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ABSTRACT

Revealing the underlying causal mechanisms in the real world is
critical for scientific and technical progress. Despite advancements
over the past decades, the lack of high-quality data and the inability
of traditional causal discovery algorithms (TCDA) to fully com-
prehend the exact semantics of variables have long been major
obstacles to the broader application of causal discovery. To address
this issue, this paper proposes a novel causal modeling framework,
LLM-CD, which integrates the metadata-based reasoning capabili-
ties of large language models (LLMs) with the data-driven modeling
abilities of TCDA for causal discovery. LLM-CD deeply couples the
reasoning abilities of LLMs at various stages of TCDA, and enhances
causal discovery through an iterative process. Due to the issues
of overconfidence and hallucination in LLMs, LLM-CD quantifies
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and analyzes its uncertainty by incorporating evidence-based deep
learning theory with the assumptions of TCDA. We utilize a large-
scale de-identified real patient dataset provided by a hospital, a
new dataset extracted from MIMIC-IV about the same disease (lung
cancer), and two benchmark datasets to comprehensively evaluate
LLM-CD. Extensive experimental results confirm the effectiveness
and reliability of LLM-CD, with the highest improvement of 403.93%
in the Recall and 25.77% in the Ratio metric across four datasets.
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1 INTRODUCTION

Causal discovery is crucial in both society and academia, providing
valuable insights for policy-making, scientific research, and techno-
logical advancements [16, 27]. For example, in the healthcare field,
causal discovery can identify potential causal relationships between
a particular medication choice and disease treatment outcomes. The
gold standard is to use randomized experiments, but this is often
too costly or even unethical. Therefore, most Traditional Causal
Discovery Algorithms (TCDA) primarily rely on analyzing obser-
vational data to reveal causal relationships. These methods mainly
include constraint-based algorithm (e.g., PC [44] and CD-NOD [15]),
score-based methods (e.g., GES [7]), and some Functional Causal
Model (FCM)-based methods [33, 39]. However, in real-world com-
plex systems, people often fail to collect and measure large quan-
tities of high-quality, task-relevant data, and TCDA struggles to
handle high-dimensional data and cannot fully understand the spe-
cific semantics of variables. For example, as shown in Figure 1(a),
TCDA incorrectly concludes a causal relationship between lung
cancer and organization name based solely on observational data.
Furthermore, in TCDA, both constraint- and score-based meth-
ods ultimately results in a Markov equivalence class rather than
a unique Directed Acyclic Graph (DAG), introducing uncertainty.
For instance, a causal graph satisfying the condition 𝑣1 ⊥ 𝑣3 | 𝑣2
can have three different structures: 𝑣1 𝑣2 𝑣3 , 𝑣1 𝑣2 𝑣3 ,
and 𝑣1 𝑣2 𝑣3 .

Causal discovery with LLMs has received widespread attention
from the community. A series of early attempts suggest that LLMs
can effectively understand the specific semantics of variables and
leverage the learned knowledge to answer commonsense causal
questions [1, 58]. For example, some works use LLMs to predict
causal relationships [31, 52], employ LLMs as priors for data-driven
causal discovery methods [3, 26], and assist downstream causal
inference tasks by predicting the causal order of variables [47].
However, existing methods mainly use LLMs as a simple reasoner
to directly infer causal relationships for given causal variables, often
lacking an essential understanding of complex causal relationships.
Moreover, these methods tend to focus more on the performance
of LLMs in causal tasks, often overlooking the uncertainty issues
arising from the models’ overconfidence and hallucination [59]. For
instance, as illustrated in Figure 1(a), directly asking LLMs about
the causal relationship between potassium and lung cancer often
leads to the incorrect conclusion that potassium is the cause of lung
cancer.

Recent studies have shown that LLMs possess certain causal
reasoning capabilities, enabling them to identify variable seman-
tics and assist in causal discovery by integrating prior knowledge
[1, 18, 24]. However, existing research is subject to the following
limitations: First, most prior works [8, 20, 24, 31] are heuristic and
lack cansal principles, directly using LLMs to dominate the entire
causal discovery process. Second, most prior works [8, 31] rely on
single-step queries to infer causal relationships between variables,
without utilizing a multi-step iterative process. Third, Most studies
[1, 8, 20, 31] overlook the issues of overconfidence and hallucination
in LLMs and do not quantify the model’s uncertainty.

To address these limitations, we propose a novel LLMs-based
Causal Discovery Framework (LLM-CD). LLM-CD combines the
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Figure 1: A toy example of causal discovery and downstream

lung cancer prediction using tabular data. The main differ-

ences between LLM-CD and existing methods are: 1) a deep

integration of LLM with TCDAmethods, fully leveraging the

strengths of both LLM and TCDA; 2) the design of an itera-

tive mechanism to fully exploit the reasoning capabilities

of LLM; 3) the adoption of evidence deep learning theory to

thoroughly explore the uncertainty of the model.

data-drivenmodeling of the PC algorithmwith theworld-knowledge
reasoning used by LLMs in causal discovery tasks, aiming to facili-
tate causal discovery and enhance the performance of downstream
tasks. Specifically, we choose the PC algorithm [44] as the TCDA,
because ( 1) it is generalizable to various causal discovery scenarios;
(2) it is well supported by the causal principles; (3) it is a multi-stage
method, allowing for integration with LLM in a divide-and-conquer
manner. As for the integration between PC and LLM, we first use
the LLMs to pre-screen variables based on downstream tasks, re-
ducing redundant variables to improve algorithm efficiency. Next,
we use the LLMs to assist the PC algorithm in conditional indepen-
dence testing and edge orientation. Then, we apply Breadth-First
Search (BFS) to detect cyclic structures in the obtained causal graph
and use the LLMs to perform cycle elimination, ultimately resulting
in a DAG. Based on this DAG, we perform downstream prediction
tasks. We also design an iterative process to re-execute the above
steps on misclassified samples to iteratively discover more accurate
causal graph.

Overconfidence and hallucinations in LLMs [55], as well as the
PC outputting Markov equivalence classes, limit their deployment
in critical applications, particularly in fields such as healthcare,
finance, and security. This makes uncertainty estimation1 a crucial
component in preventing potentially disastrous decisions based
on outputs from existing methods. Therefore, by incorporating
evidence deep learning theory [40], we analyze the uncertainty of
our method under both white-box and black-box LLMs.

Extensive experiments on our own large-scale real-world hospi-
tal dataset WCHSU, a unique lung cancer dataset extracted from
MIMIC-IV [21], and two benchmark datasets are conducted, aiming
at DAG recovery and downstream prediction tasks. The comprehen-
sive evaluation demonstrates the superiority of LLM-CD in com-
parison to SOTA methods. The results and discussions, along with
ablation studies, human evaluations, LLM behavior experiments,
1uncertainty estimation refers to the inconsistency of the model’s output results under
different experimental setups. For example, in Figure 1(b), the causal relationship
between X-ray and lung cancer varies with different prompts and data subsets.
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uncertainty estimation, cost analysis, hyperparameter studies, and
case studies, will be presented and analyzed in Section 4.

In summary, the main contributions are stated as follows:
• A unified causal discovery framework called LLM-CD, which
integrates LLMs with TCDA to obtain more accurate causal graphs
and empower downstream tasks, is proposed.
• At various stages of the PC algorithm, we combine the prior
knowledge of LLMs with LLMs acting as priors and critics for causal
discovery. Through an iterative process, we further unleash the
causal reasoning capabilities of LLMs. Additionally, we incorporate
evidence deep learning theory into LLM-CD to quantify the model’s
uncertainty.
• Extensive experimental results on various real-world medical
and generic benchmark datasets demonstrate the superiority of
LLM-CD.

2 RELATEDWORK

In this section, we first introduce different causal discoverymethods,
followed by an overview of LLMs reasoning. Finally, we review the
cutting-edge work on using LLMs to assist causal discovery.

2.1 Causal Discovery

Causal discovery aims to reveal unknown causal relations from
observational data [19, 60], which is critical for both practical ap-
plications and scientific discoveries [38]. Current causal discovery
strategies can be broadly classified into constraint-based methods,
score-based methods, and functional causal model-based methods.
Constraint-based methods have been employed for revealing infor-
mation about the underlying causal structure through conditional
independence relations in the data. Algorithms such as the PC algo-
rithm and Fast Causal Inference (FCI) algorithm [45] are commonly
used. Score-based algorithms like GES [7] aim to find the causal
structure by optimizing a score function, such as the Bayesian In-
formation Criterion. Functional causal model-based methods rely
on specific parametric assumptions to infer directions from the
independent noise condition. These methods provide asymptoti-
cally correct results, accommodating various data distributions and
functional relationships.

Despite recent progress in both theoretical and empirical aspects
[12], most TCDA still fail to accurately understand the specific
semantics of variables and rely on large amounts of high-quality
data. This reliance becomes particularly problematic when data
quality is low and quantity is limited, as the corresponding iden-
tifiability guarantees are often restricted to the asymptotic case.
This highlights a potential gap between theoretical assumptions
and real-world applicability.

2.2 Reasoning with LLMs

LLMs have demonstrated significant performance improvements
in various reasoning tasks through zero-shot or few-shot demon-
strations [57]. LLMs are capable of acquiring and understanding
commonsense knowledge about the world [5], and providing ap-
propriate context as input can further unlock their potential [50].
However, studies have shown that LLMs may generate non-factual
results [59], tend to learn shortcuts or dataset biases [28], and per-
form poorly in complex planning and reasoning tasks [5].

These limitations make it risky to rely solely on LLM reasoning
results to derive rigorous conclusions. Therefore, instead of directly
deriving results from LLMs, we deeply integrate LLMs with TCDA
to achieve mutual enhancement. This approach enables the con-
struction of more accurate causal graph structures, which in turn
supports downstream prediction tasks.

2.3 Integration of LLM in Causal Discovery

Causal learning with LLMs has received much attention from the
community [10, 23, 29, 49, 53, 54]. Kiciman et al. [23] find that
LLMs can recover the pairwise causal relations relatively well. Some
research [1, 31] propose to incorporate the causal discovery results
by LLMs as a prior or constraint to improve the performance of
data-driven causal discovery algorithms. However, Willig et al. [51]
find that LLMs can not understand causality but simply retell the
causal knowledge contained in the training data. Abdulaal et al. [1]
proposed a causal modeling agent framework based on LLMs for
causal discovery tasks, yet it requires additional deep chain graph
models [9] for post-processing. Long et al. [32] believe that LLMs
provide an exciting opportunity to supplement and accelerate DAG
creation and are capable of building causal graphs with 3-4 nodes.
However, Tu et al. [46] and Jin et al. [17] find that the performance
of LLMs in more complex causal discovery remains limited as LLMs
can hardly understand new concepts and knowledge.

The aforementioned debate highlights the limitations of directly
using LLMs for causal discovery, which motivates us to deeply
integrate existing causal discovery algorithms, rather than solely
relying on LLMs, to learn causal relations.

3 METHODOLOGY

We introduce the LLM-CD framework (see Figure 2), which unifies
modeling paradigms based on LLMs and data to infer the causal
relationships between variables in the dataset, thereby supporting
downstream tasks. The framework consists of six key steps: 1) initial
variable screening, 2) skeleton construction, 3) edge orientation,
4) cycle removal, 5) iteration, and 6) uncertainty analysis. Please
note that LLMs are regarded as large-scale background knowledge
providers in this paper, and the core identifiability guarantee still
relies on the classical PC framework.

3.1 Problem Definition

Causal discovery aims to infer causal relations among variables of
interest V from the observational dataset, with the goal of con-
structing a causal graph G = (V, E). Based on G, we focus on
using the parent nodes of the target variable in the graph to predict
the target variable, such as the lung cancer variable in Aisa dataset.

3.2 The Proposed Framework

1. Initial variable screening: In the process of causal discovery,
existing causal discovery algorithms often have high complexity
when dealing with large causal graphs. In addition, noise often ex-
ists in observational data, so we need to perform an initial screening
of variables. By leveraging the prior knowledge of LLMs and pro-
viding appropriate prompts, LLMs can filter the input variables that
are relevant to the target variable, thereby eliminating irrelevant
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Figure 2: The overview of LLM-CD framework.

and redundant variables. The computation formula is as follows:

X𝑆 ,G0 = 𝐿𝐿𝑀 (X0) , (1)

where X0 represents the set of initial variables contained in the
observational data without any screening, X𝑆 is the set of variables
after filtering, G0 is a causal graph with no relationships for X𝑆 ,
and 𝐿𝐿𝑀 represents any LLMs.

2. Skeleton construction: We deeply integrate the general
PC algorithm with LLMs, incorporating the prior knowledge of
LLMs at different stages of the PC algorithm for causal discovery.
Specifically, in the first stage, by considering the conditional in-
dependence tests with LLMs prior knowledge, we obtain a more
accurate skeleton structure. In the second stage, LLMs are utilized
for edge removal or orientation, helping orient undirected edges in
the Markov equivalence class and resulting in a more precise DAG.

The skeleton construction phase considers conditional indepen-
dence between vertices 𝑢, 𝑣 ∈ X𝑆 , 𝑢 ≠ 𝑣 . And the goal is to make

amendments to the skeleton structure, denoted as A𝑠𝑘𝑒 :

A𝑠𝑘𝑒 (𝑢, 𝑣) =


0, 𝑖 𝑓 |𝑝 − 𝛼 | < 𝜎 ∩ 𝐿𝐿𝑀 (𝑢, 𝑣,Ω) > 0.5
0, 𝑖 𝑓 𝑝 − 𝛼 ⩾ 𝜎

1, else,
(2)

where 𝑝 represents the probability of conditional independence
between variable 𝑢 and variable 𝑣 given a specific set Ω, 𝛼 is the
significance level, 𝜎 is the threshold, and 𝐿𝐿𝑀 (𝑢, 𝑣,Ω) denotes
the conditional independence probability. Here, A𝑠𝑘𝑒 (𝑢, 𝑣) = 0
indicates that the variables 𝑢 and 𝑣 are d-separated given set Ω.

3. Edge orientation: In the PC orientation phase, two differ-
ent cases between paired nodes are considered: directional edge
and undirectional edge. Given a pair of vertices 𝑢, 𝑣 ∈ X𝑆 , 𝑢 ≠ 𝑣 ,
amendments A𝑙𝑜𝑐 are made according to the following formula:

A𝑙𝑜𝑐 (𝑢, 𝑣) =
{
ADJUST0 (𝑢, 𝑣, 𝐿𝐿𝑀) , if directional edge exists between 𝑢 and 𝑣
ADJUST1 (𝑢, 𝑣, 𝐿𝐿𝑀) , if undirectional edge exists between 𝑢 and 𝑣

(3)

where ADJUST0 (𝑢, 𝑣, 𝐿𝐿𝑀) is an LLM-based function that outputs
one of three actions: {keep, remove, reverse}, ADJUST1 (𝑢, 𝑣, 𝐿𝐿𝑀)
outputs one of the following options: {𝑢 → 𝑣, 𝑣 → 𝑢}. Please note
that we do not consider the case where there are no edges between

4



Causal Discovery through Synergizing Large Language Model and Data-Driven Reasoning KDD ’25, August 3–7, 2025, Toronto, ON, Canada

paired nodes. The main reasons are as follows: First, in this case,
there is no theoretical guarantee, and relying solely on the causal
relationships inferred from LLMs would have low credibility, lead-
ing to many incorrect edges [55]. Second, cost and efficiency should
be considered given the combinatoric search space of all possible
edges [20].

4. Remove cycles: After the previous steps, the obtained causal
graph may contain cyclic structures. To obtain a DAG, existing
studies utilize LLMs to review the causal graph from a global per-
spective and remove cycles [1]. However, existing LLMs are not
capable of accurately identifying and directly eliminating cyclic
structures [6]. Therefore, we combine traditional cycle detection
algorithms with the LLMs, first using BFS to detect cyclic structures,
and then employing the LLMs to eliminate the identified cycles.
Thus, this process can be formalized as:

G𝑡 = 𝐿𝐿𝑀
(
𝐵𝐹𝑆

(
G𝑡

) )
, (4)

where G𝑡 is the causal graph obtained through the above process.
And G𝑡 refers to the DAG discovered at round 𝑡 .

5. Iteration: Due to the hallucination of large models and the in-
ability of LLMs to determine complex causal relationships between
variables in a single step, iterative assessments are required. Unlike
previous studies [29], we focus only on the parent nodes2 within the
Markov blanket of the target node 𝑦, which are denoted as FMB (𝑦).
First, suppose there exists some variable 𝑤 ∈ FMB (𝑦), but it has
not been discovered as parent node of𝑦 (i.e.,𝑤 ∉ FMB⩽𝑡 (𝑦), where
FMB⩽𝑡 (𝑦) denote the union of the parent nodes of the target node
𝑦 discovered in the first 𝑡 rounds. Then, by the property of Markov
blanket MB𝑡 (𝑦), we know that𝑤 is not conditionally independent
of 𝑦 [37]. Therefore, we can derive the following property:

𝐻

(
𝑦 | FMB⩽𝑡 (𝑦) ,𝑤

)
< 𝐻

(
𝑦 | FMB⩽𝑡 (𝑦)

)
, (5)

where 𝐻 (· ) refers to the entropy and 𝑡 is the number of iterations.
This also means incorporating 𝑤 into the input of downstream
prediction models can facilitate the explanation and prediction of 𝑦.
If 𝐿𝐿𝑀 can not find the desired𝑤 , it means FMB⩽𝑡 (𝑦) is sufficient
to capture the main information in 𝑦. When given the G𝑡 , 𝐿𝐿𝑀 is
expected to find useful𝑤 such that:

𝐻G𝑡

(
𝑦 | FMB⩽𝑡 (𝑦)

)
− 𝐻G𝑡

(
𝑦 | FMB⩽𝑡 (𝑦) ,𝑤

)
⩾ 0 , (6)

where 𝐻G𝑡

(
𝑦 | FMB⩽𝑡 (𝑦)

)
refers to the conditional entropy mea-

sured on G𝑡 . If the observational data contains sufficiently diverse
examples, and the LLMs are sufficiently powerful, Eq.5 can help
progressively uncover all the parent nodes in FMB (𝑦). Therefore,
to identify the desired variables, we are motivated to generatre an
appropriate G𝑡+1 for the next iteration such that:

G𝑡+1 = arg maxĜ∈G′𝐻 Ĝ

(
𝑦 | FMB⩽𝑡 (𝑦)

)
, (7)

which means the FMB⩽𝑡 (𝑦) cannot adequately explain the target
variable 𝑦. And G′ refers to the set of all possible DAG that can
be constructed based on all samples. Recall that one of the key
metrics for assessing the quality of the discovered Markov blanket

2The reason we do not use the Markov blanket of the target variable here is twofold:
first, we are more interested in obtaining the parent nodes of the target variable, rather
than its child nodes or the parents of nodes that share the same child nodes as the
target variable; second, as demonstrated by the subsequent experiments, the parent
nodes of the target variable are more predictive.

variables is predictivity [37]. Therefore, Eq. 7 can be solved by con-
verting it into a classification problem, where G𝑡+1 represents the
DAG constructed from samples that the downstream classification
model failed to classify correctly. In our experiments, we perform
sample selection for 𝐷𝑡 based on the classification with respect to
FMB⩽𝑡 (𝑦) using the following expression:

𝐷𝑡 = 𝑓miss
(
D, FMB⩽𝑡 (𝑦)

)
, (8)

where D represents the set of samples, 𝑓miss is the classification
model, and 𝐷𝑡 is the input sample for the next iteration. After
multiple iterations, the final DAG G∗ can be obtained:

G∗ = G1 ∪ G2∪, · · · ,G𝑡 . (9)
Integrating the above steps, we establish the overall learning pro-
cedure to obtain more accurate causal graphs.

3.3 Uncertainty Analysis

This section introduces the theory of Evidence Deep Learning (EDL)
[2, 40] to thoroughly analyze the uncertainty generated by LLM-
CD. First, we present the relevant knowledge of EDL, and then,
in conjunction with our method, analyze the uncertainty under
different scenarios.

3.3.1 Evidential Deep Learning. Existing LLMs typically use soft-
max on top of deep neural networks (DNN) to predict the next token
[42]. However, the softmax function has significant limitations in
the following aspects [11, 55]. First, the predicted class probabilities
are compressed by the denominator of softmax, which leads to
overconfident predictions for unseen data. This is particularly detri-
mental in classification tasks for complex problems. Second, the
output of softmax is essentially a point estimate of the multinomial
distribution over class probabilities, meaning that softmax cannot
capture the uncertainty of class probabilities.

To overcome these limitations, recent EDL was developed to
overcome the limitations of softmax-basedDNNs by introducing the
evidence framework of Dempster-Shafer Theory (DST) [41] and the
subjective logic (SL) [22]. EDL provides a principled way to jointly
formulate the multiclass classification and uncertainty modeling. In
particular, given a sample x(𝑖 ) for K-class classification, assuming
that class probability follows a prior Dirichlet distribution, the
negative log-likelihood loss to be minimized for learning evidence
e(𝑖 ) ∈ R𝐾+ eventually reduces to the following form:

L𝑒𝑑𝑙,𝑖 (y, 𝑒;𝜃 ) = − log

(∫ 𝐾∏
𝑘=1

𝑝
𝑦𝑖𝑘
𝑖𝑘

1
𝐵 (𝛼𝑖 )

𝐾∏
𝑘=1

𝑝
𝛼𝑖𝑘−1
𝑖𝑘

𝑑P𝑖

)
=
∑𝐾
𝑘=1 𝑦𝑖𝑘 (log (S𝑖 ) − log (𝑒𝑖𝑘 + 1)) ,

(10)

where y𝑖 is an one-hot K-dimensional label for sample x(𝑖 ) and

e(𝑖 ) can be expressed as e(𝑖 ) = 𝑔
(
𝑓

(
x(𝑖 ) ;𝜃

))
. Here, 𝑓 is the out-

put of a DNN parameterized by 𝜃 and 𝑔 is the evidence function to
keep evidence e𝑘 non-negative. 𝐵 (𝛼𝑖 ) represents the K-dimensional
multinomial beta function. P𝑖 is a simplex representing class assign-
ment probabilities.S𝑖 is the total strength of a Dirichlet distribution
𝐷 (p | 𝛼), which is parameterized by 𝛼 ∈ R𝐾 , and S is defined as
S =

∑𝐾
𝑘=1 𝛼𝑘 . Based on DST and SL theory, the 𝛼𝑘 is linked to the

learned evidence e𝑘 by the equality 𝛼𝑘 = e𝑘 + 1. In the inference
phase, the predicted probability of the k-th class is p̂𝑘 = 𝛼𝑘/S
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and the predictive uncertainty 𝑢 can be deterministically given as
𝑢 = 𝐾/S. For more details, please refer to [40].

3.3.2 Uncertainty Estimation in LLM-CD. To fully explore the un-
certainty of the model, we discuss two scenarios: the white-box
model (such as the LLAMA series) and the black-box model (such
as the GPT series).

1. For white-box models: First, we assume that when generat-
ing each token3, the probability vector p ∈ R𝐾 output by the LLM
follows a Dirichlet distribution [36], i.e., 𝐷 (p | 𝛼). This assump-
tion is reasonable and consistent with [4]. Next, we transform the
instruction set during fine-tuning into a classification problem.

For pre-training or fine-tuning stages: To enhance the reason-
ing capabilities of LLM-CD using benchmark datasets with causal
edge information between pairwise variables, we replace the final
softmax layer of the LLMs with another activation function, such
as ReLU, to ensure non-negative outputs. These outputs are then
used as the evidence vector for predicting the Dirichlet distribution.
In this case, the following equation (with the detailed derivation
provided in Appendix B.1) can serve as the objective function for
model training, enabling the model to output the calibrated pre-
dicted probabilities and their corresponding uncertainty values:

L (𝜃 ) =
𝑚∑︁
𝑖=1

∑𝐾
𝑘=1 𝑦𝑖𝑘 (log (S𝑖 ) − log (𝑒𝑖𝑘 + 1))

+ 𝜆𝑡
𝑚∑︁
𝑖=1

𝐾𝐿
[
Dir

(
pi | 𝛼𝑥𝑖

)
∥ Dir (pi | ⟨1, · · · , 1⟩)

]
,

(11)

where 𝜆𝑡 = min (1.0, 𝑡/10) ∈ [0, 1] is the annealing coefficient,
and 𝑡 is the index of the current training epoch,𝑚 represents the
number of queries made to LLMs in LLM-CD, and 𝐾𝐿 represents
the KL divergence.

For inference stages: In inference, our method only requires
a single forward pass to calculate the uncertainty. We average the
evidence vectors obtained multiple times, and then compute the
uncertainty for the answer corresponding to each query according
to the following formula (the detailed derivation can be found in
Appendix B.2):

𝑢 =
𝐾𝑖

𝐾𝑖∑︁
𝑙=1

𝜎 (𝑓 (𝑥𝑖 ))𝑙 + 1

, (12)

where 𝐾𝑖 denotes the number of labels corresponding to query 𝑥𝑖
4, 𝜎 is an activation function other than softmax, and 𝑓 (𝑥𝑖 ) refers
to the white-box LLMs.

2. For black-box models: Unlike white-box models, black-
box models do not allow direct access to the internal structure
of the model. Existing research typically only considers utilizing
the model’s output confidence or training an additional neural
network to measure uncertainty [42, 55]. Unlike previous studies,
considering the confidence output from LLMs and the distribution
differences between responses, we designed a novel uncertainty
metric specifically for black-box LLMs. The specific calculation

3For example, an answer to a query in the fine-tuning instruction set is: yes.
4One inquiry is one sample, and we design the causal question-answering instructions
as a classification task.

Table 1: Statistics of datasets.

Dataset #Domain #Sample #The number of variables #Labels

WCHSU Medical 200,000 16/51 2
MIMIC-IV Medical 4,630 18 2
Asia Social Science 10,000 8 2
Child Social Science 10,000 20 2

formula is as follows:

𝑢 =

𝑛∑︁
𝑗=1

(
𝐶

𝐾𝐿
(
𝜙, 𝜙 𝑗

) ) , (13)

where 𝐶 is the confidence of the LLMs output, 𝜙 is the mean of
the probability distribution, 𝜙 𝑗 is the probability distribution cor-
responding to each response, such as [0.8, 0.08, 0.12] for a certain
directed edge, and 𝑛 represents the number of responses corre-
sponding to a query. The larger the 𝑢, the more stable the output.

4 EXPERIMENTS

Our investigation focuses on addressing the following research
questions: RQ1: How does the performance of LLM-CD compare
with that of existing methods? RQ2: What is the impact of each
component in LLM-CD on the overall performance? RQ3: How do
human experts evaluate the outputs of LLM-CD? RQ4: What are
the behavioral patterns of LLM-CD? RQ5: What is the uncertainty
of LLM-CD? RQ6: What are the costs involved? RQ7: How does
RTGCN respond to alterations in hyperparameter settings? RQ8:
How does LLM-CD perform in real-world cases?

4.1 Experimental Setup

4.1.1 Datasets. In this section, we evaluate our method on four
real-world datasets, including two medical domain datasets and
two generic domain benchmark datasets. As shown in Table 1,
we utilized the de-identified WCHSU and MIMIC-IV [21] datasets
from real hospitals scenarios. Additionally, we also use the classic
benchmark datasets in the Bayesian networks literature: Asia [25]
and Child [43], both with a sample size of n = 10,000. The metadata
descriptions of the random variables are adapted from [31]. Due to
the limitations of the PC algorithm, we are not currently addressing
cycles and latent confounder, which will be the focus of our future
research. Further data details are supplied in the Appendix A.2.

4.1.2 Baselines. We compared three types of baselines: TCDA,
LLMs, and LLM-based hybrid methods. The TCDA include PC and
FCI, while the LLMs include GPT-3.5, GPT-4, GPT-4O, GPT-4O-
mini5, and LLAMA-3[13]. Additionally, the hybrid methods include
LLM-BFS [20], LLM-greedy[31], and ChatPC [8].

4.2 RQ1: Main results

Consistent with recent works [29, 35], downstream classification
tasks are regarded as an effective approximate method for evaluat-
ing causal graphs, especially when real causal graphs are unavail-
able. Other recent studies [14] have also shown that uncovering the
correct causal structure can improve predictive performance on tar-
get variables. In addition, we have also conducted detailed human
evaluations and case studies to further assess the constructed causal
graphs. Please note that this paper does not address the handling of
5https://openai.com/api/.
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Table 2: Performance evaluation for lung cancer prediction tasks using GPT-4. OOCL indicates that the model has exceeded its

maximum context length. ZSL = Zero-Shot Learning; FSL = Few-Shot Learning.

WCHSU (𝑛 = 16) WCHSU (𝑛 = 51) MIMIC-IV

Methods ACC Recall Percision AUC ACC Recall Percision AUC ACC Recall Percision AUC

PC 0.9929±0.0147 0.0070±0.0024 0.5000±0.0036 0.5225±0.0017 0.9651±0.0124 0.0248±0.0132 0.0093±0.0021 0.5903±0.0037 0.8734±0.0056 0.8120±0.0103 0.6368±0.0025 0.5349±0.0026

FCI 0.9929±0.0113 0.0070±0.0017 0.5000±0.0147 0.5247±0.0158 0.9651±0.0203 0.0248±0.0034 0.0093±0.0017 0.6119±0.0216 0.5583±0.0041 1.0000±0.0013 0.5272±0.0007 0.5500±0.0139

GPT-3.5 0.9320±0.0168 0.0944±0.0053 0.0108±0.0035 0.4966±0.0114 0.9205±0.0176 0.1224±0.0194 0.0118±0.0016 0.4986±0.0098 0.5248±0.0062 1.0000±0.0015 0.5089±0.0054 0.5508±0.0192

GPT-4 0.9104±0.0113 0.1783±0.0248 0.0150±0.0020 0.5274±0.0206 0.7811±0.0169 0.5070±0.0243 0.0166±0.0009 0.4994±0.0114 0.5583±0.0062 1.0000±0.0019 0.5272±0.0027 0.5319±0.0147

GPT-4O 0.9104±0.0191 0.1783±0.0183 0.0150±0.0023 0.5280±0.0166 0.9790±0.0213 0.0169±0.0029 0.0071±0.0007 0.6450±0.0213 0.5572±0.0081 1.0000±0.0031 0.5266±0.0104 0.5201±0.0124

GPT-4O-mini 0.9105±0.0215 0.1783±0.0418 0.0150±0.0059 0.5271±0.0183 0.9790±0.0284 0.0169±0.0061 0.0071±0.0024 0.6450±0.0173 0.5583±0.0118 1.0000±0.0016 0.5272±0.0159 0.5691±0.0192

LLM-BFS 0.9853±0.0304 0.0114±0.0046 0.0058±0.0015 0.5462±0.0236 OOCL OOCL OOCL OOCL 0.5583±0.0063 1.0000±0.0072 0.5272±0.0031 0.6043±0.0186

ChatPC 0.9769±0.0138 0.0325±0.0121 0.0164±0.0026 0.5396±0.0095 0.8729±0.0318 0.3527±0.0163 0.0169±0.0064 0.6419±0.0115 0.5472±0.0053 0.9805±0.0162 0.5301±0.0043 0.6127±0.0181

LLM-greedy 0.9929±0.0196 0.0070±0.0014 0.5000±0.0095 0.5427±0.0106 0.8920±0.0277 0.2238±0.0304 0.0154±0.0061 0.6532±0.0134 0.5583±0.0058 1.0000±0.0113 0.5272±0.0046 0.6079±0.0158

LLM-CD (ZSL) 0.0780±0.0141 0.8811±0.0376 0.0068±0.0010 0.5873±0.0146 0.6296±0.0156 0.6958±0.0176 0.0133±0.0007 0.6947±0.0141 0.5731±0.0022 1.0000±0.0036 0.5384±0.0011 0.6451±0.0169

LLM-CD (FSL, k=2) 0.0654±0.0176 0.8985±0.0395 0.0064±0.0012 0.6115±0.0106 0.6279±0.0172 0.7218±0.0364 0.0128±0.0003 0.7126±0.0089 0.5601±0.0003 1.0000±0.0052 0.5291±0.0005 0.6566±0.0118

Table 3: Performance comparison on benchmark datasets.

Asia Child

Methods ACC Recall Percision NPE Ratio ↓ ACC Recall Percision NPE Ratio ↓

PC 0.9412±0.0094 0.0930±0.0085 0.9412±0.0094 6±0.9336 0.2857±0.0126 0.7480±0.0112 1.0000±0.0091 0.7480±0.0112 25±1.0242 0.2400±0.0218

FCI 0.9390±0.0142 0.1000±0.0079 0.9390±0.0142 8±0.8283 0.3225±0.0532 0.7480±0.0237 1.0000±0.0081 0.7480±0.0237 28±0.9223 0.4124±0.0716

GPT-3.5 0.9390±0.0106 1.0000±0.0082 0.9390±0.0106 7±0.9457 0.1667±0.0710 0.8915±0.0114 0.7167±0.0047 0.8915±0.0114 15±1.4306 0.7000±0.0584

GPT-4 0.9390±0.0083 1.0000±0.0075 0.9390±0.0083 8±0.9173 0.2132±0.0817 0.7480±0.0168 1.0000±0.0043 0.7480±0.0168 14±1.1134 0.6923±0.0957

GPT-4O 0.9390±0.0153 1.0000±0.0085 0.9390±0.0153 8±1.0425 0.1925±0.0537 0.7480±0.0172 1.0000±0.0103 0.7480±0.0172 13±0.9564 0.6316±0.0742

GPT-4O-mini 0.9390±0.0184 1.0000±0.0126 0.9390±0.0184 14±1.2315 0.4545±0.0336 0.7480±0.0173 1.0000±0.0149 0.7480±0.0173 36±2.0105 0.9344±0.0849

LLM-BFS 0.9440±0.0256 1.0000±0.0189 0.9440±0.0256 15±1.4171 0.3913±0.0337 0.7325±0.0433 1.0000±0.0182 0.7325±0.0433 11±1.5435 0.8333±0.0742

ChatPC 0.9402±0.0203 0.2166±0.0101 0.9402±0.0203 17±0.9986 0.6473±0.0184 0.7681±0.0259 0.7248±0.0173 0.7681±0.0259 23±1.3437 0.7157±0.0862

LLM-greedy 0.9713±0.0131 0.0764±0.0215 0.9713±0.0131 11±0.8712 0.8947±0.0224 0.7480±0.0185 1.0000±0.0089 0.7480±0.0185 36±1.6517 0.8689±0.1384

LLM-CD (ZSL) 0.9390±0.0051 1.0000±0.0178 0.9390±0.0051 6±1.0218 0.1429±0.0673 0.7385±0.0064 1.0000±0.0146 0.7385±0.0064 16±0.5869 0.2674±0.0947

LLM-CD (FSL, k=2) 0.9430±0.0054 1.0000±0.0155 0.9430±0.0054 6±0.8164 0.1857±0.0639 0.7480±0.0083 1.0000±0.0232 0.7480±0.0083 15±1.0316 0.2100±0.1012

spurious features. Although this is undoubtedly a valuable future
research direction, it is beyond the scope of this work.

4.2.1 Experiments on medical datasets. Experimental setup: The
WCHSU and MIMIC-IV datasets are divided into training and test
sets in an 8:2 ratio. For the WCHSU, consistent with existing re-
search [35, 48], we set the variable Lung Cancer as the target node.
Based on the causal graphs obtained using different methods, we
identified the parent nodes of the target node and then made pre-
dictions using the variable values of these parent nodes. A similar
setup was followed for the MIMIC-IV data. ACC, Recall, AUC, and
Precision were used as evaluation metrics. Please note that in this
real-world scenario, our goal is to correctly identify early-stage
lung cancer patients, so we focus more on the recall metric, which
represents the ability to correctly identify positive samples.

Results: As shown in Table 2, LLM-CD outperforms the second-
best model by an average of 169.53% in the Recall metric and 9.92%
in AUC, with the highest improvement reaching up to 403.93% on
the WUSCH (𝑛 = 16) dataset. Specifically, TCDA such as PC and
FCI, despite having high ACC and precision, are unable to correctly
classify lung cancer patients based on the DAG they generate. These
methods are mainly data-driven, and the DAG they produce are sus-
ceptible to the influence of the data itself. Knowledge-driven large
model approaches utilize prior knowledge for causal discovery, and
compared to TCDA, they exhibit some causal reasoning capabili-
ties, which is consistent with existing research [17, 23]. The latest
LLMs-based baselines, although incorporating the prior knowledge
of LLMs, fail to fully integrated with TCDA, thereby resulting in
suboptimal performance.

4.2.2 Experiments on benchmark datasets. Experimental setup:

The Asia and Child datasets are divided into training and testing
sets in an 8:2 ratio. For the Asia dataset, we select the variable Lung
Cancer as the target node. Based on the causal graphs obtained
through different methods, we identify the parent nodes of the
target node and use the variable values of these parent nodes for
prediction. Consistent with previous studies [34], we use the vari-
able GruntingReport in the Child dataset as the target node and
adopt a similar setup to that of the Asia dataset. Since the bench-
mark datasets contain ground truth causal graphs, in addition to
performance metrics (ACC, Recall, Percision) for downstream tasks,
we also use NPE and Ratio6.

Results:As shown in Table 3, we can observe that the prediction
performance based on the target node is similar across different
methods, with no significant differences. This may be related to
the data sample size and the nature of the selected target node. On
Recall and Ratio, our proposed method demonstrates a significant
advantage, with improvements of up to 25.77% . GPT-4 and GPT-
4O perform the second best on the benchmark dataset, potentially
because their pre-training data contain relevant knowledge. GPT-
4O-mini, however, performs worse than TCDA.

4.3 RQ2: Ablation Studies

To evaluate the effectiveness of different components in LLM-CD,
we conduct the ablation study with several variants which are

6NPE: the number of predicted edges; Ratio: the ratio between Normalized Hamming
Distance (NHD) and baseline NHD, and the smaller the Ratio, the more accurate the
discovered causal graph is. The NHD refers to the number of edges that are present in
one graph but not the other, divided by the total number of all possible edges.
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Figure 3: Performance of evaluation for ablation study on

WCHSU. And 16 and 51 represent the number of variables.

Table 4: Comparison of performance using different LLMs.

WCHSU (𝑛 = 16) WCHSU (𝑛 = 51)
Methods ACC Recall Percision AUC ACC Recall Percision AUC

GPT-3.5 0.0910 0.8601 0.0067 0.5964 0.6317 0.6923 0.0133 0.6714
GPT-4 0.0637 0.8671 0.0066 0.5905 0.6296 0.6958 0.0133 0.6839
GPT-4O 0.0805 0.8916 0.0069 0.5986 0.6312 0.6923 0.0133 0.6832
GPT-4O-mini 0.0578 0.9231 0.0070 0.6273 0.7723 0.3427 0.0092 0.3356
DeepSeek-v3 0.0837 0.8322 0.0065 0.5667 0.0493 0.9091 0.0068 0.8995
LLAMA-3.1-70B 0.0681 0.9126 0.0070 0.6231 0.1091 0.8957 0.0089 0.8830
LLAMA-3.1-8B 0.1837 0.7452 0.1316 0.5172 0.7916 0.2148 0.0159 0.2021

introduced as follows: 1) LLMCD-IVS: integrates LLMs into the
Initial variable screening (IVS). 2) LLMCD-SC: integrates the LLMs
into the IVS and skeleton construction stage (SC). 3) LLMCD-EO:
Integrates LLMs into the IVS, SC, and edge orientation (EO). 4)
LLMCD-RC: Does not include iterative refinement (IR) or uncer-
tainty estimation (UE) components. 5) LLMCD-ITE: Excludes the
UE component. Additionally, we analyzed the effects of different
LLMs performance.

As shown in Figure 3 and Table 4 , we have the following observa-
tions: 1) LLM-CD performs best when all components are included.
However, the performance difference on the other twometrics is not
as pronounced. 2) When the IE and UE modules are added, LLM-CD
shows the greatest performance improvement, highlighting their
important impact on model performance. 3) There are noticeable
performance differences across different LLMs, with GPT-4O-mini
and DeepSeek-v3 showing relatively better performance.

4.4 RQ3: Human Evaluations

To further verify the validity of the DAG generated by our method,
we invited ten experts from the largest hospital in Asia in the
relevant field to rate the DAG. The detailed process can be found
in Appendix C.1. Each edge was scored on a scale of 1 to 10, with
higher scores indicating a higher probability that the causal edge
was correctly identified. Edges with average scores between 1 and
3 were considered non-existent, edges with average scores between
4 and 6 are considered uncertain about their existence, and edges
with scores between 7 and 10 were considered correctly identified.
Then, we calculated the corresponding proportions. As shown in
Table 5, we can see that LLM-CD is able to generate more accurate
DAG, thereby obtaining more valuable insights.

Table 5: Human Evaluation for WCHSU and MIMIC data.

Due to time and cost considerations, we only compared the

results of the well-performing baseline according to Table 2.

WCHSU (𝑛 = 16) MIMIC-IV

Methods Type Number of edges Ratio Number of edges Ratio

GPT-4
Correct 6 31.58 7 38.89
Incorrect 8 42.11 5 27.78
Uncertain 5 26.31 6 33.33

LLM-CD
Correct 12 70.6 11 68.8

Incorrect 3 17.6 2 12.5

Uncertain 2 11.8 3 18.7

4.5 RQ4: LLM Behavioural Experiments

Early empirical studies have shown that LLMs can significantly
reduce the size of the Markov equivalence class of a given DAG
and have a high probability of retaining the ground-truth causal
graph [1, 31]. To better understand this phenomenon, we inves-
tigate the behavior patterns of LLM-CD in reasoning over edges
in the causal graph space. Figure 8 in Appendix C.2 illustrates the
modification of hypotheses across two different types of relation-
ships. We first analyze the causal relationship between Disease
and Duct-flow as an example. If the starting point is an undirected
edge relationship, LLM-CD most often tends to output the edge
Duct-flow→Disease. When an edge already exists in this direction
(as shown in Figure 8 in Appendix C.2, the first two subfigures),
the same conclusion is drawn. Overall, LLM-CD prefers the causal
relationship Duct-flow→Disease but also considers the reverse rela-
tionship Disease→Duct-flow, especially when the initial direction
is uncertain. This is consistent with the idea that disease processes
can sometimes lead to secondary effects, such as the disruption
of duct flow, particularly in complex medical conditions where
feedback loops or compensatory mechanisms might occur. More
analysis can be found in Appendix C.2.

4.6 RQ5: Uncertainty Estimation in LLM-CD

We primarily explore the uncertainty estimation of LLM-CD from
both open-source and closed-source perspectives. For the closed-
source black-box models, we take the GPT-4O as an example and
use Eq. 13 to quantify the uncertainty of LLM-CD. For the open-
source white-box models, we use LLAMA-3.1-8B as an example and
measure uncertainty using Eq. 12. We use the Child dataset as an
example for analysis, and Figure 4 shows the specific distributions.
As shown in Figure 4(a), edges with correct classifications exhibit
low uncertainty, while LLM-CD assigns higher uncertainty values
to edges with incorrect classifications. In Figure 4(b), we can see that
when 𝑢 exceeds 0.49, the model provides more accurate answers.
Furthermore, inspired by existing research [18], we explore the
impact of 20 causally related vocabulary terms on our model using
the Child dataset. As shown in Table 6, our method consistently
achieves good experimental results under different prompt words.

4.7 RQ6: Cost Analysis

We reported the costs of our method at different stages and with
varying sample sizes, as shown in Figure 5. It is evident that the costs
differ across various LLMs: GPT-4O-mini has the lowest cost but
the worst performance, while DeepSeek demonstrates competitive
performance with moderate costs. GPT-4O has the highest cost but
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Figure 4: The uncertainty distribution across different LLMs.

Table 6: Model performance under different phrases.

Child

Phrases ACC Recall Percision NPE Ratio ↓

Provokes 0.7515 1.0000 0.7515 20 0.7778
Triggers 0.7235 1.0000 0.7235 19 0.6818
Leads to 0.7401 1.0000 0.7401 16 0.3218
Induces 0.7380 1.0000 0.7380 21 0.6087
Results in 0.7345 1.0000 0.7345 21 0.6087
Brings about 0.7460 1.0000 0.7460 16 0.3018
Yields 0.7560 1.0000 0.7560 15 0.3018
Generates 0.7395 1.0000 0.7395 17 0.3778
Initiates 0.7430 1.0000 0.7430 17 0.3273
Produces 0.7550 1.0000 0.7550 15 0.2878
Stimulates 0.7465 1.0000 0.7465 18 0.3209
Instigates 0.7505 1.0000 0.7505 17 0.2696
Fosters 0.7361 1.0000 0.7361 19 0.3696
Engenders 0.7470 1.0000 0.7470 20 0.3878
Promotes 0.7255 1.0000 0.7255 20 0.4878
Catalyzes 0.7430 1.0000 0.7430 20 0.4681
Gives rise to 0.7455 1.0000 0.7455 18 0.3482
Spurs 0.7523 1.0000 0.7523 21 0.4087
Sparks 0.7305 1.0000 0.7305 18 0.2737
Causes 0.7480 1.0000 0.7480 15 0.2100

Average 0.7426±0.0089 1.0000±0.0000 0.7480±0.0089 18.15±2.0316 0.4415±0.1442
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Figure 5: The cost statistics of causal discovery using our

model with different LLMs on Child datasets.

the best performance. Therefore, DeepSeek might be the optimal
choice for our task. Moreover, the costs produced by our method
do not exhibit a linear relationship with increasing sample sizes,
indicating good economic efficiency. Regarding the costs at different
stages, they align with real-world expectations, as the causal graph
generated shows that the first and second stages correspond to the
most edges, while undirected edges and cycles are relatively rare.

4.8 RQ7: Parameter Sensitivity

We further investigate the effect of model parameters on down-
stream prediction tasks. In the Child datasets, we explore the impact
of the threshold 𝜎 , significance level 𝛼 , temperature coefficient 𝜏 ,
and uncertainty threshold 𝜔 . The results are shown in Figure 6 and
Figure 10 in Appendix C.4. Overall, compared to 𝛼 , the 𝜎 and𝜔 have
a greater impact on model performance. As the 𝜎 increases, the
performance first improves and then decreases, with the optimal
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Figure 6: Performance on Child with different 𝛼 , 𝜎 , and 𝜏 .
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Figure 7: The statistical distribution and counterfactual dis-

tribution of NLR and NSCLC.

value ranging from 0 to 0.08. However, we found that the tempera-
ture coefficient 𝜏 has a minimal impact on the model’s performance.
This could be because we are outputting probability values for each
query rather than generating complete text segments.

4.9 RQ8: Case Studies

Using the WCHSU dataset as an example, LLM-CD identifies a high
probability that Neutrophil-to-Lymphocyte Ratio (NLR) has a direct
effect on Non-small cell lung cancer antigen level (NSCLC). First,
The statistical observation of the two variables shows that there
is a correlation between them (as shown in Figure 7a). However,
to investigate this relationship from a causal perspective, we per-
formed an intervention on NLR using counterfactual inference, and
the resulting kernel density estimation curve is shown in Figure
7b. The results indicate that through counterfactual inference, an
increase in NLR leads to an increase in the measurement of NSCLC.
There is a borderline statistically significant difference between
the observational and counterfactual distributions. We believe this
likely represents a missing edge in the ground-truth causal graph
provided by [30, 56].

5 CONCLUSION

In this paper, we propose a new framework named LLM-CD to inte-
grate the rich knowledge of LLMs into the causal discovery process.
Specifically, LLM-CD deeply incorporates the reasoning capabilities
of LLMs at various stages of causal discovery. Then, an iterative pro-
cess is designed to further enhance the causal discovery potential
of LLMs. Subsequently, we leverage the theory of evidence-based
deep learning to quantify the uncertainty of our approach, enabling
more reliable inference results. Finally, we conduct extensive exper-
iments on a large-scale real-world hospital dataset we constructed,
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a dataset based on MIMIC-IV, and two benchmark datasets, validat-
ing the effectiveness of the proposed LLM-CD framework in both
causal discovery and downstream tasks.
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A REPRODUCIBILITY

In this section, we provide more details regarding datasets and
experimental setup to facilitate the reproducibility of the results.
Our code is available at https://github.com/trytodoit227/LLMCD.

A.1 Datasets

WCHSU. The WCHSU data comes from the health management
center of one of the largest hospitals in Asia, consisting of health
check-up data from a total of 200,000 participants. The original
dataset contains 230 variables. Using LLMs, we scored the correla-
tion between the original variables and the lung cancer variable of
interest on a scale of 0 to 5. After filtering based on a score greater
than 4, 16 associated variables were selected, while filtering based
on a score of 5 resulted in 51 associated variables. The ratio of
cancer patients to non-cancer patients in the sample is 147:1.

MIMIC-IV.MIMIC-IV is a publicly available database containing
data of patients admitted to the Beth Israel Deaconess Medical Cen-
ter (BIDMC) in Boston, Massachusetts, USA. The database includes
de-identified data of 383,220 patients admitted to the intensive care
unit (ICU) or emergency department (ED) between 2008 and 2019.
From this, we have extracted sample data of lung cancer patients.
Similar to WCHSU data processing, 16 correlated variables were
selected based on a LLMs score of 5.

Since the WCHSU dataset is newly collected and has not been
released online, and although the MIMIC-IV is publicly available,
policies prohibit its use for training LLMs, especially industrial
models like GPT. Therefore, it is reasonable to assume that neither
of these datasets has been used for training existing LLMs. Even if
some data were leaked into LLM training, any memorized patient
records would minimally affect downstream predictions, as only
logistic regression is used for prediction, not LLMs.

A.2 Experiment Settings

For the compared methods, we use the source code released by
the authors for baseline evaluation. For the LLMs, the temperature
coefficient is set to 0.1, and the nucleus sampling method is used
with a probability value of 0.7.

In LLM-CD, the significance level 𝛼 is 0.05, the threshold 𝜎 is
set to 0.01, the temperature coefficient of the LLMs is set to 0.1, the
uncertainty threshold is 0.49, and the kernel sampling method is
used with a probability value of 0.7. The downstream classification
model is logistic regression, and the number of iterations 𝐼 is 3.

B UNCERTAINTY ESTIMATION

In this section, we will introduce the detailed derivation process of
Eq.11 and Eq. 12.

B.1 Derivation for Eq.11

Inspired by the idea of DEL, we employ a white-box model (such
as LLAMA-3.1-8B) in LLM-CD to directly predict the evidence e
from the given input 𝑥 to solve a K-class classification problem 7.
Specifically, the output of our model is activated by a non-negative
7In the fine-tuning instruction set, we set the answer as a binary classification problem
(yes or no), considering the top-5 most likely tokens generated in the answer, where
𝐾 = 5.

evidence function. Considering the Dirichlet prior, the LLM-CD is
fine-tuned by minimizing the negative log-likelihood (NLL) loss 8:

L𝑛𝑙𝑙−𝑒𝑑𝑙,𝑖 (y, 𝑒;𝜃 ) = − log
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where Γ (· ) is the gamma function.
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Combining Eq. B.2 and B.3, we obtain:
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By combining Eq. B.1 and B.4, we get:

L𝑛𝑙𝑙−𝑒𝑑𝑙,𝑖 (y, 𝑒;𝜃 ) = − log
[
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where y𝑖 = {𝑦𝑖1, · · · , 𝑦𝑖𝐾 } is an one-hot K-dimensional label for
sample 𝑥𝑖 and 𝑒𝑖 can be expressed as 𝑒𝑖 = 𝑔 (F (𝑥𝑖 ;𝜃 )). Here, F
is the white-box model parameterized by 𝜃 and 𝑔 is the evidence
function such as exp, softplus, or ReLU.

Finally, the evidence of non-target classes is suppressed by mini-
mizing the KL divergence between the modified Dirichlet distribu-
tion and the uniform distribution. Specifically, the regularization
term has the following form:

L𝑘𝑙 = KL
(
Dir

(
p, 𝛼𝑥𝑖

)
,Dir (p, 1)

)
, (B.6)

where Dir (p, 1) is the uniform Dirichlet distribution, 𝛼𝑥𝑖 = 𝑦 +
(1 − 𝑦) ⊙ 𝛼𝑥𝑖 is the Dirichlet parameter for sample 𝑥𝑖 after remov-
ing non-misleading evidence from the predicted parameters, and
⊙ represents the Hadamard product. Therefore, the overall loss
function is as follows:
L (𝜃 ) =∑𝐾

𝑘=1 𝑦𝑖𝑘 (log (S𝑖 ) − log (𝑒𝑖𝑘 + 1))

+ 𝜆𝑡
𝑚∑︁
𝑖=1

𝐾𝐿
[
Dir

(
pi | 𝛼𝑥𝑖

)
∥ Dir (pi | ⟨1, · · · , 1⟩)

]
,
(B.7)

where 𝜆𝑡 = min (1.0, 𝑡/10) ∈ [0, 1] is the annealing coefficient, and
𝑡 is the index of the current training epoch.
8Please note that, similar to existing research [4], we choose the NLL loss as the loss
function. However, in other scenarios, the determination of L𝑒𝑑𝑙 should be flexibly
chosen based on the specific task to achieve optimal model performance.
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Figure 8: Hypothesis amendments across two different types of relationships: relationships that plausibly exist in a single

direction (such as Disease and DuctFlow) and variables that have no biologically plausible causal link (LVH and HypoxiaInO2).

B.2 Derivation for Eq. 12

Combining the generative paradigm of LLMs, LLMs predicts the
next token from the training corpus based on the preceding to-
kens. The output is a vector of the size of the corpus, representing
the probability of each word unit becoming the next token. We
formatted the fine-tuning data into an instruction set format and
fine-tuned the white-box model to enhance its causal reasoning
capabilities. Note that, due to time and cost constraints, we did not
attempt to fine-tune larger models with more parameters, which
will be part of our future work. We treat each query in our instruc-
tion set as a classification task, and its corresponding uncertainty
can be calculated using the Equation 12. Below, we will derive the
expression step by step. The output vector of the second-to-last
layer of the white-box LLMs is regarded as the evidence vector
in the theory of EDL. For a query 𝑥𝑖 in the instruction set, the
corresponding evidence vector e is 𝜎 (𝑓 (𝑥𝑖 )).

𝑢𝑖 =
𝐾𝑖

S𝑖
=

𝐾𝑖∑𝐾𝑖

𝑙=1 𝛼𝑙
=

𝐾𝑖∑𝐾𝑖

𝑙=1 e𝑙 + 1
=

𝐾𝑖

𝐾𝑖∑︁
𝑙=1

𝜎 (𝑓 (𝑥𝑖 ))𝑙 + 1

, (B.8)

where𝑢𝑖 represents the uncertainty corresponding to the generated
𝑖-th answer.

C MORE EXPERIMENTAL RESULTS

C.1 Human Evaluations

The specific evaluation process is as follows: 1. Medical experts
score each edge in the DAG on a scale of 1 to 10, with higher scores
indicating a higher likelihood of correctness. 2. Provide the reason-
ing and evidence for the rating, including Randomized Controlled
Trials (RCT), Cohort Study, Mendelian Randomization Analysis,
and Clinical Guidelines Recommendation. 3. Perform statistical
analysis of the evaluation results.

C.2 Behavioural experiment

The second half of Figure 8 illustrates a relationship that is unlikely
to exist in either direction: LVH and HypoxiaInO2. Indeed, we ob-
serve that if this edge does not exist, LLM-CD does not introduce
it; if the edge already exists (e.g., from a previous iteration), it is
almost always removed. Therefore, the LLM module of LLM-CD
exhibits a broadly expected behavior: when relationships are not
fully understood, it typically defaults to the current input hypothe-
ses. However, LLM-CD can also make suggestions that may not
necessarily align with expert consensus. Relationships that should
not exist at all are not suggested or are removed.

C.3 Uncertainty Estimation

To conduct uncertainty estimation for white-box LLMs such as
LLaMA, we innovatively introduce the theory of EDL. We select
the CORR2CAUSE (nodes 𝑁 = 4) [17] dataset to construct the in-
struction set for fine-tuning. It should be noted that the goal of this
paper is to deeply integrate LLMs and TCDA for causal discovery,
rather than to fine-tune LLMs directly for causal discovery. There-
fore, we only used a small-scale dataset and a relatively smaller
model, LLaMA-3.1-8B, for fine-tuning. Fine tuning using large-scale
datasets will be our future research work.

As shown in Figures 9, we further compare our uncertainty esti-
mation method with the latest LLMs uncertainty methods [42, 55].
It can be seen that under the white-box LLM (LLAMA-3.1-8B), our
uncertainty estimation method can assign lower uncertainty values
to correctly classified samples, which [42] cannot achieve. Similarly,
under the black-box LLM (GPT series), [55] cannot provide more
accurate answers at lower uncertainty thresholds.
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Figure 9: The uncertainty distribution across different base-

line on Child datasets.

C.4 Parameter sensitivity

Figure 10 shows the impact of the uncertainty threshold on model
performance on the Child dataset. In LLAMA-3.1-8B, the model per-
formance decreases as the uncertainty threshold increases. In GPT-
4O, the model performance increases as the threshold increases.
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Figure 10: Performance with different uncertainty threshold

𝜔 on the Child dataset.
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