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Abstract— Learning sparse representation of high-dimensional
data is a state-of-the-art method for modeling data. Matrix
factorization-based techniques, such as nonnegative matrix fac-
torization and concept factorization (CF), have shown great
advantages in this area, especially useful for image represen-
tation. Both of them are linear learning problems and lead to
a sparse representation of the images. However, the sparsity
obtained by these methods does not always satisfy locality
conditions. For example, the learned new basis vectors may be
relatively far away from the original data. Thus, we may not
be able to achieve the optimal performance when using the new
representation for other learning tasks, such as classification and
clustering. In this paper, we introduce a locality constraint into
the traditional CF. By requiring the concepts (basis vectors) to
be as close to the original data points as possible, each datum
can be represented by a linear combination of only a few basis
concepts. Thus, our method is able to achieve sparsity and locality
simultaneously. We analyze the complexity of our novel algorithm
and demonstrate the effectiveness in comparison with the state-
of-the-art approaches through a set of evaluations based on real-
world applications.

Index Terms— Data representation, dimensionality reduction,
image clustering, matrix factorization.

I. INTRODUCTION

LOW-DIMENSIONAL data representation is a fundamen-
tal problem in many real-world applications such as

pattern recognition, computer vision, image processing, and
so on [1]–[9]. Especially, linear data representations, such
as vector quantization (VQ), principal component analysis
(PCA), independent component analysis (ICA), sparse coding
[10], [11], nonnegative matrix factorization (NMF) [12], [13]
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and concept factorization (CF) [14], have been widely used in
data analysis tasks.

Among these methods, matrix factorization has been fre-
quently used in linear data representation. Some clustering
objective functions can be written as matrix factorization
objectives. Given a data matrix X, the above algorithms aim
to find two or more matrix factors whose product is a good
approximation to the original matrix. One factor can be inter-
preted as a matrix with a number of cluster prototypes as its
columns, which reveals the latent semantic structure, and the
other factor can be considered as the coefficients (also referred
to as encodings) that show the nearest cluster prototypes. In
real applications, the dimension of the found cluster prototypes
is usually much smaller than that of the original data matrix.
This gives rise to a compact representation of the data points,
which can facilitate other learning tasks such as clustering and
classification.

Among these matrix factorization methods, NMF [12], [13],
[15], [16] is distinguished from others in that it enforces the
constraint that the factor matrices must be nonnegative. That
is, all elements must be equal to or greater than zero. The CF
model is a variation of NMF in that each cluster is expressed
by a linear combination of the data points and each data
point is represented by a linear combination of the cluster
centers. The major advantage of CF over NMF is that the NMF
algorithm can only be performed in the original feature space
of the data points, but the CF method can be performed in any
data representation space, so that it can be kernelized and the
powerful idea of the kernel method can be applied [14]. Both
NMF and CF map the data from high-dimensional space to
a low-dimensional space and obtain a sparse encoding of the
data. However, the sparsity obtained by these methods does not
always satisfy locality conditions. Since the local points share
the greatest similarity, it would be more natural to represent
the basis vectors using a few nearby anchor points, which leads
to a more efficient representation of the data.

Recently, Cai et al. [17] proposed a locally consistent CF
approach to encode the geometrical information of the data
space, which can extract the document concepts with respect to
the intrinsic manifold structure. This method is able to discover
the local geometrical structure, but does not always satisfy the
locality conditions as we mentioned before. To add sparseness
constraint to the matrix factorization, Hoyer [18] showed how
explicitly incorporating the notion of sparseness improves
the inferred decompositions. However, there is no work that
includes locality and sparsity constraints simultaneously to the
best of our knowledge.
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In this paper, we introduce a novel matrix factorization
algorithm, called local-coordinate CF (LCF), which imposes
a locality constraint into the original concept factorization
method. By requiring the concepts (basis vectors or cluster
prototypes) to be as close to the original data points as
possible, each datum can be represented by a linear combi-
nation of only a few nearby basis concepts, thus achieving
sparsity and locality simultaneously. To achieve this goal, we
incorporate the idea of local coordinate coding [19] into the
original CF and propose a new objective function. To solve
the corresponding optimization problem, we use an iterative
multiplicative algorithm to find an optimal solution efficiently.

The rest of this paper is organized as follows. Section II
reviews the background of matrix factorization and the related
work is introduced in Section III. Section IV introduces
our LCF approach and detailed analysis of the algorithm is
provided in Section V. A variety of experimental results are
presented in Section VI. Finally, we provide some concluding
remarks in Section VII.

II. BACKGROUND

Matrix factorization is an important topic in the mathemat-
ical discipline of linear algebra. A wide variety of methods
of doing so have been developed over the decades by incor-
porating different constraints. Among these algorithms, the
most popular ones include singular value decomposition, PCA,
VQ, and ICA. In particular, NMF and CF have been shown
to be very useful in many data analysis applications such
as image processing [12], face recognition [20], document
clustering [14], [21], [22], bioinformatics [23]–[25], and blind
source separation [26].

Suppose we have n data points {xi }ni=1. Each data point
xi ∈ R

m is m dimensional and is represented by a vector.
The vectors are placed in the columns and the whole data set
is represented by a matrix X = [x1, . . . , xn] ∈ R

m×n . NMF
aims to find an m × k matrix U and a k × n matrix V where
the product of these two factors is an approximation to the
original matrix, represented as

X ≈ UV.

Each column vector of U, ui , can be regarded as a basis and
each data point xi is approximated by a linear combination
of these k bases, weighted by the components of V: xi ≈∑k

j=1 u jv j i .

The specialty of NMF is that it enforces that all entries
of the factor matrices must be nonnegative. One limitation
of NMF is that the nonnegative requirement is not applicable
to applications where the data involve negative numbers. The
second is that it is not clear how to effectively perform NMF in
the transformed data space so that the powerful kernel method
can be applied.

CF is proposed to address the above problems while inher-
iting all the strengths of the NMF method. In the CF model,
we rewrite the NMF model by representing each basis vector
(cluster center) u j by a linear combination of the data points
u j = ∑

i wi j xi , where wi j ≥ 0. Let W = [wi j ] ∈ R
n×k .

CF tries to decompose the data matrix to satisfy the following

condition:
X ≈ XWV.

Using the Frobenius norm to qualify the approximation, CF
tries to minimize the following objective function:

O = ‖X− XWV‖2. (1)

CF relaxes the condition on the data matrix that every
element has to be nonnegative and hence the applicability of
the technique is expanded. Ding et al. [27] proposed a convex-
NMF algorithm, which performs the same factorization as CF.
Other than the convex NMF, Ding et al. [27] also proposed a
number of new variations on the theme of NMF. In the semi-
NMF algorithm, only one matrix factor is restricted to contain
nonnegative entries, while relaxing the constraint on the basis
vectors.

III. RELATED WORK

The original NMF emphasizes the desideratum of sparsity.
However, the experiments have shown that NMF factors are
not necessarily sparse. Reference [28] discussed the condi-
tions for obtaining parts-of-whole representations by NMF.
To address this limitation, several schemes have been devel-
oped on top of NMF to add the sparsity constraint [18],
[20], [29]. Ding et al. [27] also pointed that convex NMF
has a nice property that the factored matrices tend to be
very sparse [27]. Gao et al. proposed a variational regularized
2-D NMF method, which is developed under the framework of
maximum a posteriori probability and is adaptively fine tuned
using the variational approach [30]. This method can naturally
impose sparsity constraint and incorporate prior information
into the basis features.

In addition, the bases obtained by NMF are spatially global,
whereas local bases would be preferred. Stan et al. [20]
proposed local NMF (LNMF) to achieve a localized NMF
representation by adding more constraints to enforce spatial
locality. Wang et al. [31] proposed a novel subspace method
using Fisher linear discriminant analysis, called Fisher NMF,
which can produce both additive and spatially localized basis
images as LNMF.

There is also some other work, which tries to combine NMF
and classification methods such as support vector machines.
For example, Zoidi et al. [32] proposed multiplicative update
rules for concurrent NMF and maximum margin classification.
The idea is to perform NMF, while ensuring that the margin
between the projected data of the two classes is maximal.
Usually, NMF requires the entire data set to reside in the
memory and thus cannot be applied to large-scale or streaming
data sets. To address this issue, Guan et al. [33] proposed an
online NMF method, which performs in an incremental fashion
via robust stochastic approximation.

The aforementioned approaches have been applied to vari-
ous real applications. However, the basis vectors learned from
these approaches may be far away from the data points or the
encodings may not be sparse. Therefore, the basis vectors may
not be optimal to represent the data points. In the following,
we introduce our approach, which explicitly requires the basis



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: LOCAL COORDINATE CF 3

vectors to be as close to the original data points as possible.
Hence, it can achieve sparsity and locality simultaneously.

IV. LOCAL-COORDINATE CF

In this section, we introduce our LCF algorithm, which
takes the locality constraint as an additional requirement. The
algorithm presented in this paper is fundamentally motivated
from the concept of local coordinate coding [19].

A. Objective Function

First, we introduce the concept of coordinate coding.
Definition 1: A coordinate coding is a pair (γ,C), where

C ⊂ R
d is a set of anchor points, and γ is a map of

x ∈ R
d to [γv(x)]v∈C ∈ R|C | such that

∑
v γv(x) = 1.

It induces the following physical approximation of x in R
d :

γ (x) =∑
v∈C γv(x)v.

According to this definition, the CF model can be con-
sidered as a coordinate coding where the basis vectors
u j = ∑

i wi j xi are a set of anchor points, and each column
of V contains the coordinates for each data point with respect
to the anchor points. To add the local sparse constraint to the
traditional CF, we require that each original data point should
be sufficiently close to only a few anchor points. This can
be achieved by introducing the following term to measure the
locality and sparsity penalty:

R =
K∑

k=1

|vki | ‖uk − xi‖2 =
K∑

k=1

|vki |
∥
∥
∥
∥
∥
∥

N∑

j=1

w j kx j − xi

∥
∥
∥
∥
∥
∥

2

. (2)

The above constraint incurs a heavy penalty if xi is far away
from the anchor point uk while its coordinate vki with respect
to uk is large. Therefore, by minimizing R, we essentially try
to formalize our intuition that xi is close to the anchor points
uk as much as possible, otherwise its coordinate with respect
to uk tends to be zero.

With the locality constraint, our LCF algorithm reduces to
minimize the following objective function:

O = ‖X− XWV‖2 + λ
N∑

i=1

K∑

k=1

|vki |
∥
∥
∥
∥
∥
∥

N∑

j=1

w j kx j − xi

∥
∥
∥
∥
∥
∥

2

. (3)

The λ ≥ 0 is a regularization parameter. It is easy to observe
that LCF will incur a heavy penalty if xi is far away from
the anchor point uk while its new coordinate vki with respect
to uk is large. By minimizing our objective function, only
a few coefficients vki are nonzero. Thus, we actually try to
represent xi by only a few nearby anchor points uk . In this way,
we preserve the sparse and local structures simultaneously.

B. Algorithm

We introduce an iterative algorithm to find a local minimum
for the optimization problem. The objective function can be

rewritten as follows:

O = ‖X− XWV‖2 + λ
N∑

i=1

K∑

k=1

|vki |
∥
∥
∥
∥
∥
∥

N∑

j=1

w j kx j − xi

∥
∥
∥
∥
∥
∥

2

= ‖X− XWV‖2 + λ
N∑

i=1

∥
∥
∥(xi 1T − XW)D1/2

i

∥
∥
∥

2
(4)

where Di = diag(|vi |) ∈ R
K×K . Using the matrix property

Tr(AB) = Tr(BA), ‖A‖2 = Tr(AT A) and Tr(A) = Tr(AT ),
we have

O = Tr
(
(X− XWV)(X− XWV)T

+ λ
N∑

i=1

(
xi1T − XW

)
Di

(
xi 1T − XW

)T
)

=Tr
(

XXT−2XWVXT+XWVVT WT XT+λ
N∑

i=1

(
xi 1T Di 1xT

i

− 2xi1T Di WT XT + XWDi WT XT ))
. (5)

Let ψ j k and φki be the Lagrange multiplier for constraints
w j k ≥ 0 and vki ≥ 0, respectively. We define matrix
� = [ψ j k] and � = [φki ], then the Lagrange L is

L = Tr
(

XXT − 2XWVXT + XWVVT WT XT

+ λ
N∑

i=1

(
xi 1T Di 1xT

i − 2xi 1T Di WT XT

+ XWDi WT XT ))+ Tr(�WT )+ Tr(�VT ). (6)

Define K = XT X and a column vector a = diag(K) ∈ R
N .

Let A = (a, . . . , a)T be a K × N matrix whose rows are aT .
Define a column vector b = diag

(
WT KW

) ∈ R
K . Let

B = (b, . . . ,b) be a K × N matrix whose columns are b.
The partial derivatives of L with respect to W and V are as
follows:

∂L
∂W
= 2KWVVT−2KVT+λ

N∑

i=1

(−2XT xi 1T Di+2KWDi )+�

(7)
∂L
∂V
= 2WT KWV− 2WT K + λ(A− 2WT K + B)+�.

(8)

Using the Karush–Kuhn–Tucker conditions [34] ψ j kw j k = 0
and φkivki = 0, we obtain the following equations:

(KWVVT ) j kw j k − (KVT ) j kw j k + λ
( N∑

i=1

KWDi

)

j k
w j k

− λ
( N∑

i=1

XT xi 1T Di

)

j k
w j k = 0 (9)

2(WT KWV)kivki − 2(WT K)kivki

+ λ(A− 2WT K + B)kivki = 0. (10)
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The above equations lead to the following update rules:

w j k ← w j k

(
KVT + λ∑N

i=1 XT xi 1T Di

)

j k
(

KWVVT + λ∑N
i=1 KWDi

)

j k

(11)

vki ← vki
2(λ+ 1)

(
WT K

)
ki

(2WT KWV+ λA+ λB)ki
. (12)

In summary, the iterative updating algorithm to perform the
LCF is described as follows.

1) Initialize the matrix variables W and V randomly.
2) Update W using (11).
3) Update V using (12).
4) Repeat steps 2 and 3 until the objective function con-

verges.

The obtained W and V are the solutions for the objective
function.

C. Convergence of the Algorithm

We have the following theorem regarding the above iterative
updating rules. Theorem 1 guarantees the convergence of the
iterations in (11) and (12) and therefore the final solution will
be a local optimum.

Theorem 1: The objective function O in (3) is nonincreas-
ing under the update rules in (11) and (12). The objective func-
tion is invariant under these updates if and only if W and V
are at a stationary point.

To prove Theorem 1, we use an auxiliary function similar to
that used in the expectation–maximization algorithm. To make
the proof complete, we restate the definition of auxiliary
function and its property, which will be used to prove the
algorithm convergence.

Definition 2: G(x, x ′) is an auxiliary function for F(x) if
the conditions

G(x, x ′) ≥ F(x), G(x, x) = F(x)

are satisfied.
Lemma 1: If G is an auxiliary function, then F is nonin-

creasing under the update

xt+1 = arg min
x

G(x, x ′). (13)

Proof: F(xt+1) ≤ G(xt+1, xt ) ≤ G(xt , xt ) = F(xt ).
The equality F(xt+1) = F(xt ) holds only if xt is a local

minimum of G(x, xt). By iterating the updates in (13), the
sequence of estimates will converge to a local minimum
xmin = arg min x F(x). Next, we will define an auxiliary
function for our objective function and use Lemma 1 to show
that the minimum of the objective function is exactly our
update rule, thereby Theorem 1 is proved.

First, we prove the convergence of the update rule in (11).
Considering any element wab in W , we use Fwab to denote
the part of O, which is only relevant to wab. Since the update
is essentially element wise, it is sufficient to show that each
Fwab is nonincreasing under the update step of (11). We prove
this by defining the auxiliary function G for Fwab as follows.

Lemma 2: The function

G
(
w,w

(t)
ab

)
= Fwab

(
w
(t)
ab

)
+ F ′wab

(
w
(t)
ab

)(
w −w(t)ab

)

+ (KWVVT )ab + λ∑N
i=1(KWDi )ab

w
(t)
ab

×
(
w −w(t)ab

)2
(14)

is an auxiliary function for Fwab , the part of O, which is only
relevant to wab.

Proof: Since G(w,w) = Fwab (w) is obvious, we
only need to show that G

(
w,w

(t)
ab

) ≥ Fwab (w). Compare
G

(
w,w

(t)
ab

)
with the Taylor series expansion of Fwab (w)

Fwab (w) = Fwab

(
w
(t)
ab

)
+ F ′wab

(
w
(t)
ab

)(
w − w(t)ab

)

+ 1

2
F ′′wab

(
w −w(t)ab

)2
. (15)

We only need to show that

(
KWVVT )

ab + λ
N∑

i=1

(
KWDi

)
ab ≥

1

2
w
(t)
ab F ′′wab

.

It is easy to check that

F ′wab
=

(
∂O
∂W

)

ab
= (

2KWVVT − 2KVT )
ab

+λ
N∑

i=1

(− 2XT xi 1T Di + 2KWDi
)

ab

F ′′wab
= 2(K)aa

(
VVT )

bb + 2λ
N∑

i=1

(K)aa(Di)bb. (16)

Therefore, we have

(KWVVT )ab + λ
N∑

i=1

(KWDi )ab =
∑

k

(KW)ak
(
VVT )

kb

+λ
N∑

i=1

∑

k

(KW)ak(Di )kb ≥ (KW)ab
(
VVT )

bb

+λ
N∑

i=1

(KW)ab(Di )bb ≥
∑

k

(K)akw
(t)
kb

(
VVT )

bb

+λ
N∑

i=1

∑

k

(K)akw
(t)
kb (Di )bb ≥ w(t)ab

(
(K)aa

(
VVT )

bb

+λ
N∑

i=1

(K)aa(Di )bb

)
≥ 1

2
w
(t)
ab F ′′wab

.

Thus, G
(
w,w

(t)
ab

) ≥ Fwab (w).
Then, we define an auxiliary function for the update rule

in (12). Similarly, let Fvab denote the part of O relevant
to vab. Then, the auxiliary function regarding vab is defined
as follows.
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Lemma 3: Function

G
(
v, v

(t)
ab

)
= Fvab

(
v
(t)
ab

)
+ F ′vab

(
v
(t)
ab

)(
v − v(t)ab

)

+
(

WT XT XWV+ 1
2λA+ 1

2λB
)

ab

v
(t)
ab

(
v−v(t)ab

)2

(17)

is an auxiliary function for Fvab , the part of O, which is only
relevant to vab.

Proof: Similarly, G(v, v) = Fvab(v) is obvious, we just
compare G

(
v, v

(t)
ab

)
with the Taylor series expansion of Fvab(v)

to show that G
(
v, v

(t)
ab

) ≥ Fvab (v). The Taylor series expansion
of Fvab (v) is as follows:

Fvab (v)= Fvab

(
v
(t)
ab

)
+F ′vab

(
v
(t)
ab

)(
v−v(t)ab

)
+ 1

2
F ′′vab

(
v−v(t)ab

)2
.

(18)

We only need to show that
(

WT XT XWV+ 1

2
λA+ 1

2
λB

)

ab
≥ 1

2
v
(t)
ab F ′′vab

. (19)

From the definition of A and B, it is easy to check that A ≥ 0
and B ≥ 0. Thus, we have
(

WT XT XWV+ 1

2
λA+ 1

2
λB

)

ab
≥ (

WT XT XWV
)

ab

=
∑

k

(
WT XT XW

)
akvkb ≥ vab

(
WT XT XW

)
aa. (20)

In addition, since

F ′′vab
= 2

(
WT KW

)
aa (21)

so we have
(

WT XT XWV + 1

2
λA+ 1

2
λB

)

ab
≥ 1

2
v
(t)
ab F ′′vab

(22)

and finally obtain G
(
v, v

(t)
ab

) ≥ Fvab(v).
With the above lemmas, we give the proof of Theorem 1.
Proof of Theorem 1: From Lemma 2, we know that

G
(
w,w

(t)
ab

)
is an auxiliary function for Fwab , and from

Lemma 3, we know that G
(
v, v

(t)
ab

)
is an auxiliary function

for Fvab . According to Lemma 1, we can obtain the update
rules by solving w(t+1) = arg minw G

(
w,w

(t)
ab

)
and v(t+1) =

arg minz G
(
v, v

(t)
ab

)
, respectively. To solve these optimization

problems, we need to obtain

G′
(
w,w

(t)
ab

)
= F ′wab

(
w
(t)
ab

)

+2

(
KWVVT

)
ab + λ

∑N
i=1

(
KWDi

)
ab

w
(t)
ab

×
(
w −w(t)ab

)
(23)

G′
(
v, v

(t)
ab

)
= F ′vab

(
v
(t)
ab

)

+2

(
WT XT XWV+ 1

2λA+ 1
2λB

)

ab

v
(t)
ab

×
(
v − v(t)ab

)
. (24)

TABLE I

PARAMETERS USED IN COMPLEXITY ANALYSIS

It is easy to check that

F ′wab
=

( ∂O
∂W

)

ab
= (

2KWVVT − 2KVT )
ab

+ λ
N∑

i=1

(− 2XT xi 1T Di + 2KWDi
)

ab

F ′′vab
=

(∂O
∂V

)

ab
= (

2WT KWV− 2WT K
)

ab

+ λ(A− 2WT K + B
)

ab. (25)

Replacing the corresponding terms in (23) and (24) with the
equations in (25), and then setting G′

(
w,w

(t)
ab

)
and G′

(
v, v

(t)
ab

)

to zero, we have

(KWVVT −KVT )ab + λ
N∑

i=1

(−XT xi 1T Di +KWDi )ab

+ (KWVVT )ab + λ∑N
i=1(KWDi )ab

w
(t)
ab

(w −w(t)ab ) = 0 (26)

(2WT KWV− 2WT K)ab + λ(A− 2WT K + B)ab

+2
(WT XT XWV + 1

2λA+ 1
2λB)ab

v
(t)
ab

(v − v(t)ab ) = 0. (27)

Through simplification and keeping the nonnegativity, we
can obtain

w
(t+1)
ab = w(t)ab

(KVT + λ∑N
i=1 XT xi 1T Di )ab

(KWVVT + λ∑N
i=1 KWDi )ab

(28)

v
(t+1)
ab = v(t)ab

2(λ+ 1)(WT K)ab

(2WT KWV+ λA+ λB)ab
(29)

which are exactly the same updates as in (11) and (12).
Therefore, the objective function O in (3) is nonincreasing
under these updates. �

V. ALGORITHM ANALYSIS

A. Computational Complexity Analysis

The computational complexity is an important metric to
evaluate the quality of an algorithm. Especially, for our LCF
algorithm, which uses an iterative update rule to find the
optimal solution, the algorithm efficiency depends on both
the computational complexity of each update step and the
convergence rate. In this section, we discuss the computational
complexity of the updating algorithms comparing with stan-
dard NMF and CF.

To precisely analyze the computational complexity of our
multiplicative updating algorithm, we counted the number of
arithmetic operations (including addition, multiplication, and
division) for each update step in the algorithm. We listed
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in Table I the parameters used in the counting and summa-
rized the numbers of each operation for each algorithm in
Table II. Due to the introduction of locality constraint, our LCF
algorithm needs 2n2k + 2nk2 more operations for addition
and multiplication compared with traditional CF algorithm.
However, the big O of both algorithms is the same.

In addition to the multiplicative updating, both CF and LCF
need to compute the kernel matrix K, which requires O(n2m)
operations. Suppose the multiplicative updates for NMF, CF,
and LCF stop after t1, t2, and t3 iterations, individually, the
overall computational complexity for these algorithms will be
O(t1mnk), O

(
t2

(
n2k + n2m

))
, and O

(
t3

(
n2k + n2m

))
.

B. Connection With Gradient Descent Method

Other than the multiplicative update method to find
the matrix factors, others have suggested gradient descent
algorithms [35], [36] to solve the optimization problem. The
algorithm is also called alternating nonnegative least squares
or projected gradient. Reference [37] also shows that the
project gradient method converges faster than the multiplica-
tive update method.

Using gradient descent method, the additive update rules for
the problem of (3) are as follows:

wi j ← wi j + δi j
∂O
∂wi j

, vi j ← vi j + γi j
∂O
∂vi j

.

δi j and γi j are the parameters to control the step size of
gradient descent. This algorithm always takes a step in the
direction of the negative gradient, the direction of steepest
descent. As long as they are sufficiently small, the updates
should reduce O.

We set

δi j = − wi j

2
(
KWVVT + λ∑N

i=1 KWDi
)

i j

(30)

γi j = − zi j
(
2WT KWV+ λA+ λB

)
i j

(31)

then we can obtain

wi j + δi j
∂O
∂wi j

= wi j − wi j

2
(
KWVVT + λ∑N

i=1 KWDi
)

i j

((
2KWVVT−2KVT )

i j+λ
N∑

i=1

(− 2XT xi 1T Di+2KWDi
)

i j

)

= wi j

(
KVT + λ∑N

i=1 XT xi 1T Di

)

i j
(

KWVVT + λ∑N
i=1 KWDi

)

i j

vi j + γi j
∂O
∂vi j

= vi j − vi j
(
2WT KWV+ λA+ λB

)
i j

× (
2WT KWV− 2WT K + λ(A− 2WT K + B

))
i j

= vi j

2(λ+ 1)
(
WT K

)
i j

(
2WT KWV+ λA+ λB

)
i j

which are the multiplicative update rules in (11) and (12).
Many works have pointed out the fact that the multiplicative

update algorithm can be considered as a gradient descent

method [13], [38]. However, the factorization result and the
convergence rate are dependent on the choice of the step
size δi j and γi j . Without a careful choice for the step size
parameters, a little can be said about the convergence of
gradient descent methods.

The advantage of the multiplicative updating rules is the
guarantee of the nonnegativity of the matrix factor and also
the convergence to a local optimum.

C. Algorithm for Negative Data Matrices

The iterative update algorithm described in Section IV-B
only works for the nonnegative data matrix. When the data
matrix contains negative data point, the Lagrange method
would not work. In this section, we leverage the following
theorem proposed in [39] to find a solution for the general
case.

Theorem 2: Define the nonnegative general quadratic
form as

Q(Y ) = 1

2
Y T AY + cT Y (32)

where Y is a m-dimensional nonnegative vector, A is a
symmetric semipositive definite matrix, and c is an arbitrary
vector. Let A = A+ − A−, where A+ and A− are two
symmetric matrices defined As follows:

A+i j =
{

Ai j if Ai j > 0;
0 otherwise

A−i j =
{
|Ai j | if Ai j < 0;
0 otherwise

then, the solution Y that minimizes Q(Y ) can be obtained by
the following iterative update:

yi ← yi

−ci +
√

c2
i + 4(A+Y )i (A−Y )i

2(A+Y )i
. (33)

Fixing V, our objective O in (5) becomes a quadratic form
of W . Thus, we can apply the above theorem to minimize the
objective function by identifying the corresponding A and c
term in O(W). The two coefficients for the quadratic form of
O(W) can be obtained by taking the second-and first-order
derivatives with respect to W at W = 0, respectively

∂2O
∂wi j ∂wkl

= 2kik
(
VVT )

l j + 2λ
N∑

i=1

kik(Di)l j (34)

∂O
∂wi j

∣
∣
∣
∣
W=0
= −2

(
KVT )

i j − 2λ
N∑

i=1

(
XT xi1T Di

)
i j . (35)

Let K = K+−K−, where K+ and K− are symmetric matrices
whose elements are all positive

K+i j =
{

Ki j if Ki j > 0;
0 otherwise

K−i j =
{
|Ki j | if Ki j < 0;
0 otherwise.

Substituting A and c in (33) with the above terms, respectively,
we obtain the multiplicative updating solution for computing
each element wi j of W

wi j ← wi j

ci j +
√

c2
i j + P+i j P−i j

2P+i j

(36)
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TABLE II

COMPUTATIONAL OPERATION COUNTS FOR EACH ITERATION IN NMF, CF, AND LCF

where ci j =
(
KVT

)
i j + λ

∑N
i=1

(
XT xi 1T Di

)
i j , P+ =

K+WVVT + λ
∑N

i=1 K+WDi and P− = K−WVVT +
λ

∑N
i=1 K−WDi. When all data are nonnegative, P− becomes

zero and the solution will be

wi j = wi j

(
KVT + λ∑N

i=1 XT xi 1T Di

)

i j
(

KWVVT + λ∑N
i=1 KWDi

)

i j

(37)

which is the same form as (11).
Similarly, fixing W, we obtain the two coefficients for the

quadratic form of O(V)
∂O
∂vi j

∣
∣
∣
∣
V=0
= −2(λ+ 1)WT K+ λ(A+ B) (38)

∂2O
∂vi j ∂vkl

= 2WT KW. (39)

The update rule for V is as follows:

vi j ← vi j

ci j +
√

c2
i j + 4Q+i j Q−i j

2Q+i j

(40)

where ci j = 2(λ + 1)(WT K)i j − λ(A + B)i j , Q+ =
2WT K+WV, and Q− = 2WT K−WV.

When all data are nonnegative, Q− becomes zero and the
solution will be

vi j = vi j

2(λ+ 1)
(
WT K

)
i j − λ(A+ B)i j

2
(
WT KWV

)
i j

. (41)

VI. EXPERIMENTS

In this section, we demonstrate the effectiveness of our
algorithm through the experiments on image clustering. We
compare the results with five other related methods on several
data sets. The algorithms that we evaluated are listed as
follows.

1) Traditional K-means (Kmeans).
2) NMF [13].
3) CF [14].
4) NMF with sparseness constraints (SparseNMF) [18].
5) Nonnegative local coordinate factorization(NLCF) [29].
6) Our proposed LCF.

In our experiments, we would like to test clustering perfor-
mance of our proposed algorithm with different numbers of
clusters. Therefore, the evaluations were conducted with the
cluster number ranging from two to 10. For each given cluster
number k, we randomly chose k clusters and ran the test
ten times, and the final scores were obtained by calculating
the average and variance over the ten test runs. Since the

TABLE III

STATISTICS OF THE TWO DATA SETS

clustering results of the evaluated methods depend on the
initialization, each test run consisted of ten subruns with
different initializations and we chose the best result to report.
Note that, each data point has only one label.

In the experiments, the parameters were set to be the values
that each algorithm can achieve its best results via cross
validation. However, there is one exception, which is that we
gave no constraint on the basis matrix of Sparse NMF and just
set the sparsity penalty weighting of the coefficient matrix via
cross validation. This is because we just paid our attention on
the sparsity of the representations. For our LCF algorithm, the
regularization parameter is set to be λ = 0.3.

A. Data Sets

The experiments are conducted on two data sets. One is the
Yale database, and the other is Cambridge ORL face database.
The important statistics of these data sets are described as
follows (also summarized in Table III).

1) The Yale database contains 165 gray scale images
of 15 individuals. All images demonstrate variations
in lighting condition (left-light, center-light, and right-
light), facial expression (normal, happy, sad, sleepy,
surprised, and wink), and with/without glasses.

2) The ORL database contains ten different images of each
of 40 distinct subjects, thus 400 images in total. For
some subjects, the images were taken at different times,
varying the lighting, facial expressions (open/closed
eyes, smiling/not smiling), and facial details (glasses/no
glasses). All the images were taken against a dark homo-
geneous background with the subjects in an upright,
frontal position (with tolerance for some side move-
ments).

In all the experiments, images are preprocessed so that faces
are located. Original images are first normalized in scale and
orientation such that the two eyes are aligned at the same
position. Then, the facial areas were cropped into the final
images for clustering. Each image is of 32 × 32 pixels with
256 gray levels per pixel. All images for one individual or
subject are treated as one cluster in our experiments.
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Fig. 1. Clustering performance on the Yale database. (a) Accuracy versus number of clusters. (b) Mutual information versus number of clusters.

TABLE IV

CLUSTERING RESULTS COMPARISON ON THE YALE DATABASE

Fig. 2. Clustering performance on the ORL database. (a) Accuracy versus number of clusters. (b) Mutual information versus number of clusters.

B. Evaluation Metrics

We use two metrics to evaluate the clustering perfor-
mance [14]. One metric is accuracy (AC) and the other
is the normalized mutual information (M̂I). The result is
evaluated by comparing the cluster label of each sample with
the label provided by the data set.

The metric is used to measure the percentage of correct
labels obtained. Given a data set containing n images, for
each sample image, let li be the cluster label we obtained
by applying different algorithms and ri be the label provided

by the data set. The is defined as follows:

AC =
∑n

i=1 δ
(
ri ,map(li )

)

n
(42)

where δ(x, y) is the delta function that equals one if
x = y and equals zero otherwise, and map(li ) is the mapping
function that maps each cluster label li to the equivalent label
from the data set. The best mapping can be found using the
Kuhn–Munkres algorithm [40].

In clustering applications, mutual information is used to
measure how similar two sets of clusters are. Given two sets
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TABLE V

CLUSTERING RESULTS COMPARISON ON THE ORL DATABASE

Fig. 3. Experiments on learning the overcomplete basis. Black diamonds: bases learned by each algorithm. (a) NMF clustering results. (b) LCF clustering
results.

of image clusters C and C ′, their mutual information metric
MI(C, C ′) is defined as follows:

MI(C, C ′) =
∑

ci∈ C,c′j∈ C′
p
(
ci , c′j

) · log
p
(
ci , c′j

)

p(ci ) · p
(
c′j

) (43)

where p(ci ), p(c′j ) denote the probabilities that an image
arbitrarily selected from the data set belongs to the clus-
ters ci and c′j , respectively, and p(ci , c′j ) denotes the joint
probability that this arbitrarily selected image belongs to the
cluster ci as well as c′j simultaneously. MI(C, C ′) takes values
between zero and max(H (C), H (C ′)), where H (C) and H (C ′)
are the entropies of C and C ′, respectively. It reaches the
maximum max(H (C), H (C ′)) when the two sets of image
clusters are identical and it becomes zero when the two sets are
completely independent. One important character of MI(C, C ′)
is that the value keeps the same for all kinds of permutations.
In our experiments, we use the normalized metric M̂I(C, C ′),
which takes values between zero and one

M̂I(C, C ′) = MI(C, C ′)
max(H (C), H (C ′)). (44)

C. Clustering Results

Fig. 1(a) and (b) shows the plots of accuracy and normal-
ized mutual information versus the number of clusters for

different algorithms on the Yale data set. As can be observed,
our proposed LCF algorithm consistently outperforms all the
other algorithms. The detailed clustering results are shown in
Table IV. The last row shows the average accuracy (normalized
mutual information) over k. Comparing with the best algorithm
other than our proposed LCF, i.e., SparseNMF, our algorithm
LCF achieves 4.41% improvement in accuracy and 5.69%
improvement in normalized mutual information.

Fig. 2(a) and (b) shows the graphical clustering results for
the ORL data set. LCF obtains the best result for most of the
cases. SparseNMF fails to consider the locality condition, and
in some cases, performs even worse than Kmeans. Table V
shows the detailed clustering accuracy and normalized mutual
information. Comparing with the best algorithm other than our
proposed LCF algorithm, i.e., SparseNMF, LCF achieves 5.8%
improvement in accuracy. For normalized mutual information,
LCF achieves 6.4% improvement.

D. Learning the Overcomplete Basis

Usually, matrix factorization methods are used for dimen-
sion reduction in many applications. However, [41] shows
that in some cases, it is desirable to learn the overcomplete
basis. Here, we evaluate the performance of our algorithm
in this aspect. To show the performance for learning the
overcomplete basis of our proposed algorithm, 150 data points
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Fig. 4. Experiments on lamda. (a) Yale. (b) ORL.

Fig. 5. Convergence curve of NMF, CF, and LCF. (a) Yale. (b) ORL.

from mixture of three Gaussians in a 2-D space were ran-
domly generated. NMF and LCF were conducted to obtain
three basis vectors and cluster these data points into three
clusters. Fig. 3 shows that our LCF obtains better result
than NMF. The bases obtained by NMF are far away from
the original points. However, since we add a locality con-
straint, the three bases obtained by LCF exactly reside in the
cluster centers, which leads to a better data representation.

Note that the two matrix factors W and V were randomly
initialized.

E. Parameter Selection

Our LCF algorithm has an essential parameter: the regular-
ization parameter λ, which is used to control the importance
of the locality constraint. In the following, we examine the
impacts of this parameter on the performance of LCF.
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We show the performance of LCF under different settings
of λ on the two data sets in Fig. 4 from accuracy and
normalized mutual information, respectively. For brevity, we
just tested the impact of λ on the performance of three clusters.
To demonstrate that our algorithm is not so sensitive to the
parameter, we investigated the impacts of our parameter from
a much wider range. For each data set, we varied λ as different
number of power of two and found the best result. It is easy to
see that LCF can achieve good performance with the λ varying
from 20 to 26 on both Yale and ORL data sets. For the Yale
data set, the best result is achieved when λ = 8 and for the
ORL data set, the best result is achieved when λ = 32.

F. Convergence Study

The updating rules for minimizing the objective function of
LCF are essentially iterative. We have proved that these rules
are convergent. Here, we investigate the convergence rate of
our iterative update rules.

Fig. 5 shows the convergence curves of NMF, CF, and LCF
on both data sets. For each figure, the y-axis is the value
of objective function and the x-axis denotes the number of
iterations. We can see that the multiplicative updating rules
for all the three algorithms converge very fast, usually within
200 iterations. Especially, our LCF algorithm has a faster
convergence rate than the original CF algorithm.

VII. CONCLUSION

In this paper, we proposed a novel matrix factorization
method, called LCF. This method enforces a locality constraint
into the traditional concept factorization. By requiring the
concepts (basis vectors) to be as close to the original data
points as possible, each datum can be represented by a linear
combination of only a few nearby basis concepts, thus achiev-
ing sparsity and locality simultaneously. The experimental
results on two standard face databases have demonstrated the
effectiveness of our approach over other matrix factorization
techniques, especially for the data clustering applications.
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