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Abstract
Combinatorial Medication Recommendation (CMR) based on multi-
modal Electronic Health Records (EHRs) is a promising yet challeng-
ing frontier in AI-driven healthcare. Existing approaches usually
rely on feature extraction from individual modalities without explic-
itly aligning information across different data sources. As a result,
they may ignore complementary information from other modalities,
leading to suboptimal representations for CMR. To this end, we
propose MedAlign, a novel combinatorial Medication recommen-
dation framework with multi-modality Alignment. Specifically, we
first design a distribution-aware multimodal medication alignment
module. This aligns distinct modality distributions of medications
within a unified latent space, generating consistent medication rep-
resentations. Furthermore, we introduce a longitudinal multi-view
patient aggregation module, which aggregates the historical visits
of patients with multi-view information to form informative patient
representations. Finally, we propose a combinatorial medication
recommendation module, enabling an accurate and safe medication
recommendation combination for each patient. Extensive experi-
ments on two real-world multimodal EHR datasets demonstrate
the effectiveness of our MedAlign.

CCS Concepts
• Applied computing→ Health informatics.
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1 Introduction
Electronic Health Records (EHRs) are widely used in various real-
world healthcare applications, such as diagnose prediction [21, 28]
and Combinatorial Medication Recommendations (CMR) [20, 26].
These records encompass a wide range of data modalities, includ-
ing texts (e.g., clinical notes and medication textual descriptions),
structures (e.g., molecular structures of medications), images (e.g.,
X-rays and ultrasound scans), and signals (e.g., sensor records).
The integration of these diverse data modalities can improve the
accuracy and safety of CMR, by providing more effective representa-
tions of patient status and medication characteristics. For instance,
[35, 36, 40] incorporate the molecular structures of medications
and capture the interactions among substructures, improving the
recommendation safety.

Although these CMR methods leverage multimodal data, they
typically extract features from each modality independently with-
out explicitly aligning information across modalities. Consequently,
they often capture only shared inter-modal correlations while over-
looking cross-model complementary information, leading to subop-
timal medication combinations. As shown in Figure 1(a), traditional
methods tend to learn the common pain-relief effect of Ibuprofen
and Acetaminophen based on their shared textual description pain
and molecular substructure aromatic ring, thereby recommending
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Textual Description Molecular Structure

Ibuprofen           Hydroxyzine

Neil’s visit involves Headache and Allergic Arthritis.                  Rosie’s visit involves Headache, Allergic Rash, and Peptic Ulcer.

Acetaminophen           Hydroxyzine          OmeprazoleRosie

NeilIbuprofen          Hydroxyzine

Ibuprofen          Hydroxyzine        OmeprazoleRosie

Neil

(b) CMR w. Modality Alignment(a) CMR w/o. Modality Alignment

Figure 1: An illustrative example of Combinatorial Medication Recommendations (CMR). (a) Medications are recommended
based on individual modalities without considering the alignment between them. (b) Alignment between different modalities
(e.g., textual description andmolecular structure) improves the consistent and complementary information amongmedications.

inaccurate medication Ibuprofen to treat Rosie’s headache. This may
increase the risk of gastrointestinal complications [13].

In contrast, by aligning heterogeneous modalities into a shared
and comparable latent space, the model effectively captures both
consistent and complementary characteristics of medications from
textual and molecular modalities (illustrated in Figure 1(b)). As a
result, Acetaminophen is preferred for Rosie, diagnosed with Peptic
Ulcer, because it causes less gastrointestinal irritation [1]. Moreover,
for Neil, who has Allergic Arthritis, Ibuprofen is recommended due
to its additional anti-inflammatory properties. This illustrates that
explicitly aligning multimodal information enables the model to un-
cover valuable correlations and complementary information among
modalities, generating precise and safe medication combinations.

To this end, we propose a novel combinatorialMedication recom-
mendation framework with multi-modalityAlignment (MedAlign).
Specifically, we first design a distribution-aware multimodal medi-
cation alignment module. We align three distinct modality distri-
butions of medications within a unified latent space, generating
consistent medication representations. Then, we introduce a longi-
tudinal multi-view patient aggregation module. By aggregating the
historical visits of patients with multi-view information, we form in-
formative longitudinal patient representations. Finally, we propose
a combinatorial medication recommendation module, enabling an
accurate and safe medication recommendation combination.

The main contributions of our work are summarized as follows:
(1) We propose a novel distribution-aware multimodal medication
alignment module for CMR. To the best of our knowledge, this is the
first work from a distribution alignment perspective to explicitly
capture both correlations and complementary information among
modalities, achieving an accurate and safe CMR. (2) We integrate
the rich temporal visit sequences with multi-view information from
diagnoses, procedures, and fused historical medication, obtaining
comprehensive longitudinal patient representations for medication
combination prediction. (3) Extensive experiments on two real-
world multimodal EHR datasets demonstrate the superiority of
MedAlign over state-of-the-art baselines.

2 Related Work
2.1 Medication Recommendation
Combinatorial Medication Recommendation (CMR) aims to pro-
vide accurate and safe prescriptions for patients via personalized
treatment [25, 27, 40]. Existing approaches are mainly divided into
two categories: instance-based and longitudinal methods. Instance-
based methods [8, 22] typically rely on structured features extracted
from a single patient visit. For example, LEAP [39] proposed a multi-
instance multi-label learning framework to generate medication
recommendations based on the patient’s current diagnosis infor-
mation. However, these methods often neglect valuable historical
patient data. In contrast, longitudinal methods [14, 32, 34] integrate
temporal information from patients’ hospitalization histories to
model long-term disease progression. For instance, GAMENet [24]
modeled longitudinal EHR data as a graph structure, incorporating
Drug-Drug Interaction (DDI) with medication knowledge bases to
mitigate potential conflicts.

To improve the safety and accuracy of CMR, recent studies
have explored the integration of multimodal information, including
molecular structures and textual descriptions. For instance, Safe-
Drug [35] enhanced recommendation precision by using molecular
structure embeddings, moving beyond reliance on medication his-
tory and reducing the risk of DDIs. MoleRec [36] and DEPOT [40]
focused on molecular substructure interactions to better reflect
pharmacological properties. Furthermore, NLA-MMR [26] applied
a cross-modal module to jointly learn from chemical medication
structures and textual descriptions. Although the above methods
effectively extract features from individual modalities, they often
overlook cross-modal correlations and complementary information,
thereby limiting their potential to enhance CMR accuracy.

2.2 Multimodal Learning in Healthcare
Recently, multimodal Electronic Health Records (EHRs) (e.g., clini-
cal notes, medication molecular structures, and X-rays) have been
widely used in various healthcare applications to model accurate
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patients’ health states [28, 31, 40]. However, the inherent hetero-
geneity across modalities hinders the effective multimodal infor-
mation integration [11]. To bridge the representation gap among
heterogeneous modalities, several studies have explored methods to
fuse and extract similar features across different data sources [18].
For instance, SMART [3] proposed a deep self-weighted multimodal
relevance-weighting approach, which leverages clustering-based
contrastive learning and eliminates intra- and inter-modal irrel-
evancy. MV-Mol [19] leveraged Q-Former, a multi-modal fusion
architecture, to extract molecular representations by jointly compre-
hending molecular structures and view prompts. In addition, Flex-
Care [33] introduced a multimodal information extraction module
to learn intra- and inter-modality features, along with a task-guided
hierarchical fusion module for adaptive and task-specific represen-
tation learning. DrFuse [37] fused EHR data and medical images via
disease-aware attention to handle missing and inconsistent modali-
ties. While these methods employ various fusion strategies across
modalities, explicit modality alignment has not yet been explored
in the combinatorial medication recommendation task.

3 Methodology
3.1 Problem Formulation
Our MedAlign aims to provide an accurate and safe CMR for each
patient at the 𝑡-th visit based on multimodal EHRs (shown in Fig-
ure 2). It consists of three core modules: the Distribution-aware
Multimodal Medication Alignment module (DMMA), the Longi-
tudinal Multi-view Patient Aggregation module (LMPA), and the
Combinational Medication Recommendation module (CMR).
• In DMMA, we first generate three multimodal medication repre-
sentations (i.e., 𝑿𝑇 , 𝑿 𝐼 , and 𝑿𝑆 ) based on their textual descrip-
tions, IDs, and molecular structures, respectively. Subsequently,
we adopt optimal transport to align these heterogeneous modal-
ity distributions within a unified latent space, thereby ensuring
consistent medication embeddings (i.e., 𝑿𝑇 , 𝑿 𝐼 , and 𝑿𝑆 ).

• In LMPA, we obtain the 𝑡-th visit representations (i.e., 𝑽 𝑡
𝑑
, 𝑽 𝑡𝑝 ,

and 𝑽 𝑡−1𝑚 ) of each patient with multi-view information 𝒗𝑡 =

[𝒅𝑡 ,𝒑𝑡 ,𝒎𝑡−1], where 𝒅𝑡 ∈ {0, 1} |D | and 𝒑𝑡 ∈ {0, 1} | P | are
multi-hot vectors of the patient’s diagnoses and procedures at
the 𝑡-th visit. 𝒎𝑡−1 ∈ {0, 1} |M | is a multi-hot vector of the
patient’s historical medications at the 𝑡 − 1-th visit. D, P, and
M denote the sets of diagnoses, procedures, and medications,
respectively. Then, we aggregate these historical visit sequences
into the comprehensive longitudinal patient embedding 𝑷𝑡 .

• In CMR, we predict a medication recommendation combination
�̂�𝑡 for each patient at the 𝑡-th visit. Notably, we recommend
a medication combination while controlling a low Drug-Drug
Interaction (DDI) rate via a symmetric binary DDI adjacency
matrix 𝑨 ∈ R |M |× |M| , where 𝑨𝑖 𝑗 = 1 represents an interaction
relationship between medications 𝑖 and 𝑗 .

3.2 Distribution-aware Multimodal Medication
Alignment

To effectively integrate information from different modalities and
ensure consistent medication characteristics, in this subsection,
we first generate multimodal medication representations based on

their textual description, ID, and molecular structure, respectively.
Next, we align these medication embeddings from a distribution
alignment perspective via a multi-modality transport mechanism,
thereby capturing the correlations and complementary information.

3.2.1 Multimodal Medication Representations. To capture effective
medication characteristics and enrich medication embeddings, we
utilize each medication’s textual description, ID, and molecular
structure based on multimodal EHRs, obtaining the corresponding
medication representations.

The Pre-trained Language Model (PLM), such as BioBERT [15],
is trained on large biomedical corpora with a broad spectrum of
clinical domain knowledge. Harnessing its semantic understanding
capabilities and domain-specific knowledge, we encode the med-
ication description set {𝑐𝑖 } |M |

𝑖=1 from DrugBank [29] to generate
concise medication representations in textual modality:

𝑿𝑇 = MLP𝑇𝑒𝑥𝑡
(
PLM

(
{𝑐𝑖 } |M |

𝑖=1

))
, (1)

where MLP𝑇𝑒𝑥𝑡 : R |M |×𝑑𝑖𝑚PLM → R |M |×𝑑𝑖𝑚 is a multi-layer per-
ception and each row of 𝑿𝑇 ∈ R |M |×𝑑𝑖𝑚 denotes the textual em-
bedding of a medication.We then initialize learnable ID embeddings
of medications 𝑿 𝐼 ∈ R |M |×𝑑𝑖𝑚 .

Furthermore, we integrate molecular structures to learn the med-
ication’s molecular representations. In particular, we first extract
atomic and bond arrangements from SMILES strings using RD-
Kit [12], constructing a molecular graph. We adopt a Graph Neural
Network (GNN) to model the interactions among all atoms within
the molecular structure graph G = (A,B). Each atom 𝑎𝑖 ∈ A,
linked by the chemical bond 𝑏𝑖 ∈ B, has an initial embedding
𝒔𝑎𝑖 ,0 ∈ R1×𝑑𝑖𝑚 . The GNN adopts message-passing and aggregation
mechanisms to capture complex high-order relationships between
atoms, thereby updating the embedding for atom 𝑎𝑖 :
𝒔𝑎𝑖 ,𝑙 = GNN(𝒔𝑎𝑖 ,𝑙−1),

= UPD
(
𝒔𝑎𝑖 ,𝑙−1,AGG

({
MSG

(
𝒔𝑎𝑖 ,𝑙−1, 𝒔𝑎 𝑗 ,𝑙−1

)}
𝑎 𝑗 ∈N(𝑎𝑖 )

))
,

(2)
where 𝒔𝑎𝑖 ,𝑙 denotes the embedding of atom 𝑎𝑖 in the 𝑙-th layer
of the GNN and N(𝑎𝑖 ) denotes the neighbor atom set of 𝑎𝑖 . The
MSG function receives each neighbor atom’s message, the AGG
function is used for aggregating the neighbor atom embeddings,
and the UPD function updates the embedding of 𝑎𝑖 based on the
aggregated neighbor atom embeddings. Inspired by its effective-
ness in acquiring long-range collaborative interactions between
atoms [40], we employ a graph transformer as our GNN in practical
implementation.

Next, we aggregate the atom embeddings {𝒔𝑎𝑖 ,𝐿}
|A |
𝑖=1 in themolec-

ular graph G into a global structural representation via a mean
pooling readout function:

𝑺G = Pooling
(
{𝒔𝑎𝑖 ,𝐿}

|A |
𝑖=1

)
, (3)

where 𝐿 is the total number of GNN layers. We use the same GNN
with shared parameters for all |M| medication molecules and store
their corresponding molecular representations as 𝑿𝑆 ∈ R |M |×𝑑𝑖𝑚 .

3.2.2 Distribution-aware Modality Alignment. As highlighted in
the Section 1, existing approaches [26, 27] often rely on feature
extraction from individual modalities without explicitly aligning
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Figure 2: The overall framework of our MedAlign, where red × indicates the deletion of the Drug-Drug Interaction (DDI) pair.

information across different data sources. Consequently, they tend
to ignore complementary modality-specific information and de-
stroy the intrinsic distributions of modalities [2, 7, 16], leading to
suboptimal representations for CMR.

To address these limitations, we draw inspiration from the re-
cent advances in Optimal Transport (OT), which have demonstrated
great success in handling heterogeneous data and measuring dis-
tributional discrepancies [17, 23, 38]. Building on this, we design a
multi-modality transport mechanism for medications from a distri-
bution alignment perspective, where OT is employed to minimize
the cost of transferring one modality 𝑚 to another modality 𝑚′.
Notably, we will form the comprehensive patient embedding with
other multi-view information (e.g., diagnoses and procedures) in
the latter Section 3.3, where these clinical views share the same
ID modality. Therefore, we propose to align textual and structural
representations of medications (i.e., 𝑿𝑇 and 𝑿𝑆 ) into a unified and
comparable latent space shared with medication ID embeddings
𝑿 𝐼 , ensuring consistent medication representations.

Specifically, we first calculate the transport cost via cosine dis-
tance as 𝑪𝑚𝑚′

𝑖 𝑗
= 1 − cos(𝑿𝑚

𝑖
− 𝑿𝑚′

𝑗
). 𝑿𝑚

𝑖
and 𝑿𝑚′

𝑗
are the row

vectors of modality representations 𝑿𝑚 and 𝑿𝑚′
. The objective of

the above alignment can be formulated:

𝑻𝑚𝑚′
∗ = argmin

𝑻𝑚𝑚′ ∈R|M|×|M′ |
+

|M |∑︁
𝑖=1

|M′ |∑︁
𝑗=1

𝑪𝑚𝑚′
𝑖 𝑗 𝑻𝑚𝑚′

𝑖 𝑗 ,

s.t. 𝑻𝑚𝑚′
1 |M′ | =

1 |M |
|M| ,

(
𝑻𝑚𝑚′ )⊤

1 |M | =
1 |M′ |
|M′ | ,

(4)

where 𝑻𝑚𝑚′
∗ is the optimal transport plan, and 𝑻𝑚𝑚′

𝑖 𝑗
is the amount

of information from 𝑿𝑚
𝑖

to 𝑿𝑚′
𝑗
. 1 |M′ | and 1 |M | are all-ones

vectors of dimension |M′ | and |M|, respectively. We adopt the
Sinkhorn [6] algorithm to accelerate the calculation of the optimal

transport problem. Then, we update modality𝑚 representations
𝑿𝑚 = (𝑻𝑚𝑚′

∗ )⊤𝑿𝑚 , aligning distributions between modalities𝑚
and𝑚′. Consequently, 𝑿𝑇 = (𝑻𝑇 𝐼∗ )⊤𝑿𝑇 and 𝑿𝑆 = (𝑻𝑆𝐼∗ )⊤𝑿𝑆 .

3.3 Longitudinal Multi-view Patient
Aggregation

In this subsection, to fully model patient health conditions and
provide the basis for the personalized CMR, we leverage multi-view
information in multimodal EHRs, obtaining various visit representa-
tions of each patient. Subsequently, incorporating the rich temporal
sequence data, we form the longitudinal patient representations for
medication combination prediction.

3.3.1 Multi-view Visit Representations. To learn comprehensive pa-
tient health conditions, we encode the visit representations of each
patient using multi-view information from diagnoses, procedures,
and historical medications in multimodal EHRs, respectively.

We first initial two learnable embedding tables, 𝑼𝑑 ∈ R |D |×𝑑𝑖𝑚

and 𝑼𝑝 ∈ R | P |×𝑑𝑖𝑚 . Given the multi-hot diagnosis and procedure
vectors at the 𝑡-th visit 𝒅𝑡 ,𝒑𝑡 , we pick out the corresponding diagno-
sis and procedure embeddings and sum them up via vector-matrix
multiplication, generating the visit representations from two views:

𝑽 𝑡
𝑑
= 𝒅𝑡𝑼𝑑 , (5)

𝑽 𝑡𝑝 = 𝒑𝑡𝑼𝑝 . (6)

To generate the visit representations from historical medication
view, we fuse the aligned medication features (cf., Section 3.2.2)
from three modalities,𝑿𝑇 ,𝑿 𝐼 (i.e.,𝑿 𝐼 ), and𝑿𝑆 by a cross-attention
mechanism. We denote the aggregated representations as 𝑴𝑚 =

𝑾𝑚
𝑣 𝑿

𝑚 , where 𝑚 ∈ O = {𝑇, 𝐼, 𝑆}. The learnable weights 𝑾𝑚
𝑣 ∈



MedAlign: Enhancing Combinatorial Medication Recommendation with Multi-modality Alignment MM ’25, October 27–31, 2025, Dublin, Ireland.

R |M |× |M| are computed by:
𝑸 = 𝑯𝑞𝑾𝑞,𝑲 = 𝑯𝑘𝑾𝑘 ,

{𝑾𝑚
𝑣 }𝑚∈O = softmax

(
𝑸𝑲⊤/

√
𝑑𝑖𝑚

)
,

(7)

where 𝑯𝑞 ∈ R | O |× |M|×𝑑𝑖𝑚 is the matrix stacked by the embed-
dings in {𝑿𝑇 ,𝑿 𝐼 ,𝑿𝑆 },𝑯𝑘 = 1

| O |
∑
𝑚∈O 𝑿𝑚 ∈ R |M |×𝑑𝑖𝑚 ,𝑾𝑞,𝑾𝑘 ∈

R𝑑𝑖𝑚×𝑑𝑖𝑚 are the learnable weights. Subsequently, we obtain the
fusedmedication representations𝑴 = 1

| O |
∑
𝑚∈O 𝑴𝑚 ∈ R |M |×𝑑𝑖𝑚 ,

which can effectively enhance and capture inter-modality correla-
tions and complementary information. Similar to the visit represen-
tations from diagnosis and procedure views, the visit embedding
from the historical medication view is calculated as follows:

𝑽 𝑡−1𝑚 = 𝒎𝑡−1𝑴, (8)
where 𝒎𝑡−1 is a multi-hot vector of the patient’s historical medi-
cations at the 𝑡 − 1-th visit. The multi-view visit representation at
𝑡-th visit is defined as:

𝑽 𝑡 =
{
𝑽 𝑡
𝑑
, 𝑽 𝑡𝑝 , 𝑽

𝑡−1
𝑚

}
. (9)

3.3.2 Longitudinal Patient Representations. To further leverage
the rich temporal sequence data, we utilize three separate Gated
Recurrent Units (GRUs) to capture the patient’s historical diagnosis,
procedure, and medication information:

𝑯 𝑡
𝑑
= GRU𝑑

(
{𝑽 𝑖

𝑑
}𝑡𝑖=1

)
, (10)

𝑯 𝑡
𝑝 = GRU𝑝

(
{𝑽 𝑖𝑝 }𝑡𝑖=1

)
, (11)

𝑯 𝑡−1
𝑚 = GRU𝑚

(
{𝑽 𝑖𝑚}𝑡−1𝑖=1

)
. (12)

Next, these three obtained embeddings are concatenated to form
the final patient embedding 𝑷𝑡 = [𝑯 𝑡

𝑑
∥𝑯 𝑡

𝑝 ∥𝑯 𝑡−1
𝑚 ] ∈ R1×3𝑑𝑖𝑚 .

3.4 Combinational Medication
Recommendation

Given the final patient representation 𝑷𝑡 , we predict a medication
recommendation combination for the patient at the 𝑡-th visit:

�̂�𝑡 = MLP𝑅𝑒𝑐
(
𝑷𝑡

)
, (13)

where MLP𝑅𝑒𝑐 : R1×3𝑑𝑖𝑚 → R1×|M| is a multi-layer perception.
We train our MedAlign using two different loss functions, balancing
between the accuracy and safety of CMR. The formulations of two
loss functions are summarized as follows:

3.4.1 Multi-Label Prediction Loss. We treat the CMR task as amulti-
label classification task and employ two commonly adopted loss
functions to enhance the robustness of the result [24, 35, 36], i.e.,
binary cross-entropy loss and multi-label margin loss, which can
be formulated as follows:

L𝐵𝐶𝐸 = −
|M |∑︁
𝑖=1

(
𝑶𝑡
𝑖 log �̂�

𝑡 +
(
1 − 𝑶𝑡

𝑖

)
log

(
1 − �̂�𝑡 ) ) ,

L𝑀𝑢𝑙𝑡𝑖 =
∑︁

{𝑖 |𝑶𝑡
𝑖 =1}

∑︁
{ 𝑗 |𝑶𝑡

𝑗=0}

max{1 − (�̂�𝑡
𝑖
− �̂�𝑡

𝑗
), 0}

|M| ,

L𝑃𝑟𝑒𝑑 = 𝜆L𝐵𝐶𝐸 + (1 − 𝜆)L𝑀𝑢𝑙𝑡𝑖 ,

(14)

where {𝑶𝑡
𝑖
} |M |
𝑖=1 is ground-truth medications for patient’s 𝑡-th visit.

Hyperparameter 𝜆 is experimentally set to 0.95 by default. Notably,

Table 1: Statistics of the datasets used in our experiments.

Dataset MIMIC-III MIMIC-IV
# of patients 6,350 61,264
# of visits 15,031 163,877
# of diagnoses 1,903 2,000
# of procedures 1,409 11,056
# of medications 131 131
Avg. # of visits 2.3671 2.6749
Avg. # of diagnoses per visit 10.2266 8.2343
Avg. # of procedures per visit 3.8244 2.3579
Avg. # of medications per visit 11.4361 6.5055

the multi-label margin loss L𝑀𝑢𝑙𝑡𝑖 ensures that true labels have at
least 1 margin larger than others, leading to more stable predictions.

3.4.2 DDI Loss. To achieve a lower DDI rate in the predicted med-
ication combinations, we minimize the following loss:

L𝐷𝐷𝐼 =

|M |∑︁
𝑖=1

|M |∑︁
𝑗=1

(
�̂�𝑡

𝑖

(
�̂�𝑡

𝑗

)⊤)
· 𝑨𝑖 𝑗 , (15)

where �̂�𝑡
𝑖

(
�̂�𝑡

𝑗

)⊤
denotes the pair-wise DDI probability.

During the training process, the accuracy and DDI rate often
increase together. This is because DDI is common in real-world EHR
data, and correct or incorrect combinatorial medication predictions
may raise the DDI rate. Balancing the model’s accuracy and safety
is thus crucial for effective CMR. Inspired by [36, 40], we introduce
a dynamic weighting strategy to form the final objective function
of our MedAlign as follows:

L𝐹𝑖𝑛𝑎𝑙 =

{
𝜂L𝑃𝑟𝑒𝑑 + (1 − 𝜂)L𝐷𝐷𝐼 , DDI rate ≥ 𝜖,

L𝑃𝑟𝑒𝑑 , DDI rate < 𝜖,
(16)

where 𝜂 = min{tanh(𝜏 𝜖
DDI rate−𝜖 ), 1} and 𝜖 is the preset safe DDI

threshold. Hyperparameters 𝜏 and 𝜖 are experimentally set to 0.08
and 0.06, respectively.

3.5 Complexity Analysis
We primarily analyze the time and space complexity associated
with modality alignment and fusion for multimodal medication
representations (cf., Section 3.2.2 and Section 3.3.1).

3.5.1 TimeComplexity. The time complexity of the proposedmodal-
ity alignment (Eq. (4)) is 𝑂 (𝛿 · |M|2), where 𝛿 the number of
Sinkhorn iterations used in optimal transport and |M| is the total
number of medications. The complexity of the modality fusion with
cross-attention mechanism (Eq. (7)) is𝑂 ( |M|2 · 𝑑𝑖𝑚), where 𝑑𝑖𝑚 is
the dimension of medication embeddings.

3.5.2 Space Complexity. The matrices in both modality alignment
and fusion (Eq. (4) and Eq. (7)) cost 𝑂 ( |M|2) space, where |M| is
the total number of medications.

4 Experiments
In this section, we evaluate our proposed MedAlign framework
focusing on the following four key research questions:
• RQ1: How does MedAlign perform in comparison to state-of-
the-art baselines for combinatorial medication recommendation?
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• RQ2:What are the effects of the modality alignment and modal-
ity fusion components?

• RQ3: How do the hyperparameters affect the recommendation
performance, and how to choose optimal values?

• RQ4:How does MedAlign align and fuse multimodal medication
distributions to improve the recommendation accuracy?

4.1 Experimental Settings
4.1.1 Datasets and Evaluation Protocols. We use two real-world
EHR datasets to verify the effectiveness of compared methods,
i.e., MIMIC-III [9] and MIMIC-IV [10]. Both datasets are fully
anonymized and carefully sanitized before our access. Following [36,
40], we chose patients who made at least two visits for both datasets
and the ATC third-level code as the target label. The statistics are
summarized in Table 1. For evaluation metrics, we use Jaccard Sim-
ilarity Score (Jaccard), Average F1 Score (F1), Precision Recall AUC
(PRAUC), Drug-Drug Interaction Rate (DDI), and Average Num-
ber of Medications (Avg. # of Med) indicating how well the model
aligns with real-world prescribing patterns, which are consistent
with [24, 36, 40].

4.1.2 Methods for Comparison. To comprehensively evaluate our
proposed MedAlign, we adopt 12 representative state-of-the-art
methods as baselines for the performance comparison:

(1) Instance-based methods:
• LR [4] is a traditional recommendation method that incorporates
L1 regularization. We train a separate binary classifier for each
label in multi-label classification.

• ECC [22] applies boosting-based ensemble learning for multi-
label classification.

• LEAP [39] formulates MR to sequential decision-making, with
a recurrent decoder to model label dependencies and content-
based attention for label instance mapping.
(2) Longitudinal methods:

• RETAIN [5] predicts a patient’s future medication combinations
based on their historical visit records, utilizing RNN and reverse
time attention mechanism.

• MICRON [34] utilizes a recurrent residual learning model to
capture drug and disease changes between consecutive visits,
enabling incremental learning of new patient characteristics.

• GAMENet [24] leverages memory neural networks and DDI
conflict relations to capture historical medication data for im-
proving medication recommendations.

• COGNet [32] retrieves patients’ historical diagnoses/drugs and
mines their relationship with the current diagnosis, which is
embedded in the Transformer as a plug-in.

• LAMRec [27] is a label-aware multi-view medication recom-
mendation model that integrates cross-attention and contrastive
learning to enhance patient representation and label utilization.
(3) Modality-aware methods:

• SafeDrug [35] encodes the molecular structure information of
medications for enhancing the accuracy and safety of medication
recommendations.

• DrugRec [25] extracts all the drug representations with the
molecule pre-trained transformer model and designs a causal
inference-based drug recommendation model.

• MoleRec [36] improves drug recommendation by leveraging
molecular substructure interactions and patient-substructure
relevance to identify efficacy-driving substructures.

• DEPOT [40] is a state-of-the-art medication recommendation
framework that decomposes drug molecules into semantic motif
trees and models interactions among these motifs.

4.1.3 Implementation Details. We split training, validation, and
test sets by 2/3, 1/6, and 1/6, consistent with [35, 36, 40]. We op-
timize the compared baselines with standard Adam and tune all
hyperparameters on training sets through grid search. In particular,
we set 𝜆 = 0.95, 𝜏 = 0.08, and 𝜖 = 0.06 by default. The dimension
of embeddings obtained from PLM 𝑑𝑖𝑚PLM is 768. For the adopted
GNN architecture, we use 2 layers with a hidden dimension of 64.
The learning rate is set to 5e-4. We set the embedding dimension
𝑑𝑖𝑚 as 64 and the batch size as 32 for all compared methods on both
datasets. We carefully tune the hyperparameters of baselines as
suggested in the original papers to achieve their best performance.
All experiments are performed with two NVIDIA GTX 3090 Ti
GPUs. The full code for this work is available1.

4.2 Overall Performance Comparison (RQ1)
We compare the combinatorial medication recommendation results
of the proposed MedAlign framework to those of the competitive
baseline models. Table 2 shows the Jaccard, F1, PRAUC, DDI, and
Avg. # of Med on both MIMIC-III and MIMIC-IV datasets. We have
the following observations:

Overall, our MedAlign outperforms all compared baselines across
all recommendation evaluationmetrics (i.e., Jaccard, F1, and PRAUC)
on both datasets. This answers RQ1, showing that our proposed rec-
ommendation framework with multi-modality alignment is capable
of precise medication combinations. Compared with the second-
best performance (e.g., DEPOT), the performance gains of MedAlign
achieve up to 2.02% with Jaccard on MIMIC-IV.

Instance-based methods are traditional approaches that focus
on binary classification for each medication label, which are of-
ten limited by their inability to capture the complex relationships
between multiple modalities of patient and medication data. There-
fore, MedAlign significantly outperforms them across all metrics,
achieving 11.81% on average. Longitudinal methods incorporate se-
quential patient records to track historical medication and diagnoses
over time. However, they still struggle with modeling interactions
across diverse modalities. MedAlign outperforms these models by
better capturing both temporal and inter-modality correlations,
with significant gains in both Jaccard (10.54% on MIMIC-III) and F1
(6.93% on MIMIC-III).

Among Modality-aware methods, DEPOT achieves superior per-
formance over most baselines through modeling the molecular
structures of medications, highlighting the significance of medica-
tion characteristics modeling. This suggests that multi-modality
alignment provides an effective solution for tackling complex clin-
ical scenarios. Compared with DEPOT, MedAlign captures inter-
modality correlations and complementary modality-specific infor-
mation, further enhancing the accuracy of recommendations.

1https://github.com/lvhangkenn/MedAlign
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Table 2: Experimental results on MIMIC-III and MIMIC-IV, datasets, where * denotes a significant improvement according to
the Wilcoxon signed-rank test [30]. The best performances are highlighted in boldface and the second runners are underlined.
Ground-truth Avg. # of Med in the test sets of both datasets is 19.7937 and 11.9788, respectively.

Dataset Method Jaccard ↑ F1-score ↑ PRAUC ↑ DDI ↓ Avg. # of Med

MIMIC-III

LR 0.4647 ± 0.0021 0.6265 ± 0.0025 0.7472 ± 0.0022 0.0809 ± 0.0011 15.8472 ± 0.1836
ECC 0.4556 ± 0.0027 0.6167 ± 0.0019 0.7192 ± 0.0023 0.0818 ± 0.0009 15.4763 ± 0.2174
LEAP 0.4328 ± 0.0019 0.5986 ± 0.0022 0.6465 ± 0.0026 0.0761 ± 0.0012 17.8219 ± 0.1725

RETAIN 0.4537 ± 0.0023 0.6174 ± 0.0021 0.7219 ± 0.0024 0.0846 ± 0.0005 19.9605 ± 0.2139
MICRON 0.4819 ± 0.0014 0.6403 ± 0.0019 0.7297 ± 0.0019 0.0754 ± 0.0013 18.7138 ± 0.2017
GAMENet 0.4783 ± 0.0024 0.6379 ± 0.0026 0.7248 ± 0.0027 0.0852 ± 0.0003 24.2536 ± 0.1971
COGNet 0.4873 ± 0.0026 0.6472 ± 0.0028 0.7295 ± 0.0025 0.0836 ± 0.0004 22.3725 ± 0.2014
LAMRec 0.4915 ± 0.0024 0.6504 ± 0.0020 0.7699 ± 0.0028 0.0803 ± 0.0002 21.4461 ± 0.1537

SafeDrug 0.4832 ± 0.0021 0.6434 ± 0.0023 0.7261 ± 0.0028 0.0691 ± 0.0007* 18.0294 ± 0.1923
DrugRec 0.4956 ± 0.0018 0.6536 ± 0.0021 0.7332 ± 0.0019 0.0739 ± 0.0008 17.8413 ± 0.2658
MoleRec 0.5303 ± 0.0029 0.6847 ± 0.0023 0.7775 ± 0.0024 0.0734 ± 0.0006 20.9342 ± 0.1743
DEPOT 0.5331 ± 0.0022 0.6868 ± 0.0025 0.7820 ± 0.0021 0.0722 ± 0.0003 19.6914 ± 0.1432

MedAlign 0.5433 ± 0.0019* 0.6955 ± 0.0023* 0.7869 ± 0.0024* 0.0715 ± 0.0002 20.7513 ± 0.1968

MIMIC-IV

LR 0.4101 ± 0.0025 0.5589 ± 0.0024 0.6717 ± 0.0019 0.0776 ± 0.0007 8.7963 ± 0.2195
ECC 0.3927 ± 0.0022 0.5374 ± 0.0027 0.6691 ± 0.0023 0.0783 ± 0.0004 7.8924 ± 0.2013
LEAP 0.3898 ± 0.0021 0.5405 ± 0.0019 0.5436 ± 0.0021 0.0728 ± 0.0009 9.7836 ± 0.1961

RETAIN 0.4164 ± 0.0024 0.5687 ± 0.0018 0.6712 ± 0.0025 0.0809 ± 0.0002 10.5347 ± 0.1879
MICRON 0.4277 ± 0.0017 0.5768 ± 0.0021 0.6733 ± 0.0029 0.0719 ± 0.0006 11.6973 ± 0.1636
GAMENet 0.4219 ± 0.0023 0.5745 ± 0.0022 0.6629 ± 0.0020 0.0817 ± 0.0002 15.5426 ± 0.1784
COGNet 0.4347 ± 0.0018 0.5884 ± 0.0025 0.6517 ± 0.0024 0.0802 ± 0.0003 13.2374 ± 0.1589
LAMRec 0.4409 ± 0.0024 0.5912 ± 0.0025 0.7075 ± 0.0027 0.0796 ± 0.0005 12.3147 ± 0.1765

SafeDrug 0.4357 ± 0.0019 0.5873 ± 0.0026 0.6543 ± 0.0025 0.0663 ± 0.0004* 10.8532 ± 0.2132
DrugRec 0.4473 ± 0.0025 0.5938 ± 0.0023 0.6704 ± 0.0019 0.0675 ± 0.0008 10.5933 ± 0.2058
MoleRec 0.4674 ± 0.0022 0.6194 ± 0.0019 0.7067 ± 0.0022 0.0694 ± 0.0007 11.8511 ± 0.2012
DEPOT 0.4709 ± 0.0021 0.6223 ± 0.0024 0.7111 ± 0.0026 0.0702 ± 0.0008 12.0751 ± 0.2278

MedAlign 0.4804 ± 0.0022* 0.6313 ± 0.0020* 0.7223 ± 0.0027* 0.0671 ± 0.0006 12.8769 ± 0.1264

Table 3: Ablation studies on MIMIC-III and MIMIC-IV, where
Avg. denotes the average number of medications.

Method Jaccard ↑ F1 ↑ PRAUC ↑ DDI ↓ Avg.
MIMIC-III

MedAlign 0.5433 0.6955 0.7869 0.0715 20.7513
- w/o. MA 0.5237 0.6695 0.7480 0.0753 22.2475
- w/o. MF 0.5376 0.6865 0.7749 0.0737 21.1125

MIMIC-IV
MedAlign 0.4804 0.6313 0.7223 0.0671 12.8769
- w/o. MA 0.4531 0.5921 0.6983 0.0714 14.4574
- w/o. MF 0.4694 0.6204 0.7173 0.0691 13.6971

Regarding the safety evaluation metric DDI, SafeDrug leads with
its DDI-controllable loss function. However, our method demon-
strates significant improvements over SafeDrug in all accuracy
metrics (achieved up to 12.44% in Jaccard on MIMIC-III), while
keeping the DDI rate only 0.0016 higher than SafeDrug on average.
As discussed in Section 3.4.2, DDI is common in real-world EHR
data. Pursuing the lowest DDI rate without considering efficacy
may lead to suboptimal medication combinations [20]. Therefore,
this performance trade-off reflects a practical balance between pre-
diction accuracy and safety, with the slight increase in DDIs offset
by substantial gains in recommendation effectiveness.

4.3 Ablation Studies (RQ2)
To better understand the contribution of our proposed modality
alignment (cf., Eq. (4) in Section 3.2.2) and modality fusion (cf., Eq.
(7) in Section 3.3.1) components, we conduct ablation studies as
follows: MedAlign w/o. MA is our MedAlign without the modality
alignment strategy and directly applies the modality fusion mech-
anism; MedAlign w/o. MF is our MedAlign without the modality
fusion mechanism and directly averages medication embeddings
after the modality alignment strategy.

As shown in Table 3, compared with MedAlign w/o. MA, our
MedAlign leads to performance gains ranging from 3.44% (achieved
in PRAUC on MIMIC-IV) to 6.62% (achieved in F1 on MIMIC-IV).
Such results show the effectiveness of aligning multi-modal med-
ication representations via optimal transport from a distribution
perspective. Additionally, MedAlign outperforms MedAlign w/o.
MF ranging from 0.70% in PARUC on MIMIC-IV to 2.99% in DDI
on MIMIC-III. This indicates that the modality fusion based on
the cross-attention mechanism can effectively integrate informa-
tion between diverse modalities, modeling more consistent medi-
cation characteristics. These results also affirm that our proposed
components for multimodal medications capture inter-modality
correlations and complementary information.
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Figure 3: Performance regarding Jaccard and DDI rate with
varying the weight of L𝑃𝑟𝑒𝑑 (i.e., 𝜆 in Eq. (14)) and the weight
factor of L𝐷𝐷𝐼 (i.e., 𝜏 in Eq. (15)) on MIMIC-III.

Table 4: Multimodal information of three example medi-
cations on the MIMIC-III dataset. The textual descriptions
provide clinical indications, while the molecular structures
capture pharmacological properties, highlighting the com-
plementary information among multimodal data.

Medication A B C

Textual
Description

Propofol
manages status
epilepticus and

maintains
anesthesia.

Phenytoin
presents and
controls

various types
of seizures.

Lorazepam
treats panic
disorders,

severe anxiety,
and seizures.

Molecular
Structure

4.4 Hyperparameter Studies (RQ3)
To verify the impact of two main hyperparameters 𝜆 and 𝜏 intro-
duced by our MedAlign for CMR, which collectively optimize model
performance, we conduct hyperparameter studies on the MIMIC-III
dataset. Particularly, 𝜆 in Eq. (14) controls the weight between the
hybrid BCE and multi-label margin loss. 𝜏 in Eq. (15) adjusts the
nonlinearity of the tanh function, which regulates the trade-off
between DDI and recommendation loss, balancing safety and accu-
racy. We analyze their impact on model performance and provide
insights into optimal parameter selection.

As shown in Figure 3(a), by adjusting the weight 𝜆, MedAlign
can fine-tune the separation between correct and incorrect medica-
tion combination predictions. A too large 𝜆 decreases the impact
of L𝑀𝑢𝑙𝑡𝑖 , restricting medication recommendations and degrading
performance, while an excessively small 𝜆 induces instability. Fol-
lowing [35, 36, 40], empirical results suggest that 𝜆 = 0.95 is optimal,
ensuring that both loss components contribute effectively to the
model’s convergence. As described in Section 3.4.2, the adopted dy-
namic weighting strategy is essential for modulating the penalty on
unsafe medication combinations based on the current DDI rate. A
smaller 𝜏 results in a steeper penalty curve, sharply prioritizing DDI
avoidance, while a larger 𝜏 smooths the curve and lessens the em-
phasis on safety. Figure 3(b) demonstrates that 𝜏 =0.08 achieves the

A

B
C

A

B

C

Textual Modality
Molecular Modality

(a) MedAlign w/o. MA

A

B
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A

B

C

Textual Modality
Molecular Modality
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Figure 4: Visualizations of textual and molecular medication
embedding distributions on MIMIC-III learned by different
models. Best viewed in color.

best balance between maintaining high recommendation accuracy
and enforcing medication safety.

4.5 Case Studies (RQ4)
To highlight the advantages of MedAlign in integrating multimodal
medications for recommendations, we provide three example medi-
cations from MIMIC-III. Their detailed multimodal information is
presented in Table 4. Additionally, Figure 4 visualizes the learned
embedding distributions in textual and molecular modalities by
MedAlign w/o. MA and MedAlign, respectively.

As shown in Figure 4(a), the textual representations of medi-
cations A, B, and C significantly overlap, making them indistin-
guishable when relying solely on textual features. This issue arises
from their similar textual indications, highlighting the inability of
MedAlign w/o. MA to align information effectively across different
modalities, as it depends only on the cross-attention mechanism.

In contrast, Figure 4(b) demonstrates the effectiveness of our
MedAlign in capturing both inter-modality correlations and com-
plementary modality-specific information. For example, MedAlign
successfully distinguishes the unique roles of medications A Propo-
fol (for maintaining general anesthesia) and C Lorazepam (for ad-
dressing panic disorders) by leveraging both textual and molecu-
lar features. Moreover, MedAlign captures accurate relationships
between medications, as reflected by the closer proximity of em-
beddings for medications B and C across the two modalities. This
corresponds to their similar pharmacological actions (e.g., control-
ling various types of seizures). These results showcase MedAlign’s
ability to precisely align modalities and represent medications.

5 Conclusion
In this paper, we propose MedAlign, a novel framework for combi-
natorial medication recommendation using multimodal electronic
health records. Particularly, we design a distribution-aware multi-
modal medication alignment strategy with optimal transport. This
effectively captures inter-modality correlations and complementary
information from different modalities, learning consistent and accu-
rate medication representations. Furthermore, through aggregating
the rich temporal visit sequences with multi-view information from
diagnoses, procedures, and fused historical medications, we form
longitudinal patient representations for medication combination
prediction. Comprehensive experiments show that our MedAlign
achieves significant improvements over state-of-the-art methods.
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Appendix
A Efficiency Analysis
We evaluate both training and inference efficiency of different
methods on the MIMIC-III dataset. As shown in Table 5, although
MedAlign incurs a higher computational cost, MedAlign achieves
the highest Jaccard score (0.5433) and the lowest DDI rate (0.0715)
among all compared methods, indicating superior recommenda-
tion accuracy and safety. This reasonable trade-off demonstrates
that MedAlign not only advances predictive quality but also main-
tains computational efficiency, making it well-suited for real-world
clinical deployment.

B Generalization Analysis
To assess the robustness and generalizability of MedAlign, we an-
alyze its performance under varying PLMs and GNNs, different
alignment mechanisms, and different modality absence, focusing
on the MIMIC-III dataset.
Various PLMs and GNNs.We utilize different PLMs and GNNs
as textual and molecular encoders, respectively. Table 6 shows that
MedAlign consistently maintains superior performance, demon-
strating its robustness and flexibility.
Different Alignment Mechanisms. To assess the adaptability
of MedAlign using different alignment strategies, we replace our
adopted Optimal Transport and Cross-Attention (OT+CA) mech-
anisms with MvDA-VC [11]. Table 7 shows that regardless of the
specific alignment component used, MedAlign consistently benefits
from modality alignment and exhibits strong adaptability.
Different Modality Absence Settings. To examine the perfor-
mance of the MedAlign under different modality absence settings,
we randomly replace 5% of medication representations in the molec-
ular or textual modalities with random embeddings, respectively.
Table 8 shows that MedAlign consistently maintains superior per-
formance despite the partial absence of modalities. These results
highlight that our multi-modality alignment and fusion mecha-
nisms effectively capture consistent and complementary informa-
tion across modalities, thereby improving robustness under incom-
plete EHR scenarios.

Table 5: Comparison of training and inference time (s/epoch)
for various methods on MIMIC-III.

Method Jaccard ↑ DDI ↓ Training Time Inference Time
MoleRec 0.5303 0.0734 2,076 340
DEPOT 0.5331 0.0722 2,137 384
MedAlign 0.5433 0.0715 2,844 477

Table 6: Ablation results of our proposed MedAlign with vari-
ous PLMs and GNNs on MIMIC-III.

Method Jaccard ↑ F1 ↑ PRAUC ↑ DDI ↓
MedAlign

BioBERT 0.5433 0.6955 0.7869 0.0715
ClinicalBERT 0.5362 0.6897 0.7826 0.0723
PubMedBERT 0.5359 0.6893 0.7825 0.0721

SciBERT 0.5354 0.6889 0.7817 0.0715
Graph Transformer 0.5433 0.6955 0.7869 0.0715

GIN 0.5388 0.6919 0.7824 0.0718

Table 7: Ablation results of our proposed MedAlign with dif-
ferent alignment methods on MIMIC-III. Here “OT + CA”
denotes the integration of Optimal Transport and Cross-
Attention mechanisms, while “MvDA-VC” refers to an ex-
tended version ofMvDA [11] incorporating view consistency.

Method Jaccard ↑ F1 ↑ PRAUC ↑ DDI ↓
MedAlign

OT + CA 0.5433 0.6955 0.7869 0.0715
MvDA-VC 0.5339 0.6875 0.7808 0.0720

Table 8: Ablation results of our proposed MedAlign under
different modality absence settings.

Method Jaccard ↑ F1 ↑ PRAUC ↑ DDI ↓
MIMIC-III

MedAlign 0.5433 0.6955 0.7869 0.0715
- w/o. Textual 0.5383 0.6915 0.7826 0.0719
- w/o. Molecular 0.5381 0.6911 0.7829 0.0727
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