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Abstract—Implicit feedback is widely explored by modern
recommender systems. Since the feedback is often sparse and
imbalanced, it poses great challenges to the learning of complex
interactions among users and items. Metric learning has been
proposed to capture user-item interactions from implicit feed-
back, but existing methods only represent users and items in a
single metric space, ignoring the fact that users can have multiple
preferences and items can have multiple properties, which leads
to potential conflicts limiting their performance in recommenda-
tion. To capture the multiple facets of user preferences and item
properties while resolving their potential conflicts, we propose
the novel framework of Multi-fAcet Recommender networks
with Spherical optimization (MARS). By designing a cross-
facet similarity measurement, we project users and items into
multiple metric spaces for fine-grained representation learning,
and compare them only in the proper spaces. Furthermore,
we devise a spherical optimization strategy to enhance the
effectiveness and robustness of the multi-facet recommendation
framework. Extensive experiments on six real-world benchmark
datasets show drastic performance gains brought by MARS,
which constantly achieves up to 40% improvements over the
state-of-the-art baselines regarding both HR and nDCG metrics.1

I. INTRODUCTION

With the rapid growth of various activities on the Web,
recommender systems become fundamental in helping users
alleviate the problem of information overload. Compared with
explicit feedbacks (e.g., 1-5 star ratings), implicit feedbacks
(e.g., purchase records and browsing history, as shown in
Figure 1(a)) are much more abundant and accessible in real-
world online applications [21]. Due to the extreme sparsity
and imbalance of implicit feedbacks, several methods based
on metric learning [15], [33], [40], [55] have been proposed
recently, which have been shown advantageous over the classic
matrix factorization based methods [12], [16], [35], [47], [56].

However, in many real-world applications, users can have
multiple preferences and items can have multiple properties
(uniformally termed as multi-facet). As an example, in Figure
1(a), the movie Love Actually belongs to both romantic
and comedy categories, so user B may be attracted by its
romantic plots, whereas user C by its humorous actors. By
using a single metric space to project all users and items,
existing metric learning based recommender systems ignore
the possible multi-facet user preferences and item properties.

*Corresponding author
1https://github.com/Melinda315/MARS

As shown in Figure 1(b), the preference of user C would
require items 2 and 4 to be close, while those of users A and
B would require items 2 and 4 to stay away from each other,
leading to an unresolvable conflict in the single embedding
space. Particularly, the two items cannot simultaneously be
close and far away regardless of the embedding dimension.
Our solution is to allow users and items to reside in multiple
embedding spaces and compute their similarity only in the
proper spaces. In this way, the two items can be close in one
space (corresponding to user C’s preference), while far away
in another (corresponding to the preference of users A and
B), which effectively resolves the potential conflicts caused
by multi-facet user preferences and item properties (as shown
in Figure 1(c).

In this work, we enable such a framework of Multi-fAcet
Recommender networks (MAR), whose major goal is to simul-
taneously learn multiple expressive metric (embedding) spaces
of users and items directly from the implicit feedback data
(Section III-A). The task is challenging in several perspectives.

Firstly, although multi-space representation learning has
been explored very recently [8], [20], [27], [44], existing works
have only studied it with traditional network data instead of
recommendation data, which is close to an extremely sparse
bipartite network. Moreover, they learn different embedding
spaces under the help of additional graph clustering algorithms
[8], [27], auxiliary category information [44], or pre-defined
textual patterns [20]. Instead of relying on any of those
external help, which is often unavailable in recommender
systems, we propose a cross-facet similarity measurement,
which naturally connects multi-space representation learning
with metric learning based recommendation, and allows the
simultaneous learning of multiple facet-specific embedding
spaces for users and items in a both memory and computation
efficient way (Section III-B).

Secondly, the standard optimization objectives of recom-
mender systems are not designed towards the learning of mul-
tiple metric spaces, where the key idea is to properly combine
and fully utilize the representation power of multiple spaces.
To this end, we design a series of multi-facet optimization
objectives, most of which are inspired by existing works in
other lines of research such as CV [39] and social science
[23], and novelly integrate them as a whole (Section III-C).

Finally, we further find flaws in the standard constraints of
metric learning on the norms of user and item embeddings.
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Fig. 1. A toy example illustrating the limitation of single-facet recommendation. (a) shows the implicit feedback data and their underlying multi-facet
distribution to be modeled by a recommender system. (b) shows users and items in a single metric space. Assuming users (A, B) and items (1-5) are arranged
in the black and green locations, where the blue arrows faithfully preserve the interactions between users (A, B) and items (1-5), it is then impossible to put
user C anywhere in that space without violating her interactions with items (2-4) as shown by the red arrows. (c) shows the same users and items in multiple
metric spaces, which implicitly captures user-item interactions regarding different facets and naturally overcomes the limitation of (b).

We deem the norm constraints not strong enough and prone
to trivial optimization with difficult users and items, which
is especially concerning in the multi-space setting as more
representation power can be wasted. In light of this, we devise
a spherical optimization strategy based on recent research on
machine learning for NLP [30] and CV [34], which strictly
constrains the norms of user and item embeddings in all
facet-specific metric spaces. The whole MAR with Spherical
optimization framework is named MARS (Section IV).

We evaluate both MAR and MARS with experiments on
six real-world benchmark datasets for recommendation with
implicit feedback. We compare them with a comprehensive
set of eight recommendation methods focusing on the classic
and state-of-the-art metric learning based methods. Extensive
experimental results show that MAR alone is able to signif-
icantly improve the recommendation over all baselines (e.g.,
with up to 27.53% relative improvements on HR@10 over the
best baselines across all datasets), whereas MARS can further
drastically improve over MAR especially in the harder cases
(e.g., with up to 47.07% relative improvements on HR@10
over the best baselines). More comprehensive results and
discussions as well as ablation study, hyperparameter study
and case study are all presented in Section V.

II. RELATED WORK

A. Recommender systems

Over the past decade, matrix factorization (MF) has become
the de facto method for recommendation, which uses inner
products to model the similarity of user-item pairs [16], [29],
[32], [35], [49]. However, MF assumes linear relationships
between users and items, which limits the model capacity,
since the interactions between users and items in real-world
applications are often much more complex. In particular, the
inner product used by MF cannot satisfy the triangle inequality,
which limits the capabilities of the models to capture fine-
grained user-user and item-item similarities [15].

Recently, metric learning for recommendations has attracted
significant research attention [15], [38], [46], [51], [53]. Ex-
isting methods in this line seek appropriate distance functions
for input points instead of inner products, which can address

the limitations of MF. Based on the Euclidean distance, [15]
first proposed a method called collaborative metric learning
(CML), which learns a metric space to encode not only users’
preferences but also the user-user and item-item similarity.
To avoid pushing possible recommendation candidates too far
away, [55] proposed a metric factorization method only with
the pulling operation in contrast to CML, which only has a
pushing term. Since CML has a one-to-many mapping problem
which limits the representation of users and items, [33] turned
this problem to multiple one-to-one mappings and [42] turned
this problem to one-to-one mappings between Euclidean and
hyperbolic spaces. Then, inspired by the success of relational
metric learning in knowledge graphs [45], it constructed
user-item translation vectors by employing the neighborhood
information of users and items. In this case, the model can
not only push the negative items away from the user but also
pull a user closer to all of the interacted items. Considering
that CML has a geometrically restrictive scoring function and
it has been proven to be an ill-posed algebraic system, [40]
learned latent user-item interaction relations based on memory
network and attention mechanism, which helps to alleviate the
potential geometric problem.

Although the above single-space metric learning methods
achieve promising performance, the representation capacity of
a single space is limited and they cannot explicitly decompose
the multiple facets and similarities of users and items. Recent
research on network representation learning has shown the
necessity and effectiveness of multi-space embedding [6],
[8], [20], [27], [44]. The idea is extensible to recommender
systems, where the multiple spaces can be naturally used
to model the multi-facet user preferences and item proper-
ties. Beyond matrix factorization and metric learning, recent
recommendation methods like [22] leveraged cokriging for
active item retrieval to capture user’s multiple interests under
minimal user input, whereas [50] adopted external context to
explicitly model the multi-facet interactions among items to
handle flexible user preferences. Their focuses on minimal user
input and external context are different from ours, but they also
show the potential of modeling multi-facet user preferences
and item properties for effective recommendation.



B. Spherical optimization

Most of the existing metric learning methods for recom-
mendation only adopt the relaxed embedding norm constraints
as CML [15], which requires all user and item embeddings
to lie in a unit sphere. However, there is no optimization
for recommendation based on the strict spherical constraints,
resulting in the discrepancy between the potentially more
robust objective and its proper optimization.

Since the simultaneous modeling of multiple spaces will
increase the learning burden, the optimization process has
to be effective to fully exploit the increased representation
capacity of the multi-space model. To properly optimize our
model w.r.t. the strict spherical constraints on embedding
norms, we get inspired by recent advances in hyperspherical
representation learning that have shown the effectiveness of
Riemannian optimization in spherical spaces by focusing on
the directional (cosine) similarity among embedding vectors
[30], [31], [34], [36]. For example, spherical generative mod-
eling [2], [18], [54], [57] captures the distribution of words on
the unit sphere, motivated by the effectiveness of directional
metrics over word embeddings. Recently, spherical models
also show great success in deep learning. Spherical normal-
ization [28] on the input leads to easier optimization, faster
convergence and better accuracy of neural networks, which
helps regularize the vector against the input length and leads to
better document clustering performance. Also, a spherical loss
function can be used to replace the conventional softmax layer
in language generation tasks, which results in faster and better
generation quality [24]. Motivated by the success of these
models, we propose to directly optimize our recommender
networks in the spherical space, with the properly designed
calibrated Riemannian optimization which for the first time
fills the gap between multi-space metric learning and spherical
optimization.

III. THE MAR FRAMEWORK

In this section, we present our proposed framework of
Multi-fAcet Recommender networks (MAR), as shown in
Figure 2. Specifically, we firstly define a cross-facet similarity
measurement, which projects users into multiple spaces to
model their preferences from multiple perspectives. Then, we
detail the optimization for MAR, which achieves effective
personalized recommendation through the learning of multi-
facet user and item embeddings.

A. Overall framework

We use u and v to denote users and items, and use
u ∈ RD×1 and v ∈ RD×1 to denote user and item embed-
dings, where D is the dimension of the embedding space.
We consider recommendation based on the implicit feedback
matrix X, where Xuv = 1 corresponds to a positive sample
(u,vp), where user u interacted with item vp, and Xuv = 0
corresponds to a negative sampe (u,vq), where the interaction
between u and vq is missing.

To capture the multi-facet user preference and item property,
a single universal embedding u for user u (universal item

Facet-specific
embedding

Cross-facet
similarity

Universal
embedding

vp vqu

Facet-specific
similarity

Multi-facet
optimization

Fig. 2. Overview of our proposed multi-facet recommender networks.

embedding v) is projected into multiple spaces by a series
of matrices Φ = {φk ∈ RD×D}Kk=1, which constitues the
facet-specific embedding Uf ,

(
u1,u2, . . . ,uK

)> ∈ RK×D
for user u (V f similarly defined for item v with projection
matrices Ψ). K is the predefined number of facets, whose
setting will be discussed in the experiments. Then we compute
the facet-specific similarity {gk(uk,vk)}Kk=1 between user u
and item v in all facet spaces, which is summed up as the
final similarity g(u,v) through a learnable weight vector Θ ∈
RK×1.

B. Cross-facet similarity measurement

We observe that different behaviors of users come from
the expression of their different preferences. Merging these
different facets into a single-space representation with high
dimension cannot resolve the potential conflicts. As shown in
Figure 1, users may like movies of different categories at the
same time, and movies themselves may belong to multiple
categories simultaneously. In a single metric space, conflicts
can arise because movies from different categories are unlikely
to be close, and users cannot be close to movies of different
categories at the same time.

Inspired by the ambiguity embedding method derived from
word ambiguity in language modeling [17] and the argument
about single embedding being less generalizable from the
statistical, computational and representational point of view
[7], we propose to project users and items into multiple
embedding spaces and provide a mechanism for resolving
their potential conflicts. In this way, the user u’s facet-specific
embedding Uf can approach items with different perspectives
regarding different facets at the same time. The recommended
items are then calculated according to the similarity across the
multi-facet user preferences.

However, existing similarity measurements are based on
single metric spaces without the consideration of multi-facet
embedding. To connect multiple spaces and integrate the
user’s multi-facet representations, we propose a monotonic
cross-facet similarity measurement, which computes an overall
similarity score for each user-item pair.
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Fig. 3. An illustration of single space vs. multi-space recommendation. We highlight three users (u1, u2, u3) and two items (v1, v2). “−+−” of v1 means
user u2 interacted with v1 while user u1 and u3 did not; similarly, “−−+” of v2 means user u3 interacted with v2 while user u1 and u2 did not.

Instead of calculating user-item similarity through the
learned embedding directly, we design the measurement of
cross-facet similarity as a three-step process:

1) The projection of universal user and item embeddings u
and v into the multiple facet-specific embeddings Uf and
V f with learnable projection matrices Φ and Ψ.

2) The computation of user-item similarity in each facet-
specific space gk(uk,vk).

3) The aggregation of multiple facet-specific similarities into
an overall cross-facet similarity g(u,v).

Hence, given a user u, we first compute the facet-specific
embedding as

Uf =


u1>

u2>

...
uK>

 =


u>φ1

u>φ2

...
u>φK

 , (1)

where u ∈ RD×1 represents the user’s universal preference.
Uf ∈ RK×D represents all facet-specific user embeddings
with each uk ∈ RD×1 represents the user’s specific prefer-
ence towards the k-th facet. Each Φk is a RD×D user-facet
projection matrix. The same modeling is applied to each item
v as

V f =


v1>

v2>

...
vK>

 =


v>ψ1

v>ψ2

...
v>ψK

 , (2)

where v ∈ RD×1 represents the item’s universal property.
V f ∈ RK×D represents all facet-specific item embeddings,
and each Ψk is a RD×D item-facet projection matrix.

The usage of user-/item-specific universal embeddings and
shared facet-specific projections allows the reduction of pa-
rameter space and sharing of certain cross-facet information
(e.g., user activity and item popularity).

Thereby, a recommended item in the k-th facet is obtained
according to the ranking of facet-specific similarity gk as
follows

gk
(
uk,vk

)
= −‖uk − vk‖2, (3)

where uk ∈ RD×1 and vk ∈ RD×1 are the facet-specific user
and item embeddings to be learned by the model.

Finally, to jointly capture user-item interactions in different
facet-specific spaces, we compute the cross-facet similarity
between user u and item v as

g(u,v) =

K∑
k=1

θku
(
gk(uk,vk)

)
= −

K∑
k=1

θku||uk − vk||2

= −
K∑
k=1

θku||u>φk − v>ψk||2,

(4)

where the Θu = [θ1
u, . . . , θ

K
u ] is the vector of learnable user-

specific facet weight, which is normalized to one through
softmax. We devise a Θu ∈ RK×1 for each user u, which
learns to capture the importance of different facets towards
the preference of each user.

C. Multi-facet optimization objectives

With the cross-facet similarity defined, we follow the com-
mon practice of existing research on recommendation to learn
the model parameters by optimizing the large margin nearest
neighbor objective (LMNN) [15], [33] as follows
Llmnn =

∑
(u,vp)∈I

∑
(u,vq)/∈I

[
m− g(u,vp)

2 + g(u,vq)
2
]
+
,

(5)
where I is the set of positive user-item pairs derived from the
implicit feedback data (X). Given a positive training tuple
(u,vp), the idea of LMNN is to maximize the similarity
g(u,vp), while minimizing the similarity g(u,vq), where
(u,vq) is a negative tuple, often randomly sampled from all
negative tuples of u. m is a margin hyperparameter, which is
used to enforce the difference between g(u,vp) and g(u,vq).
However, Eq. 5 does not care about our embedding of users
and items into mutiple facet-specific spaces, and directly
optimizing it does not ensure the diversity of facet-specific
spaces, thus not fully utilizing their expressive power and
leading to suboptimal recommendations.

Figure 3 illustrates the scenarios of single-space versus
multi-space recommendation. Besides having multiple em-
bedding spaces, we hope to properly arrange the spaces by
“spreading out” the facets, that is, we encourage them to be
sufficiently diverse among themselves. In this way, we reduce
the dimension redundancy, and enforce each space to capture
a latent facet of user preference and item property, instead of
overfitting the possible noises in a single space.



To achieve this goal, we devise a facet-separating loss
inspired by the difference loss in [5], [39] to reduce the
redundancy of different spaces as follows

Lfacet =
1

α

∑
i,j

log

(
1 + e

(
−α(‖ui−uj‖2+‖vi−vj‖2)

))
,

(6)
where α is a scale hyperparameter which we empirically set to
0.1 by default in our experiments. Since the loss encourages
orthogonality among different spaces, conflicting similarities
among users and items can be separated into multiple spaces.

Besides using Eq. 6 to encourage diverse facet-specific
spaces from a learning perspective, we further design two
techniques of adaptive margin and explorative sampling to
explicitly improve the model’s ability of capturing the multi-
facet user preference and item property from limited implicit
feedback data.

Recall our main objective of Eq. 5, where m is margin
hyperparameter fixed for all users and items. We find it largely
limits the flexibility of arranging the users and items differently
in the facet-specific spaces, thus hindering the modeling of
users’ diverse preferences towards different items. Particularly,
as shown in Figure 3(a), based on the preferences of users u1

and u2 towards items v1 and v2, a fixed margin m makes it
pretty impossible to arrange the metric space in different ways,
and in consequence it is hard to distinguish the preference
of user u3 towards v1 and v2. However, if we allow users to
have different personalized margins like the γ’s in Figure 3(b),
the model has more freedom to arrange the metrics spaces,
which allows the multiple facet-specific spaces to capture user
preference and item property from different perspectives.

In real-world recommendation systems, we associate the
margin m in Eq. 5 with a clear physical meaning, which
is related to the concept of adoption [23]. Specifically, users
have different levels of adoption, meaning some users are more
likely to adopt new things while others are not. Based on this
intuition about the negative correlation between users’ adop-
tion levels and personalized margins, we propose to directly
compute users’ adoption level from the implicit feedback data
and adaptively set their personalized margins as follows

γu = 1−
∑
v∈Vu |Uv|
N

, (7)

where Vu denotes the set of items that user u interacts with
and Uv denotes the set of users that item v interacts with. N
denotes the number of users, so we have γu ∈ [0, 1]. The idea
behind Eq. 7 is to leverage the two-hop neighbors of u on the
bipartite user-item graph to characterize the adoption level of
u, i.e., the more different two-hop neighbors u has, the more
diverse the preference of u is, and thus the more likely u is
to adopt new things. With such adaptive margins, we rewrite
Eq. 5 as follows

Lpush =
∑

(u,vp)∈I

∑
(u,vq)/∈I

[γu − g(u,vp) + g(u,vq)]+. (8)

By incorporating adaptive margins, our model can better
improve and harvest the expressive power of multiple metric
spaces. In particular, for the undistinguished pairs of (u3, v1)

and (u3, v2) in Figure 3(a), our model can learn to distinguish
them by properly combining the multiple different spaces of
3(b) as long as they are distinguishable in one of the spaces.

Existing works have noticed that it is impossible to simul-
taneously “pull” users and items in all positive pairs close in
a single metric space [15], [55]. However, this is no longer
an issue in our multi-space setting, where all positive pairs
of users and items can be close simultaneously in different
spaces. To further leverage our multi-space framework and
better model the reality, we enforce an additional absolute
“pulling” objective based on the L2-norm pointwise reg-
ularization function as follows to complement the relative
“pushing” objective in Eq. 8 by drawing positive pairs of users
and items closer in across different facet-specific spaces

Lpull =
∑

(u,vp)∈I

−g(u,vp). (9)

Since it is impossible to traverse the cubic number of triplets
in Eq. 8, sampling is widely used in existing recommendation
systems. However, compared with other tasks like classifica-
tion where uniform random sampling is often directly adopted,
recommendation with implicit feedback is more prone to the
imbalance of positive and negative samples and the ambiguity
of negative samples. The situation is even harder in our multi-
facet recommendation system since the sampling has to be
helpful in distinguishing all multiple facet-specific preferences
instead of only the universal preference. To this end, we
propose to bias the sampling towards more active users, to
leverage their richer feedback data for the more accurate
learning of different facet-specific metric spaces. To ensure
the active users who have interacted with many items will be
sampled with a high probability, we get inspired by [43], [52]
and formulate the probability function of our sampling process
as follows

Pr(u) =
freq(u)β∑

u′∈U freq(u
′)β

, (10)

where freq(u) is the interaction frequency of user u, i.e.,
the number of items u has interacted with. U is the set of
all users. β is a smoothing hyperparameter, which controls
the bias towards active users. We empirically set β to 0.8 by
default in our experiments.

Finally, to avoid the problem of overfitting, we apply the
widely used Euclidean sphere constraints [55] on all facet-
specific user and item embeddings, which leads to our final
proposed objective function as follows

minu∗,v∗ Lpush + λpullLpull + λfacetLfacet
s.t. ∀k

∥∥uk∗∥∥2 ≤ 1 and
∥∥vk∗∥∥2 ≤ 1.

(11)

IV. MAR WITH SPHERICAL OPTIMIZATION

Our proposed MAR framework essentially projects users
and items to multiple Euclidean spaces with shared projection
matrices Φ and Ψ, and integrate them with user-specific
softmax weights Θ. In Eq. 11, existing metric learning recom-
mendation systems [55] require all user and item embeddings
to lie in a unit ball to avoid overfitting. However, as explored
in [34], the allowance of different norms can make the model



weak with difficult or extreme samples. In recommendation
systems based on the main objective of Eq. 5, if we allow
the user and item embeddings to have different norms (i.e.,
||u||2 < 1 and ||v||2 < 1), the model will learn to put
difficult users and items (those with insufficient or slightly
contradictory training data) on the surface of the sphere (i.e.,
||u||2 ∼ 1 or ||v||2 ∼ 1), so as to easily reduce the objective
of Eq. 11, while it will only try to differentiate the easy users
and items by properly arranging them inside the sphere (i.e.,
||u||2 << 1 or ||v||2 << 1). In this way, the model is weak
and does not generalize well due to such “lazy” behaviors that
waste its learning capacity.

The problem is especially concerning in our multi-facet rec-
ommendation framework, where the key is to fully exploit the
learning capacity brought by mutiple facet-specific embedding
spaces. In particular, if we allow the user and item embeddings
to have different norms, the model can learn to put its weight
on all difficult users and items in a few particular facet-specific
spaces where they all lie on the surfaces of the spheres, while
only using the remaining spaces to model the easy users and
items, thus effectively reducing the loss in Eq. 11 without
really differentiating the difficult users and items. In light of
this, we propose a spherical optimization strategy for MAR,
which enforces all facet-specific user and item embeddings to
exactly lie on the surfaces of unit spheres in the different facet-
specific spaces, instead of anywhere inside the sphere. In this
way, the model is forced to exploit all expressive power and
learn to differentiate all users and items as well as possible. We
name our framework of Multi-fAcet Recommender networks
with Spherical optimization as MARS.

A. Spherical cross-facet similarity and multi-facet objectives

Different from the Euclidean space, an effective similarity
measurement in the spherical space is cosine distance [31],
[36]. To maintain the objectives we design for MAR as in
Eq. 11, we replace the similarity measure from the negative
Euclidean distance to cosine similarity. The detailed differ-
ences in the objectives are described in the following.

First, we rewrite the facet-separating loss in Eq. 6 to reflect
the spherical constraints on all facet-specific embeddings as
follows

Lsfacet =
1

α

∑
i,j

log
(
1 + exp

(
−α cos(ui,uj)

))
. (12)

Then, instead of calculating the facet-specific similarity as
the negative Euclidean distance as in Eq. 3, the way we
recommend item in the spherical space requires the calculation
of cosine similarity as follows

gks
(
uk,vk

)
= cos(uk,vk), (13)

where ||uk|| = ||vk|| = 1, and cos(x1,x2) =
x>1 x2

|x1||x2| denotes
the cosine of the angle between two vectors on the unit sphere.

Next, the cross-facet similarity of a user-item pair in spher-
ical space is given by

gs(u,v) =

K∑
k=1

θkug
k
s

(
uk,vk

)
=

K∑
k=1

θku cos(uk,vk). (14)

Based on Eq. 14, Lspush on spherical space is formulated as
follows
Lspush =

∑
(u,vp)∈I

∑
(u,vq)/∈I

[γu − gs(u,vp)2 + gs(u,vq)
2]+

=
∑

(u,vp)∈I

∑
(u,vq)/∈I

[γu −
K∑
k=1

θku cos(u>Φk,v>p Ψk)

+

K∑
k=1

θku cos(u>Φk,v>q Ψk)]+.

(15)
Similarly, we rewrite Lpull as follows

Lspull = −
∑

(u,vp)∈I

K∑
k=1

θku cos(u>Φk,v>p Ψk). (16)

Finally, we get the objective function in spherical space as
minu∗,v∗ Lspush + λpullLspull + λfacetLsfacet
s.t. ∀k

∥∥uk∗∥∥2
= 1 and

∥∥vk∗∥∥2
= 1.

(17)

Note that, the direct modeling of user-item similarity with
cosine similarity in the spherical space can be also interpreted
in a probabilistic point of way. Suppose we model the prob-
ability of recommending an item v to a user u regarding the
k-th preference/property facet with the conditional probability
p(vk|uk). By drawing analogy from spherical text embedding
[30] which models the target-context word interactions with
p(wt|wc), we have
p(vk|uk) ∝ vMFp(v

k;uk, 1) ∝ cp(1) exp(cos(vk,uk)).
(18)

Here vMF is the von Mises-Fisher distribution, which defines a
probability density over the hypersphere and is parameterized
by a mean vector µ and a concentration parameter κ [1],
[41]. Formally, a unit random vector x ∈ Sp−1 has the p-
variate vMF distribution vMFp(x; µ, κ) if its probability
dense function is f(x;µ, κ) = cp(κ) exp(κ cos(x, µ)), where
||µ|| = 1 is the mean direction, κ ≤ 0 is the concentration
parameter, and cp(κ) is the normalization constant. In the limit
case when |V| → ∞, the analytic form of p(vk|uk) follows
the vMF distribution with the prior embedding as the mean
direction and constant 1 as the concentration parameter, i.e.,
lim|V |→∞ p(vk|uk) = vMFp(v

k;uk, 1) [30]. The modeling
of p(vk|uk) in a maximum likelihood estimation setting leads
to log p(vk|uk) ∝ cos(vk,uk).

B. Calibrated Riemannian optimization

To improve the modeling of difficult users and items, we
propose to constrain all facet-specific user and item embed-
dings to lie on the surface of a sphere, so as to avoid trivial
responses to the loss. The unit hypersphere Sp−1 := {x ∈
Rp | ||x|| = 1} is a common choice for optimization problems
with spherical constraints. In our case, the learning of MARS
is thus a constrained optimization problem:

min
Ω
L(Ω) s.t. ∀ω ∈ Ω : ‖ω‖ = 1 (19)

where Ω = {uk}Kk=1

⋃
{vk}Kk=1 is the set of user and

item embeddings in all facet-specific spaces. The Euclidean
gradients provide the update directions in a non-curvature
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Fig. 4. Illustration of calibrated Riemannian gradient descent for the optimization of MARS in the spherical space. (a) and (b) show different gradients
in single spaces. After weighted-combining the single-space gradients, (c) shows the multi-space gradient. In (c) and (d), z = grad f(xt) is the original

Riemannian gradient and z′ = 1 +
x>t ∇f(xt)

‖∇f(xt)‖
is the calibrated one, which takes the angular distances into account during parameter updates.

space. However, the parameters in the proposed model must
be updated on a surface with constant positive curvature,
where the Euclidean space optimization methods such as SGD
cannot work. Therefore, we introduce calibrated Riemannian
optimization for the proposed MARS framework.

Since the unit sphere is a Riemannian manifold, we can op-
timize our objectives with Riemannian SGD [4]. Specifically,
the parameters are updated by

xt+1 = expxt
(−ηt grad f(xt)) (20)

where ηt denotes the learning rate and grad f(xt) ∈ TxSp−1

is the Riemannian gradient of a differentiable function f :
Sp−1 → R. More details of Eq. 20 can be found in [37].

Figure 4 gives an illustration of our calibrated Riemannian
gradient descent framework. The callibration is done in two
perspectives. First, in the comparison among (a), (b) and (c),
the Euclidean gradient in multi-space is a combination of
multiple gradients (i.e., ∇fc(xt) = ∇fa(xt) + ∇fb(xt)).
Second, in the comparison between (c) and (d), ∇f(xt) is
projected to the tangent of TxtS, which provides the correct
direction to update the parameters on the sphere, but ignores
the different angles between ∇f(xt) and xt. As a conse-
quence, ∇fc(xt) and ∇fd(xt) will lead to the same xt+1,
which is not ideal because we care about cosine similarities
and thus the different angles. To explicitly incorporate angular
distance into the optimization, we get inspired by [30] to use
the cosine similarity between xt ∈ Sp−1 and the Euclidean
gradient∇f(xt), i.e., 1+

x>t ∇f(xt)
‖∇f(xt)‖ , as a multiplier to calibrate

the Riemannian gradient and update the model parameters as

xt+1 = Rxt

(
−ηt

(
1 +

x>t ∇f (xt)

‖∇f (xt)‖

)(
I − xtx

>
t

)
∇f (xt)

)
,

(21)
where Rx(z) = x+z

‖x+z‖ [37]. The rationale is to encourage pa-
rameters with greater cosine distance from its target direction
to take a larger update step, as shown in Figure 4, where z′

in (c) is larger than that in (d).

Note that, compared with Eq. 20, our callibrated Rieman-
nian gradient descent in Eq. 21 does not introduce significantly
more computations. In our experiments, we also find the
runtimes of both MAR and MARS to be in the same scale
with most metric learning baselines.

TABLE I
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS.

Dataset # User # Item # Interaction Density(%)
Delicious 1k 1k 8k 0.61
Lastfm 2K 175K 92K 0.28
Ciao 7K 11K 147K 0.19
BookX 20K 40K 605K 0.08
ML-1M 6K 4K 1M 4.52
ML-20M 62K 27K 17M 1.02

V. EXPERIMENTS

In this section, we evaluate our proposed MAR and MARS
frameworks focusing on the following four research questions:
• RQ1: How do MAR and MARS perform in comparison

to state-of-the-art single space recommendation methods?
• RQ2: What are the effects of different model compo-

nents?
• RQ3: How do the hyperparameters affect the recommen-

dation performance and how to choose optimal values?
• RQ4: How do MAR and MARS improve the modeling

of multiple facets of users and items?

A. Experimental setup

1) Datasets: In order to comprehensively verify the effec-
tiveness of compared methods, we use six real-world datasets
from different application domains with different sizes and
interaction density, i.e., Delicious3, Lastfm2, Ciao3, BookX3,
ML-1M4 and ML-20M4. These datasets have been widely
adopted in previous literature [15], [33], [55], and their statis-
tics are summarized in Table I.

2) Evaluation protocols: We follow the standard evaluation
protocols as in [33]. In particular, we adopt the leave-one-out
evaluation, i.e., the testing set comprises the last item of all
users. If there are no timestamps available in the dataset (e.g.,
Delicious), the test sample is randomly selected. One item
for each user is also sampled to form the development set.
Since it is too time-consuming to rank all items for every user,
we randomly sample 100 items that have no interactions with
the target user and rank the test item with respect to these
100 items, which is a standard method for recommendation

2http://millionsongdataset.com/lastfm/
3https://github.com/pcy1302/TransCF/tree/master/data
4https://grouplens.org/datasets/movielens/



evaluation [3], [9]–[11], [13], [14], [35], [40], [48]. Since our
problem is essentially formulated as learning-to-rank, we judge
the performance of compared models based on the standard
metrics in information retrieval and recommender systems:
hit ratio (HR@10, HR@20) [13] and normalized discounted
cumulative gain (nDCG@10, nDCG@20) [19]. Intuitively, the
HR metric simply considers whether the ground truth is ranked
amongst the top N items while the nDCG metric is a position-
aware ranking metric.

3) Baselines: We adopt the following representative state-
of-the-art methods as baselines for performance comparison:
• BPR [35]: The Bayesian personalized ranking model is

a popular method for Top-N recommendation. We adopt
matrix factorization as the prediction component.

• NMF [25]: Non-negative matrix factorization (NMF) is a
classic model that learns latent factors from interaction data.
We include NMF as one of the baselines because we apply
it to initialize the multiple facets of users and items. The
number of latent factors is set to the same as the number
of metric spaces in our proposed models.

• NeuMF [13]: NeuMF is a framework for applying neural
networks to collaborative filtering. It combines multiple
perceptrons and matrix factorization in its framework.

• CML [15]: Collaborative metric learning (CML) is the first
model to use metric learning to solve the collaborative
filtering problem of recommender systems.

• MetricF [55]: MetricF is a metric learning method that con-
verts user preferences into distances, which uses Euclidean
distance instead of the dot product.

• TransCF [33]: TransCF borrows the idea of translation
in knowledge graph embedding to improve CML, and
calculates the distance metric by learning the relationship
vector between users and items.

• LRML [40]: Latent relational metric learning (LRML)
employs an augmented memory module to induce a latent
relation for each user-item interaction.

• SML [26]: Symmetic metric learning with learnable mar-
gins introduces a symmetrical positive item-centric metric
to pull and push items via the dynamic margin.
4) Implementation Details: We implement MAR and

MARS with Pytorch5, which will be published upon the
acceptance of this work. Implementations of the compared
baselines are either from open-source project or the origi-
nal authors (BPR/MetricF/CML6, NMF7, NeuMF8, TransCF9,
LRML10 and SML11). We optimize MAR with standard
SGD and MARS with Riemannian SGD as introduced in
Section IV-B. We tune all hyperparameters on the vali-
dation set through grid search, in particular, K in [1, 6],
learning rate in {0.0005, 0.001, 0.005, 0.01, 0.1}, λpull and

5https://pytorch.org/
6https://github.com/cheungdaven/DeepRec
7https://github.com/ninghaohello/Polysemous-Network-Embedding/
8https://github.com/hexiangnan/neural collaborative filtering
9https://github.com/pcy1302/TransCF
10https://github.com/vanzytay/WWW2018 LRML
11https://github.com/MingmingLie/SML

λfacet in {0.001, 0.01, 0.1, 1} and the embedding size in
{32, 64, 128, 256, 512, 1024} for different datasets. The batch
size is set to 1000. We also carefully tuned the hyperparam-
eters of all baselines through cross validation as suggested in
the original papers to achieve their best performance.

B. Overall performance comparison (RQ1)

We compares the recommendation results of the proposed
MAR and MARS frameworks to those of the baseline models.
Table II shows the HR@K and nDCG@K scores on all
six datasets with K = {10, 20}. We have the following
observations:

In general, MAR and MARS both outperform all eight
baselines across all evaluation metrics on all datasets, in-
cluding both dense datasets like Delicious and ML1M and
sparse datasets like Ciao and BookX. This answers RQ1,
showing that our proposed multi-facet recommendation frame-
work is capable of effective collaborative ranking. Moreover,
the ranking of many baselines is fluctuating across datasets
as we see the second best performance scattered among
different models like TransCF and SML. Compared with the
second best performance, the performance gains of MARS on
the Delicious, Lastfm, Ciao, BookX, ML-1M and ML-20M
datasets range from reasonably large (2.78% achieved with
HR@10 on the ML-1M dataset) to significantly large (47.07%
achieved with HR@10 on the Ciao dataset).

In particular, the six models based on metric learning (CML,
MetricF, TransCF, LRML, SML and MAR) obviously outper-
form the MF–based competitors (BPR, NMF, and NeuMF),
which is consistent with the results in previous work [15].
Moreover, we observe that our basic MAR framework already
achieves the best performance compared with all single space
metric learning methods, strongly indicating its effectiveness
in learning and utilizing the multi-facet user preference and
item property for recommendation. This is particularly evident
on datasets with richer multi-facet properties, where MAR
significantly outperforms other metric learning algorithms by
up to 27.53% on Delicious, 16.23% on Lastfm, 9.70% on Ciao,
10.01% on BookX, 5.86% on ML-1M and 4.00% on ML-20M.

One step further, MARS improves over the state-of-the-art
and MAR on all datasets, especially those sparser ones, where
it consistently outperforms the state-of-the-art by 47.07%
and 23.61% with HR@10 on Ciao and BookX datasets,
respectively, while MAR only achieves 7.50% and 9.80%
improvements. This strongly indicates the effectiveness of our
spherical optimization strategy.

Moreover, Table III shows the performances of TransCF,
SML and our proposed MARS with varying settings of embed-
ding dimension d. The total embedding dimension of TransCF
and SML is equal to d, while that of MARS is equal to
d×k. We have observed that the performances of both single-
space and multi-space models slightly ascend as d increases
before the total embedding dimension is too large. However,
the improvements brought by increased embedding dimension
(such as 1.82% on TransCF and 0.44% on SML on HR@10)
are minor compared with the gaps between the single-space



TABLE II
EXPERIMENTAL RESULTS ON SIX BENCHMARK DATASETS. BEST PERFORMANCES ARE IN BOLDFACE AND THE SECOND RUNNERS ARE UNDERLINED.

MARS ACHIEVES THE BEST PERFORMANCE ON ALL DATASETS. Imp1. DENOTES THE RELATIVE IMPROVEMENTS OF MAR OVER THE BEST BASELINES
AND Imp2. DENOTES THOSE OF MARS OVER THE BEST BASELINES.

Dataset Metric BPR NMF NeuMF CML MetricF TransCF LRML SML MAR MARS Imp1. Imp2.

D
el

ic
io

us HR@10 0.1981 0.2031 0.1164 0.2470 0.2137 0.2586 0.2124 0.2071 0.3298 0.3311 27.53% 28.04%
HR@20 0.3177 0.3100 0.2171 0.3649 0.3245 0.3786 0.3285 0.3285 0.4697 0.4842 24.06% 27.89%

nDCG@10 0.1122 0.1113 0.0558 0.1389 0.1128 0.1475 0.1199 0.1114 0.1828 0.1869 23.93% 26.71%
nDCG@20 0.1418 0.1383 0.0789 0.1678 0.1391 0.1781 0.1469 0.1406 0.2144 0.2234 20.38% 25.44%

L
as

tf
m

HR@10 0.2073 0.1965 0.1489 0.1975 0.2045 0.2211 0.2171 0.2280 0.2555 0.2818 12.06% 23.62%
HR@20 0.2488 0.2279 0.1697 0.2455 0.2412 0.2749 0.2699 0.2834 0.3183 0.3425 12.31% 20.86%

nDCG@10 0.1358 0.1332 0.0961 0.1203 0.1307 0.1465 0.1438 0.1510 0.1755 0.1882 16.23% 24.64%
nDCG@20 0.1480 0.1425 0.1009 0.1331 0.1418 0.1621 0.1591 0.1671 0.1892 0.2041 13.22% 22.14%

C
ia

o

HR@10 0.1569 0.1549 0.1535 0.2085 0.1722 0.2292 0.2122 0.2307 0.2480 0.3393 7.50% 47.07%
HR@20 0.2811 0.2741 0.2788 0.3337 0.3012 0.3740 0.3345 0.3494 0.3985 0.5097 6.55% 36.28%

nDCG@10 0.0751 0.0798 0.0741 0.1053 0.0863 0.1167 0.1102 0.1208 0.1299 0.1776 7.53% 47.02%
nDCG@20 0.1063 0.1097 0.1040 0.1358 0.1180 0.1525 0.1406 0.1509 0.1673 0.2202 9.70% 44.39%

B
oo

kX

HR@10 0.2425 0.1981 0.2286 0.2885 0.2418 0.3329 0.3168 0.3367 0.3697 0.4162 9.80% 23.61%
HR@20 0.3761 0.3195 0.3747 0.4053 0.3742 0.4744 0.4463 0.4710 0.5219 0.5851 10.01% 23.33%

nDCG@10 0.1250 0.1041 0.1158 0.1663 0.1358 0.1865 0.1847 0.2032 0.2106 0.2349 3.64% 15.60%
nDCG@20 0.1585 0.1344 0.1482 0.1956 0.1689 0.2221 0.2171 0.2352 0.2484 0.2772 5.61% 17.86%

M
L

-1
M HR@10 0.7237 0.7029 0.6861 0.7216 0.7198 0.7233 0.7397 0.7126 0.7523 0.7603 1.70% 2.78%

HR@20 0.854 0.8294 0.8096 0.8515 0.8494 0.8535 0.8728 0.8409 0.8832 0.8983 1.19% 2.92%
nDCG@10 0.5333 0.518 0.5065 0.5413 0.5304 0.5330 0.5461 0.5345 0.5667 0.5897 3.77% 7.98%
nDCG@20 0.6164 0.5987 0.5854 0.6256 0.6131 0.6160 0.6311 0.6178 0.6681 0.6801 5.86% 7.76%

M
L

-2
0M

HR@10 0.822 0.8175 0.7944 0.8457 0.8192 0.8504 0.8132 0.8216 0.8678 0.8799 2.05% 3.47%
HR@20 0.9005 0.8842 0.8725 0.9106 0.9107 0.9113 0.8855 0.9025 0.9311 0.9466 2.17% 3.87%

nDCG@10 0.6346 0.593 0.5815 0.6256 0.6158 0.6239 0.6377 0.6257 0.6632 0.6714 4.00% 5.28%
nDCG@20 0.6566 0.6214 0.6291 0.6594 0.6568 0.6633 0.6705 0.6529 0.6829 0.6925 1.85% 3.28%

TABLE III
PERFORMANCE UNDER DIFFERENT SETTINGS OF EMBEDDING DIMENSION.

HR@10 HR@20 nDCG@10 nDCG@20 d k

Tr
an

sC
F 0.2251 0.3587 0.1161 0.1479 128 1

0.2287 0.3662 0.1164 0.1495 256 1
0.2292 0.3740 0.1167 0.1525 512 1
0.2224 0.3566 0.1155 0.1466 1024 1

SM
L

0.2297 0.3438 0.1162 0.1437 128 1
0.2302 0.3488 0.1178 0.1499 256 1
0.2307 0.3494 0.1208 0.1509 512 1
0.2299 0.3481 0.1183 0.1473 1024 1

M
A

R
S 0.3340 0.4999 0.1737 0.2158 32 4

0.3371 0.5063 0.1749 0.2163 64 4
0.3386 0.5027 0.1754 0.2167 128 4
0.3393 0.5097 0.1776 0.2202 256 4

models and MARS (MARS outperforms TransCF by up to
52.56% and SML by up to 47.59% on HR@10 under the same
total dimensions), which directly supports our argument that
properly using multiple embedding spaces is more effective
than simply increasing the dimension of a single space. Note
that, when the dimension of a single space increases to 1024,
both TransCF and SML suffer from slight overfitting, while
MARS can still further improve the performance.

C. Model ablation study (RQ2)

To better understand our proposed techniques, i.e., multi-
facet embedding and spherical optimization, we closely study
the two frameworks of MAR and MARS. Specifically, to study
the effectiveness of multi-facet embedding, we set the classic
single space metric learning method CML as the baseline and
study the performance of MAR as we use different numbers
of embedding spaces (K); to further study the effectiveness
of spherical optimization, we also compare MARS to MAR
in all those settings.

From Table IV, we have the following observations:

• In general, the performance of MAR and MARS are
both better than the basic CML in all cases. The per-
formance gains of MAR over CML (Imp1.) on the four
datasets range from 8.60% (achieved on BookX with
K=6) to 54.32% (achieved on Ciao with K=4). The
corresponding performance gains of MARS over CML
(Imp2.) ranges from 32.90% (achieved on Delicious with
K=3) to 68.66% (achieved on Ciao with K=4). Such
results are consistent with those in Table II, showing the
effectiveness of both our proposed techniques.

• The performance gains of MARS over MAR (Imp3.) on
four datasets fluctuate, ranging from 1.04% (achieved on
Delicious with K=3) to 28.46% (achieved on BookX with
K=6), showing the enhancement brought by spherical
optimization regarding both performance and robustness.
Interestingly, the improvements of MARS over MAR are
most significant when the improvements of MAR over
CML are small. Such observations strongly indicate that
the spherical optimization is more useful in the more
difficult situations, which corroborates our conjecture
regarding the weak embedding norm constraints of MAR.

• On all datasets, increasing the number of spaces K leads
to larger performance gain of MAR over CML, especially
when K is small. However, after the optimal values (often
3 or 4), the improvements start to drop a bit, probably due
to insufficient training and overfitting. The improvements
of MARS over CML largely follow the trend of MAR,
i.e., both frameworks tend to excel with similar K’s
across four datasets, while MARS does yield more stable
improvements. In practice, K should be set according to
the complexity of the datasets, and 3 or 4 could be the



TABLE IV
NDCG@10 OF CML, MAR AND MARS OVER DIFFERENT NUMBERS OF FACET-SPECIFIC SPACES ON FOUR OF THE DATASETS. Imp1. DENOTES THE

RELATIVE IMPROVEMENTS OF MAR OVER CML, Imp2. DENOTES THOSE OF MARS OVER CML AND Imp3. DENOTES THOSE OF MARS OVER MAR.

K spaces Delicious K spaces Lastfm
CML MAR MARS Imp1. Imp2. Imp3. CML MAR MARS Imp1. Imp2. Imp3.

K=1

0.1389

0.1687 0.1865 21.45% 34.27% 10.55% K=1

0.1231

0.1654 0.1834 37.53% 52.42% 10.82%
K=2 0.1828 0.1869 31.61% 34.56% 2.24% K=2 0.1755 0.1882 45.89% 56.44% 7.24%
K=3 0.1827 0.1846 31.53% 32.90% 1.04% K=3 0.1669 0.1780 38.76% 47.99% 6.65%
K=4 0.1794 0.1847 29.16% 32.97% 2.95% K=4 0.1505 0.1778 25.08% 47.83% 18.19%
K=5 0.1786 0.1851 28.58% 33.26% 3.64% K=5 0.1434 0.1739 19.22% 44.56% 21.26%
K=6 0.1780 0.1856 28.15% 33.62% 4.27% K=6 0.1374 0.1683 14.22% 39.86% 22.45%

K spaces Ciao K spaces BookX
CML MAR MARS Imp1. Imp2. Imp3. CML MAR MARS Imp1. Imp2. Imp3.

K=1

0.1053

0.1299 0.1667 23.36% 58.27% 28.30% K=1

0.1663

0.1831 0.2307 10.10% 38.73% 26.00%
K=2 0.1480 0.1698 40.55% 61.28% 14.75% K=2 0.2002 0.2306 20.38% 38.67% 15.18%
K=3 0.1549 0.1714 47.10% 62.77% 10.65% K=3 0.2238 0.2324 34.58% 39.75% 3.84%
K=4 0.1625 0.1776 54.32% 68.66% 9.29% K=4 0.2176 0.2324 30.85% 39.75% 6.80%
K=5 0.1479 0.1682 40.46% 59.78% 13.76% K=5 0.1943 0.2349 16.84% 41.25% 20.90%
K=6 0.1346 0.1620 27.83% 53.86% 20.37% K=6 0.1806 0.2320 8.60% 39.51% 28.46%

(a) Varying λpull on Delicious (b) Varying λpull on Lastfm (c) Varying λpull on Ciao (d) Varying λpull on BookX

Fig. 5. Performance regarding nDCG of the best baseline and MARS with varying weights on “pulling” regularizer on four of the datasets.

(a) Varying λfacet on Delicious (b) Varying λfacet on Lastfm (c) Varying λfacet on Ciao (d) Varying λfacet on BookX

Fig. 6. Performance regarding nDCG of the best baseline and MARS with varying weights on facet-separating regularizer on four of the datasets.

rule-of-thumb.

D. Major hyperparameter study (RQ3)

Our proposed frameworks mainly introduce two additional
hyperparameters λpull and λfacet to control the weight of the
“pulling” regularizer and facet-separating regularizer, respec-
tively. Here we show how these two hyperparameters impact
the performance and clarify how to set them. Due to space
limitation, we only show the results with nDCG. There are a
few other hyperparameters in the losses inspired by existing
works (i.e., α in Eq. 4 and β in Eq. 10), which are all set to
the suggested default values (α=0.1, β=0.8) without tuning.

Firstly, we show the model performance with varying λpull.
The regularizer Lpull can pull positive items close towards
the corresponding users in the metric spaces. If λpull is too
small, the interactions between positive users and items will
likely be weakened. However, too large λpull will likely cause
the model to overfit. The results are shown in Figure 5. We
found that the optimal λpull values on Delicious, Lastfm,

Ciao and BookX datasets to be about 0.1, 0, 0.001 and 0.1,
respectively. Therefore, MARS is reasonably sensitive to λpull,
as the performance peaks at different values, but is always
better than the best baseline. In the range of [0,1], the optimal
parameters can be obtained by slight tuning.

Secondly, for hyperparameter λfacet, the optimal λfacet for
different datasets is consistently 0.01, as shown in Figure 6.
In all settings of λfacet, the performance of MARS again is
always better than the best baseline. In particular, we observe
the effectiveness of Lfacet as increasing λfacet always leads
to improved performance when the values are small. However,
further increasing it beyond the optimal value always makes
the performance worse. In practice, λfacet = 0.01 seems to
be the rule-of-thumb.

E. Multi-facet case study (RQ4)

To demonstrate the advantages of the multi-facet recommen-
dation over single-space systems, we visualize the embedding
vectors learned by CML, the proposed MAR and the proposed



(a) Item embedding learned by CML

k=1

k=3 k=4

k=2

(b) Item embedding learned by MAR

k=1

k=3 k=4

k=2

(c) Item embedding learned by MARS

Fig. 7. Visualizations of item embeddings learned in a single metric space, multi-facet Euclidean spaces and multi-facet spherical spaces.

TABLE V
TOP-5 CATEGORIES WITH PROPORTIONS IN THE DIFFERENT EMBEDDING

SPACES OF MARS.
category prop (%) category prop (%)

k=1

DVDs 10.38

k=2

Ciao Cafe 16.07
Beauty 8.97 Food & Drink 13.85
Music 6.65 Beauty 10.34
BookX 6.32 BookX 9.34
Games 5.19 Travel 8.31

House man Internet celebrity

k=3

Beauty 10.45

k=4

Internet 8.89
Food & Drink 10.45 Entertainment 8.39

Games 5.64 Travel 8.34
BookX 5.32 Games 7.34
Travel 5.22 Music 6.93

College student Software engineer

TABLE VI
EXAMPLES OF USER PROFILES MODELED BY MARS.

User k θku Interacted categories: interaction number

Bob

k=1 0.56 DVDs: 55; Games: 25; . . .
k=2 0.05 Ciao Cafe: 61; . . .
k=3 0.04 Food & Drink:43; . . .
k=4 0.35 Software: 45; Music: 15 . . .

Mary

k=1 0.13 DVDs: 103; BookX: 60; . . .
k=2 0.70 Ciao Cafe: 99; Beauty: 58; Music: 42; . . .
k=3 0.05 Travel: 12; . . .
k=4 0.12 Internet: 65; . . .

MARS on the Ciao dataset as shown in Figure 7. CML, MAR
and MARS use the same color spectrum to represent different
item categories (ground-truth given in Ciao). In CML, each
item corresponds to only one learnable vector in a single
space, whereas in MAR and MARS, each item corresponds
to vectors in the different facet-specific spaces. From Figure
7, it is hard to find regularity in the distribution of items from
different categories in the single embedding space learned by
CML. However, the items from different categories are well
separated in the multiple embedding spaces of MAR, and the
embedding spaces do include different categories of items and
distribute them differently. Moreover, the different categories
of items are even better organized by MARS, with smaller
intra-category distances and larger inter-category distances.
The visualizations clearly demonstrate the advantages of MAR
and MARS in capturing the multi-facet item property.

To provide more insights, we further demonstrate the top-
5 categories in each facet-specific space (Table V), and two
example user profiles (Table VI), both retrieved based on the
user-item interaction data and the user-facet weights learned
by MARS. It is interesting that in Table V we are able to

manually assign some user stereotypes to the learned implicit
facets, such as Internet celebrity to the space of k = 2 and
software engineer to the space of k = 4, based on their top
concerned item categories. Moreover, in Table VI we are able
to profile two random users (with fake names) as combinations
of the stereotypes, and they interact with different items
with different roles in the corresponding facet-specific spaces.
Note that, the exact stereotype labels we create here are not
perfectly accurate due to the implicit nature of facets, but
they nonetheless provide valuable insight into the meaningful
representative user types directly extracted from the implicit
feedback data in an unsupervised fashion, which provides
potential for further user profiling and personalization. By
projecting users and items into different implicit facet-specific
spaces, MAR and MARS can learn the fine-grained multi-
facet preference of users and property of items, which provides
extra knowledge regarding not fully leveraged by existing
recommendation systems.

VI. CONCLUSION

In this paper, we propose MARS for recommendation
with multi-space user/item embedding, which can effectively
resolve the potential conflicts caused by multi-facet user
preferences and item properties. Specifically, MARS learns
multiple related but dissimilar metric spaces, each of which
aims to capture user-item interactions through a particular
implicit facet. The learning of MARS does not require any
external knowledge or algorithm, but only relies on the implicit
feedback data. We demonstrated the superior performance of
MARS in recommendation through extensive experiments, and
showcased its effectiveness in multi-facet user/item modeling
through insightful case studies.

In the future, it would be interesting to further explore
different projections of multi-facet embeddings (e.g., nonlin-
ear), as well as dynamically learn the radiuses of different
facet-specific spherical embedding spaces. It is also important
to closely study the behavior of MARS regarding the so-
called difficult users and items in controlled experiments (such
as with users and items grouped based on the number of
interactions). Finally, it is potentially useful to infer clusters
and attributes of users and items based on the learned MARS
model, and utilize them to support other related downstream
tasks like user/item segmentation and profiling.
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