74.68 79.99 78.86 71.72

KoMen (no taxo.) 85.11 82.85 77.46 81.99 81.35 73.98
KoMen 85.51 83.61 77.80 82.26 81.90 74.39

Among the baselines, meta-learning methods are less compet-
itive compared to the standard supervised methods. They aim to
capture the general knowledge shared by all scenarios while not
having enough customization. In comparison, KoMen customizes
the shared knowledge for each scenario based on both its function
and the training data, balancing customization and generalization.

Among the baselines, GATNE, MoE, and MMoE capture the
complicated inter-dependencies among scenarios in a purely data-
driven way. However, we observe in the datasets that even the
existing scenarios follow the long-tail distribution. Namely, a large
number of scenarios also have scarce training data, which again
easily leads to over-fitting and sub-optimal results. For the same rea-
son, our full model outperforms KoMen (no taxo.) in both datasets.
Although Tree-MMoE also employs taxonomy as a form of domain
knowledge as we do, it is still outperformed by KoMen. The reason
might be Tree-MMoE hard-codes the taxonomy into the model
structure, while KoMen encodes the domain knowledge into sce-
nario representations and also updates the representations during
training, using the domain knowledge more flexibly.

4.3 Performance Analysis

Performance Breakdown on Different Scenarios. In addition
to the overall performance, we also focus on which kind of scenarios
(edge types in our formulation) benefit the most from KoMen. We
divide the existing 20 edge types in Taobao dataset evenly into three
groups by their size, noted as large, medium, and small scenarios.
For each group, we compare the relative lift of KoMen and KoMen
(no taxo.) over GATNE. The result is shown in Fig. 3.

In all three groups, KoMen outperforms both our ablation and
GATNE and the improvement is especially significant for large and
small scenarios. One possible explanation is that scenarios with
massive records are always related to a large number of scenarios.
For instance, “gold coin mission” has 7 siblings under the same
parent node “user-interaction in a game”. The intuition is that,
when a game is proved to be popular, the platform tends to develop
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Figure 3: Performance breakdown with three evaluation
metrics on the Taobao dataset.

other games to attract more users. By incorporating domain knowl-
edge, KoMen “groups” these scenarios together, and allows them
to mutually enhance each other through parameter sharing.

When it comes to small scenarios, the number of training sam-
ples is relatively small, hence GATNE may suffer from inadequate
training. In KoMen, these small scenarios are able to share the same
experts with large ones, which are updated more completely by
sufficient training samples. Furthermore, both KoMen and KoMen
(no taxo.) are capable to capture the complex inter-dependencies
among scenarios to some degree. This enables small scenarios to
share more similar parameters with more related ones and vice
versa, which further improves the performance.
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Figure 4: (Left) A subtree of the taxonomy and the visualiza-
tion of similarities between (updated) scenario representa-
tions. (Right)A case study that empirically reflects the “real”
scenario similarities.

Visualization and Case Study. We attempt to understand how
the (updated) scenario representations reflect their similarities. To-
wards this end, we choose “TmallFarm Steal” as an anchor, and
visualize the KL-divergence between its representation and other
scenarios in Fig. 4. Overall, scenarios with smaller distances in the
taxonomy will share relatively similar representations, but there
are also exceptions. For instance, although “shop” and “coupon” are
equally close to the anchor, the KL-divergence of “coupon” is much
smaller. One commonality of “coupon” and “TmallFarm Steal” is
that users can get discounts by both sharing coupons and interact-
ing in the games. This shows that KoMen can encode the domain
knowledge in (updated) scenario representations, and still allow it
to update during training.

To empirically obtain scenario similarities, we train KoMen (no
expert) and initialize the emerging scenario “TmallFarm Steal” from
the existing scenarios one by one. As shown in Fig. 4, the ROC-AUC
adapted from “TmallFarm Plant” is 1.26 higher than that of “Tblive
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Video”. This validates our motivation that scenarios with similar
(updated) representation tend to have similar user behavior, and
hence are better to share similar model parameters.
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Figure 5: Parameter analysis of number of experts on both
existing and emerging scenarios, and the effect of update
steps for emerging scenarios. We vary the number of experts
from {1, 2, 3, 5, 8} in YouTube and {1, 4, 8, 12, 20} in Taobao,
and vary update step t from {0, 1, 2, 5, 10} in both datasets.

4.4 Hyper-Parameter and Efficiency Analysis
The number of experts. Since KoMen is collapsed to MAML
when there is only one expert, we are interested in how the number
of experts affects the overall performance for both existing scenarios
and emerging ones. As shown in Fig. 5, we observe that the optimal
number of experts for YouTube is 2 and that for Taobao is 12. The
overall performance is increasing as we add more experts to the
model at the beginning, but does not differ much around the optimal
setting on both datasets.
The number of update steps in meta-learning. We also investi-
gate how the number of adaptation steps 𝑡 affects the performance
of emerging scenarios. We observe that the performance of KoMen
increases when we update the parameters more sufficiently. It is
generally stable for different values of 𝑡 , except when 𝑡 = 0, where
we do not have adaptation at all.
Efficiency Analysis. We test the convergence time of KoMen with
GATNE on a single RTX A6000 GPU. On the Taobao dataset, under
both the few-shot and supervised settings, both methods take less
than 2 hours to converge, with the best score presents after around
30000 gradient steps. This shows optimizing with meta-learning
does not significantly increase the training time of our method.

5 RELATED WORK
In this section, we first review existing methods for interaction
recommendation, highlighting the most relevant ones to our work
and then briefly summarize the recent progress in few-shot learning.
Interaction Recommendation. Interaction recommendation, or
User-User interaction recommendation, aims to predict with whom
a user wants to interact in the social network. It can be grouped

into three categories: classification, fitting, and ranking [6, 29]. Our
method falls into the category of classification, which treats the
interaction between users as a binary variable. One major line
of studies is graph-based interaction recommendation, which for-
mulates the prediction of user interactions as link prediction on
graphs [6, 14, 29, 38, 42]. These studies make use of recent graph
representation learning methods such as random walk based meth-
ods [22] and graph neural networks [10, 13]. Under our setting that
considers diverse scenarios in interaction recommendation, we may
refer to multiplex graph representation learning methods, where
most of the methods aim to capture complex interactions of differ-
ent edge types on the same set of nodes by utilizing higher-order
graph structures such as meta-paths [7, 25, 33, 35] or assigning dif-
ferent attention to different edge types [3, 43]. Our work falls in the
latter category. Although many studies have been conducted on in-
teraction recommendation in fixed scenarios, they hardly consider
newly emerging scenarios, which we argue is common and crucial
in real e-platforms. Hence, we make the first attempt for few-shot
interaction recommendation, which tackles emerging scenarios.

Few-shot Learning. Few-shot learning intends to rapidly gen-
eralize to new tasks containing only a few samples [28]. Recent
studies on meta-learning are shown to be effective in few-shot
learning for various applications [8, 11], which learns to generalize
by capturing the general knowledge across similar learning tasks.
There are meta-learning methods that explicitly model the rela-
tionship between tasks[21, 39, 40]. [39, 40] train a task encoder to
capture task similarity and organize the tasks into relational graphs
or taxonomies. [1] also learns a low-dimensional embedding for
each task. This high-level idea can be well adapted to graph-based
meta-learning. [2] designs a graph signature function to encode
each graph into low dimensional space. [4] use a relational learner
to capture the relatedness between different relations in a knowl-
edge graph. Other graph-based meta-learning methods include [12],
which takes advantage of the local topological structure, [5], which
especially focuses on node classification, link prediction, and graph
classification, and etc [45]. However, most of the few-shot learning
methods use pure data-driven approach to capture the relations
between tasks, suffering from the scarce data of new tasks. KoMen
alleviate this problem by considering and utilizing human’s prior
knowledge on the purposes and functions of the scenarios before
training on the observed data.

6 CONCLUSIONS
In this paper, we formalize the interaction recommendation prob-
lem as few-shot link prediction for multiplex graphs and propose a
novel framework called KoMen to tackle it. KoMen incorporates
domain knowledge into data-driven learning to capture the similar-
ities among scenarios and leverages a mixture-of-expert structure
to allow semantically related scenarios to share similar parameters
and vice versa. Extensive experiments on a public dataset and a
real-world industry dataset demonstrate that KoMen consistently
outperforms state-of-the-art baselines adapted to our setting. Fur-
ther investigation into other forms of domain knowledge or other
model structures capturing causal relations between scenarios could
inspire a series of meaningful studies in the future.
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A APPENDIX
In the appendix, we will first give a more detailed introduction
to the datasets we use in our paper. Then we will introduce the
implementation details of our model and baselines.

A.1 Dataset Details
As no other work focus on few-shot friend recommendation, or
in our formulation, few-shot link prediction on multiplex graphs,
we construct a dataset called YouTube from a public supervised
multiplex graph link prediction dataset and construct a real-world
dataset called Taobao by collecting data from a leading e-commerce
platform.

The YouTube dataset is adapted from [26] by splitting its 5 edge
types into 2 meta-training graphs, 1 meta-validation graph, and 2
meta-testing graphs. Under the few-shot setting, following the con-
ventional setting on few-shot link prediction [2, 12], we randomly
split 30% of the edges in meta-validation and meta-testing graphs
as support set and others as query set.

The Taobao dataset is collected from the user daily sharing logs
of a leading e-commerce platform accumulated during July 2020.
Once a user wants to share something with others, the system will
recommend a list of potential target users. The clicked ones are
recorded as positive examples while the exposed but not clicked are
negative samples. We take the 5 scenarios with the fewest records
as meta-testing graphs and the others as meta-training graphs.

To evaluate KoMen’s ability to use domain knowledge, for each
dataset, we organize the edge types into a taxonomy by their pur-
poses and functions.

A.2 Implementation Details
We compare the experiment result after training for 30 epochs of
all methods on YouTube, and 1 epoch (or around 30000 gradient
steps) on the Taobao dataset.

For datasets with node features (Taobao), we set the size of
each feature embedding as 16 for each feature and keep it updated
during training. We construct the node embedding of each user
by concatenating the feature embeddings and pass it through a
linear layer. For datasets without node features (YouTube), we train
a randomly-initialized node embedding for each node.

We keep the embedding dimension as 200 for all the meth-
ods. For all the methods using GATNE as base model (GATNE,
MoE, MMoE, Tree-MMoE, MAML, HSMl, Ours), we keep the re-
lated hyper-parameters as the same: (edge-dim=10, att-dim=20,
negative-samples=5, walk-length=6, num-walks=5, window-size=3,
neighbor-samples=5) for Taobao, and (edge-dim=10, att-dim=20,
negative-samples=5, walk-length=10, num-walks=20, window-size=5,
neighbor-samples=10) for YouTube.

We tune the learning-rate and batch-size for all the methods. For
none meta-learning methods, the search space is lr = 1e-3, 1e-4,
batch-size = 16, 32, 64, 128 For meta-learning methods (G-Meta,
Meta-graph, MAML, HSML, ours), we tune the learning rate of
both inner loop and outer loop, noted as meta-lr = 1e-3, 1e-4 and
update-lr = 1e-2, 1e-3, the batch size of both support set and query
set, noted as spt-batch-size = 16, 32, 64, 128 and qry-batch-size = 32,
64, 128, 256, and the number of tasks in each batch (task-batch-size
= 1,2,4,8).

For the methods that use GATNE as base model, we also tune
alpha = 0.1, 0.5, 1.0, 2.0, the coefficient between base embedding
and edge-type embedding.

A.3 Additional Ablation Study
In this section, we compare with an additional ablation of our
method: KoMen (no meta.), where we remove the meta-learning
component and train the model on the training data of both the
existing and emerging scenarios.

We observe that the performance of our full model is much better
when the model only make one update on each training sample of
emerging scenarios. This is also a more realistic setting because
when a new scenario emerges, we already have a model converged
on existing scenarios.

When we fine-tune the model until it converges, the performance
gap between the two methods decreases but our full model still
outperforms the (no meta.) ablation. The reason might be in (no
meta.), the model parameters are mainly trained to fit the existing
scenarios with abundant data, which may not be the optimal for
emerging scenarios.

Table 4: Comparison between KoMen and its ablation:
KoMen (no meta.)

YouTube-new (one adaption step)

Method ROC PR F1 wROC wPR wF1
KoMen (no meta.) 53.21 52.55 52.37 54.24 53.38 53.05

KoMen 73.74 70.69 68.84 72.46 68.76 67.59

YouTube-new (finetune until converge)

Method ROC PR F1 wROC wPR wF1
KoMen (no meta.) 74.54 71.30 68.41 72.40 68.72 66.55

KoMen 75.02 71.95 69.27 73.57 69.97 68.16
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